organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­chloro­phen­yl)-3-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 30 September 2009; accepted 30 September 2009; online 10 October 2009)

In the mol­ecular structure of the title compound, C14H11Cl2NO, the two aromatic rings form a dihedral angle of 70.9 (1)°. The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl­phenyl ring and 82.5 (1)° with the dichloro­phenyl ring. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the c axis of the crystal.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o770.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o540.]); Tokarčík et al., 2009[Tokarčík, M., Gowda, B. T., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1637-o1638.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2NO

  • Mr = 280.14

  • Monoclinic, C c

  • a = 11.9433 (8) Å

  • b = 12.5397 (6) Å

  • c = 9.5305 (5) Å

  • β = 111.859 (7)°

  • V = 1324.72 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 295 K

  • 0.53 × 0.34 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector

  • Absorption correction: analytical (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.756, Tmax = 0.979

  • 28271 measured reflections

  • 2553 independent reflections

  • 2368 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.10

  • 2553 reflections

  • 164 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1273 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.07 2.866 (2) 155
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008; Tokarčík et al., 2009), in the present work, the structure of N-(2,6-dichlorophenyl)-3-methylbenzamide (I) has been determined. The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 3-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008), N-(2,6-dichlorophenyl)benzamide (III) (Gowda, Tokarčík et al., 2008), 4-chloro-N-(2,6-dichlorophenyl)benzamide (Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003). The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl-phenyl ring and 82.5 (1) ° with the dichloro-phenyl-ring.

The dihedral angle between the two benzene rings in (I) is 70.9 (1)°, compared to the values of of 22.17 (18)°) & 75.86 (12) in the molecules 1 and 2 of (II), respectively, and 56.8 (1)° & 59.1 (1)° in the first and second molecules of (III), respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into chains running along the c-axis of the crystal. (Fig. 2).

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008); Tokarčík et al., 2009).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Colourless single crystals of the title compound were obtained by a slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

H atoms were found in difference maps and further treated as riding on their parent atoms, with C–H distances of 0.93 Å (for aromatic C), 0.96 Å (for methyl C) and 0.86 Å (N). The Uiso(H) values were set to 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl).

Structure description top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008; Tokarčík et al., 2009), in the present work, the structure of N-(2,6-dichlorophenyl)-3-methylbenzamide (I) has been determined. The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 3-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008), N-(2,6-dichlorophenyl)benzamide (III) (Gowda, Tokarčík et al., 2008), 4-chloro-N-(2,6-dichlorophenyl)benzamide (Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003). The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl-phenyl ring and 82.5 (1) ° with the dichloro-phenyl-ring.

The dihedral angle between the two benzene rings in (I) is 70.9 (1)°, compared to the values of of 22.17 (18)°) & 75.86 (12) in the molecules 1 and 2 of (II), respectively, and 56.8 (1)° & 59.1 (1)° in the first and second molecules of (III), respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into chains running along the c-axis of the crystal. (Fig. 2).

