organic compounds
N-(2,6-Dichlorophenyl)-3-methylbenzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the molecular structure of the title compound, C14H11Cl2NO, the two aromatic rings form a dihedral angle of 70.9 (1)°. The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methylphenyl ring and 82.5 (1)° with the dichlorophenyl ring. Intermolecular N—H⋯O hydrogen bonds link the molecules into chains running along the c axis of the crystal.
Related literature
For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008); Tokarčík et al., 2009).
Experimental
Crystal data
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536809039889/bt5081sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039889/bt5081Isup2.hkl
The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Colourless single crystals of the title compound were obtained by a slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.
H atoms were found in difference maps and further treated as riding on their parent atoms, with C–H distances of 0.93 Å (for aromatic C), 0.96 Å (for methyl C) and 0.86 Å (N). The Uiso(H) values were set to 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl).
As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008; Tokarčík et al., 2009), in the present work, the structure of N-(2,6-dichlorophenyl)-3-methylbenzamide (I) has been determined. The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 3-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008), N-(2,6-dichlorophenyl)benzamide (III) (Gowda, Tokarčík et al., 2008), 4-chloro-N-(2,6-dichlorophenyl)benzamide (Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003). The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl-phenyl ring and 82.5 (1) ° with the dichloro-phenyl-ring.
The dihedral angle between the two benzene rings in (I) is 70.9 (1)°, compared to the values of of 22.17 (18)°) & 75.86 (12) in the molecules 1 and 2 of (II), respectively, and 56.8 (1)° & 59.1 (1)° in the first and second molecules of (III), respectively. In the
the intermolecular N–H···O hydrogen bonds link the molecules into chains running along the c-axis of the crystal. (Fig. 2).For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008); Tokarčík et al., 2009).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).C14H11Cl2NO | F(000) = 576 |
Mr = 280.14 | Dx = 1.405 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 16815 reflections |
a = 11.9433 (8) Å | θ = 2.9–29.5° |
b = 12.5397 (6) Å | µ = 0.48 mm−1 |
c = 9.5305 (5) Å | T = 295 K |
β = 111.859 (7)° | Block, colourless |
V = 1324.72 (13) Å3 | 0.53 × 0.34 × 0.07 mm |
Z = 4 |
Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector | 2553 independent reflections |
Graphite monochromator | 2368 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.026 |
ω scans | θmax = 25.8°, θmin = 2.9° |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | h = −14→14 |
Tmin = 0.756, Tmax = 0.979 | k = −15→15 |
28271 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4349P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2553 reflections | Δρmax = 0.18 e Å−3 |
164 parameters | Δρmin = −0.22 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1272 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (5) |
C14H11Cl2NO | V = 1324.72 (13) Å3 |
Mr = 280.14 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 11.9433 (8) Å | µ = 0.48 mm−1 |
b = 12.5397 (6) Å | T = 295 K |
c = 9.5305 (5) Å | 0.53 × 0.34 × 0.07 mm |
β = 111.859 (7)° |
Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector | 2553 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | 2368 reflections with I > 2σ(I) |
Tmin = 0.756, Tmax = 0.979 | Rint = 0.026 |
28271 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.068 | Δρmax = 0.18 e Å−3 |
S = 1.10 | Δρmin = −0.22 e Å−3 |
2553 reflections | Absolute structure: Flack (1983), 1272 Friedel pairs |
164 parameters | Absolute structure parameter: −0.02 (5) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.47074 (14) | 0.47784 (12) | 0.42954 (16) | 0.0406 (4) | |
H1N | 0.4424 | 0.5119 | 0.4873 | 0.049* | |
C1 | 0.41176 (16) | 0.48266 (14) | 0.27880 (19) | 0.0359 (4) | |
C2 | 0.30291 (15) | 0.55238 (14) | 0.22211 (19) | 0.0370 (4) | |
C3 | 0.21557 (17) | 0.52827 (16) | 0.0820 (2) | 0.0424 (4) | |
H3 | 0.226 | 0.469 | 0.0296 | 0.051* | |
C4 | 0.11285 (18) | 0.59068 (19) | 0.0182 (2) | 0.0517 (5) | |
C5 | 0.1019 (2) | 0.68018 (18) | 0.0964 (3) | 0.0579 (6) | |
H5 | 0.0352 | 0.7244 | 0.0541 | 0.069* | |
C6 | 0.1874 (2) | 0.70552 (18) | 0.2356 (2) | 0.0569 (5) | |
H6 | 0.1774 | 0.7657 | 0.2868 | 0.068* | |
C7 | 0.28792 (18) | 0.64175 (16) | 0.2992 (2) | 0.0452 (4) | |
H7 | 0.3454 | 0.6587 | 0.3935 | 0.054* | |
C8 | 0.57860 (17) | 0.41798 (15) | 0.49583 (19) | 0.0376 (4) | |
C9 | 0.57762 (19) | 0.31764 (15) | 0.5562 (2) | 0.0455 (4) | |
C10 | 0.6829 (2) | 0.26073 (18) | 0.6273 (3) | 0.0598 (6) | |
H10 | 0.6806 | 0.1938 | 0.6682 | 0.072* | |
C11 | 0.7908 (2) | 0.3044 (2) | 0.6365 (2) | 0.0624 (6) | |
H11 | 0.8621 | 0.2669 | 0.6848 | 0.075* | |
C12 | 0.79466 (19) | 0.4020 (2) | 0.5755 (2) | 0.0564 (5) | |
H12 | 0.8679 | 0.4304 | 0.5801 | 0.068* | |
C13 | 0.68896 (18) | 0.45856 (17) | 0.5070 (2) | 0.0449 (4) | |
C14 | 0.0183 (2) | 0.5595 (3) | −0.1330 (3) | 0.0798 (8) | |
H14A | −0.0283 | 0.5009 | −0.1194 | 0.12* | |
H14B | 0.0573 | 0.5387 | −0.2006 | 0.12* | |
H14C | −0.0338 | 0.6191 | −0.175 | 0.12* | |
O1 | 0.44576 (12) | 0.43125 (11) | 0.19225 (13) | 0.0464 (3) | |
Cl1 | 0.44089 (6) | 0.26275 (5) | 0.54294 (8) | 0.07568 (19) | |
Cl2 | 0.69514 (6) | 0.58258 (5) | 0.43069 (8) | 0.0773 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0406 (9) | 0.0519 (9) | 0.0281 (7) | 0.0081 (7) | 0.0116 (7) | 0.0011 (7) |
C1 | 0.0383 (9) | 0.0381 (9) | 0.0312 (8) | −0.0051 (7) | 0.0128 (8) | −0.0003 (7) |