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008); Tokarčík et al., 2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I). Molecular chains running along the c-axis are generated by N–H···O(i) hydrogen bonds, shown as dashed lines. Symmetry code (i): x, -y + 1, z + 1/2.
N-(2,6-Dichlorophenyl)-3-methylbenzamide top
Crystal data top
C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.405 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 16815 reflections
a = 11.9433 (8) Åθ = 2.9–29.5°
b = 12.5397 (6) ŵ = 0.48 mm1
c = 9.5305 (5) ÅT = 295 K
β = 111.859 (7)°Block, colourless
V = 1324.72 (13) Å30.53 × 0.34 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with a Sapphire CCD detector
2553 independent reflections
Graphite monochromator2368 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.026
ω scansθmax = 25.8°, θmin = 2.9°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.756, Tmax = 0.979k = 1515
28271 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4349P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2553 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 1272 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C14H11Cl2NOV = 1324.72 (13) Å3
Mr = 280.14Z = 4
Monoclinic, CcMo Kα radiation
a = 11.9433 (8) ŵ = 0.48 mm1
b = 12.5397 (6) ÅT = 295 K
c = 9.5305 (5) Å0.53 × 0.34 × 0.07 mm
β = 111.859 (7)°
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with a Sapphire CCD detector
2553 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2368 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.979Rint = 0.026
28271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.18 e Å3
S = 1.10Δρmin = 0.22 e Å3
2553 reflectionsAbsolute structure: Flack (1983), 1272 Friedel pairs
164 parametersAbsolute structure parameter: 0.02 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47074 (14)0.47784 (12)0.42954 (16)0.0406 (4)
H1N0.44240.51190.48730.049*
C10.41176 (16)0.48266 (14)0.27880 (19)0.0359 (4)
C20.30291 (15)0.55238 (14)0.22211 (19)0.0370 (4)
C30.21557 (17)0.52827 (16)0.0820 (2)0.0424 (4)
H30.2260.4690.02960.051*
C40.11285 (18)0.59068 (19)0.0182 (2)0.0517 (5)
C50.1019 (2)0.68018 (18)0.0964 (3)0.0579 (6)
H50.03520.72440.05410.069*
C60.1874 (2)0.70552 (18)0.2356 (2)0.0569 (5)
H60.17740.76570.28680.068*
C70.28792 (18)0.64175 (16)0.2992 (2)0.0452 (4)
H70.34540.65870.39350.054*
C80.57860 (17)0.41798 (15)0.49583 (19)0.0376 (4)
C90.57762 (19)0.31764 (15)0.5562 (2)0.0455 (4)
C100.6829 (2)0.26073 (18)0.6273 (3)0.0598 (6)
H100.68060.19380.66820.072*
C110.7908 (2)0.3044 (2)0.6365 (2)0.0624 (6)
H110.86210.26690.68480.075*
C120.79466 (19)0.4020 (2)0.5755 (2)0.0564 (5)
H120.86790.43040.58010.068*
C130.68896 (18)0.45856 (17)0.5070 (2)0.0449 (4)
C140.0183 (2)0.5595 (3)0.1330 (3)0.0798 (8)
H14A0.02830.50090.11940.12*
H14B0.05730.53870.20060.12*
H14C0.03380.61910.1750.12*
O10.44576 (12)0.43125 (11)0.19225 (13)0.0464 (3)
Cl10.44089 (6)0.26275 (5)0.54294 (8)0.07568 (19)
Cl20.69514 (6)0.58258 (5)0.43069 (8)0.0773 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0406 (9)0.0519 (9)0.0281 (7)0.0081 (7)0.0116 (7)0.0011 (7)
C10.0383 (9)0.0381 (9)0.0312 (8)0.0051 (7)0.0128 (8)0.0003 (7)
C20.0382 (10)0.0411 (9)0.0307 (8)0.0045 (7)0.0117 (7)0.0038 (7)
C30.0436 (11)0.0476 (11)0.0342 (9)0.0031 (8)0.0125 (8)0.0028 (8)
C40.0399 (11)0.0677 (14)0.0398 (10)0.0049 (10)0.0060 (9)0.0083 (10)
C50.0473 (12)0.0611 (13)0.0610 (13)0.0143 (10)0.0152 (10)0.0179 (11)
C60.0590 (13)0.0513 (12)0.0570 (13)0.0061 (10)0.0179 (11)0.0007 (10)
C70.0445 (11)0.0470 (11)0.0399 (10)0.0008 (9)0.0108 (8)0.0001 (8)
C80.0415 (9)0.0427 (9)0.0269 (8)0.0027 (7)0.0106 (7)0.0029 (7)