C2 | 0.0382 (10) | 0.0411 (9) | 0.0307 (8) | −0.0045 (7) | 0.0117 (7) | 0.0038 (7) |
C3 | 0.0436 (11) | 0.0476 (11) | 0.0342 (9) | −0.0031 (8) | 0.0125 (8) | 0.0028 (8) |
C4 | 0.0399 (11) | 0.0677 (14) | 0.0398 (10) | −0.0049 (10) | 0.0060 (9) | 0.0083 (10) |
C5 | 0.0473 (12) | 0.0611 (13) | 0.0610 (13) | 0.0143 (10) | 0.0152 (10) | 0.0179 (11) |
C6 | 0.0590 (13) | 0.0513 (12) | 0.0570 (13) | 0.0061 (10) | 0.0179 (11) | −0.0007 (10) |
C7 | 0.0445 (11) | 0.0470 (11) | 0.0399 (10) | 0.0008 (9) | 0.0108 (8) | 0.0001 (8) |
C8 | 0.0415 (9) | 0.0427 (9) | 0.0269 (8) | 0.0027 (7) | 0.0106 (7) | −0.0029 (7) |
C9 | 0.0526 (11) | 0.0471 (10) | 0.0384 (9) | −0.0004 (9) | 0.0186 (8) | −0.0038 (9) |
C10 | 0.0794 (17) | 0.0476 (12) | 0.0524 (13) | 0.0205 (11) | 0.0245 (12) | 0.0091 (10) |
C11 | 0.0597 (14) | 0.0739 (16) | 0.0461 (11) | 0.0273 (12) | 0.0111 (10) | 0.0004 (11) |
C12 | 0.0392 (11) | 0.0774 (16) | 0.0467 (11) | 0.0039 (10) | 0.0092 (9) | −0.0051 (11) |
C13 | 0.0457 (11) | 0.0504 (11) | 0.0351 (9) | −0.0034 (9) | 0.0109 (8) | −0.0042 (8) |
C14 | 0.0539 (15) | 0.117 (2) | 0.0508 (14) | 0.0038 (15) | −0.0015 (11) | 0.0086 (14) |
O1 | 0.0515 (8) | 0.0573 (8) | 0.0298 (6) | 0.0054 (6) | 0.0146 (6) | −0.0021 (6) |
Cl1 | 0.0755 (4) | 0.0693 (4) | 0.0878 (4) | −0.0162 (3) | 0.0367 (3) | 0.0088 (3) |
Cl2 | 0.0730 (4) | 0.0646 (4) | 0.0919 (5) | −0.0154 (3) | 0.0281 (3) | 0.0157 (3) |
N1—C1 | 1.345 (2) | C7—H7 | 0.93 |
N1—C8 | 1.420 (2) | C8—C13 | 1.380 (3) |
N1—H1N | 0.86 | C8—C9 | 1.385 (3) |
C1—O1 | 1.229 (2) | C9—C10 | 1.384 (3) |
C1—C2 | 1.491 (3) | C9—Cl1 | 1.733 (2) |
C2—C7 | 1.388 (3) | C10—C11 | 1.373 (4) |
C2—C3 | 1.388 (3) | C10—H10 | 0.93 |
C3—C4 | 1.390 (3) | C11—C12 | 1.363 (4) |
C3—H3 | 0.93 | C11—H11 | 0.93 |
C4—C5 | 1.380 (3) | C12—C13 | 1.381 (3) |
C4—C14 | 1.514 (3) | C12—H12 | 0.93 |
C5—C6 | 1.376 (3) | C13—Cl2 | 1.730 (2) |
C5—H5 | 0.93 | C14—H14A | 0.96 |
C6—C7 | 1.381 (3) | C14—H14B | 0.96 |
C6—H6 | 0.93 | C14—H14C | 0.96 |
C1—N1—C8 | 121.77 (15) | C13—C8—C9 | 117.29 (18) |
C1—N1—H1N | 119.1 | C13—C8—N1 | 121.45 (18) |
C8—N1—H1N | 119.1 | C9—C8—N1 | 121.23 (18) |
O1—C1—N1 | 121.38 (17) | C10—C9—C8 | 121.7 (2) |
O1—C1—C2 | 121.72 (15) | C10—C9—Cl1 | 119.38 (16) |
N1—C1—C2 | 116.90 (15) | C8—C9—Cl1 | 118.94 (16) |
C7—C2—C3 | 119.11 (16) | C11—C10—C9 | 119.1 (2) |
C7—C2—C1 | 123.28 (15) | C11—C10—H10 | 120.5 |
C3—C2—C1 | 117.55 (16) | C9—C10—H10 | 120.5 |
C2—C3—C4 | 121.54 (18) | C12—C11—C10 | 120.7 (2) |
C2—C3—H3 | 119.2 | C12—C11—H11 | 119.6 |
C4—C3—H3 | 119.2 | C10—C11—H11 | 119.6 |
C5—C4—C3 | 117.86 (18) | C11—C12—C13 | 119.5 (2) |
C5—C4—C14 | 122.5 (2) | C11—C12—H12 | 120.3 |
C3—C4—C14 | 119.6 (2) | C13—C12—H12 | 120.3 |
C6—C5—C4 | 121.51 (19) | C8—C13—C12 | 121.7 (2) |
C6—C5—H5 | 119.2 | C8—C13—Cl2 | 119.23 (15) |
C4—C5—H5 | 119.2 | C12—C13—Cl2 | 119.04 (17) |
C5—C6—C7 | 120.1 (2) | C4—C14—H14A | 109.5 |
C5—C6—H6 | 120 | C4—C14—H14B | 109.5 |
C7—C6—H6 | 120 | H14A—C14—H14B | 109.5 |
C6—C7—C2 