C90.0526 (11)0.0471 (10)0.0384 (9)0.0004 (9)0.0186 (8)0.0038 (9)
C100.0794 (17)0.0476 (12)0.0524 (13)0.0205 (11)0.0245 (12)0.0091 (10)
C110.0597 (14)0.0739 (16)0.0461 (11)0.0273 (12)0.0111 (10)0.0004 (11)
C120.0392 (11)0.0774 (16)0.0467 (11)0.0039 (10)0.0092 (9)0.0051 (11)
C130.0457 (11)0.0504 (11)0.0351 (9)0.0034 (9)0.0109 (8)0.0042 (8)
C140.0539 (15)0.117 (2)0.0508 (14)0.0038 (15)0.0015 (11)0.0086 (14)
O10.0515 (8)0.0573 (8)0.0298 (6)0.0054 (6)0.0146 (6)0.0021 (6)
Cl10.0755 (4)0.0693 (4)0.0878 (4)0.0162 (3)0.0367 (3)0.0088 (3)
Cl20.0730 (4)0.0646 (4)0.0919 (5)0.0154 (3)0.0281 (3)0.0157 (3)
Geometric parameters (Å, º) top
N1—C11.345 (2)C7—H70.93
N1—C81.420 (2)C8—C131.380 (3)
N1—H1N0.86C8—C91.385 (3)
C1—O11.229 (2)C9—C101.384 (3)
C1—C21.491 (3)C9—Cl11.733 (2)
C2—C71.388 (3)C10—C111.373 (4)
C2—C31.388 (3)C10—H100.93
C3—C41.390 (3)C11—C121.363 (4)
C3—H30.93C11—H110.93
C4—C51.380 (3)C12—C131.381 (3)
C4—C141.514 (3)C12—H120.93
C5—C61.376 (3)C13—Cl21.730 (2)
C5—H50.93C14—H14A0.96
C6—C71.381 (3)C14—H14B0.96
C6—H60.93C14—H14C0.96
C1—N1—C8121.77 (15)C13—C8—C9117.29 (18)
C1—N1—H1N119.1C13—C8—N1121.45 (18)
C8—N1—H1N119.1C9—C8—N1121.23 (18)
O1—C1—N1121.38 (17)C10—C9—C8121.7 (2)
O1—C1—C2121.72 (15)C10—C9—Cl1119.38 (16)
N1—C1—C2116.90 (15)C8—C9—Cl1118.94 (16)
C7—C2—C3119.11 (16)C11—C10—C9119.1 (2)
C7—C2—C1123.28 (15)C11—C10—H10120.5
C3—C2—C1117.55 (16)C9—C10—H10120.5
C2—C3—C4121.54 (18)C12—C11—C10120.7 (2)
C2—C3—H3119.2C12—C11—H11119.6
C4—C3—H3119.2C10—C11—H11119.6
C5—C4—C3117.86 (18)C11—C12—C13119.5 (2)
C5—C4—C14122.5 (2)C11—C12—H12120.3
C3—C4—C14119.6 (2)C13—C12—H12120.3
C6—C5—C4121.51 (19)C8—C13—C12121.7 (2)
C6—C5—H5119.2C8—C13—Cl2119.23 (15)
C4—C5—H5119.2C12—C13—Cl2119.04 (17)
C5—C6—C7120.1 (2)C4—C14—H14A109.5
C5—C6—H6120C4—C14—H14B109.5
C7—C6—H6120H14A—C14—H14B109.5
C6—C7—C2119.84 (17)C4—C14—H14C109.5
C6—C7—H7120.1H14A—C14—H14C109.5
C2—C7—H7120.1H14B—C14—H14C109.5
C8—N1—C1—O13.5 (3)C1—N1—C8—C1381.8 (2)
C8—N1—C1—C2177.04 (16)C1—N1—C8—C9100.2 (2)
O1—C1—C2—C7152.45 (18)C13—C8—C9—C101.1 (3)
N1—C1—C2—C728.1 (2)N1—C8—C9—C10176.96 (17)
O1—C1—C2—C324.6 (2)C13—C8—C9—Cl1179.28 (13)
N1—C1—C2—C3154.84 (16)N1—C8—C9—Cl12.7 (2)
C7—C2—C3—C40.9 (3)C8—C9—C10—C110.8 (3)
C1—C2—C3—C4178.08 (17)Cl1—C9—C10—C11179.57 (17)
C2—C3—C4—C52.1 (3)C9—C10—C11—C120.5 (3)
C2—C3—C4—C14178.3 (2)C10—C11—C12—C131.5 (3)
C3—C4—C5—C62.2 (3)C9—C8—C13—C120.1 (3)
C14—C4—C5—C6178.3 (2)N1—C8—C13—C12177.97 (17)
C4—C5—C6—C71.0 (4)C9—C8—C13—Cl2178.92 (14)
C5—C6—C7—C20.4 (3)N1—C8—C13—Cl23.0 (2)
C3—C2—C7—C60.4 (3)C11—C12—C13—C81.2 (3)
C1—C2—C7—C6176.62 (18)C11—C12—C13—Cl2179.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.072.866 (2)155
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11Cl2NO
Mr280.14
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)11.9433 (8), 12.5397 (6), 9.5305 (5)
β (°) 111.859 (7)
V3)1324.72 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.53 × 0.34 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur2
diffractometer with a Sapphire CCD detector
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.756, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
28271, 2553, 2368
Rint0.026
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.10
No. of reflections2553
No. of parameters164
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22
Absolute structureFlack (1983), 1272 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.072.866 (2)155
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokarčík, M., Gowda, B. T., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1637–o1638.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds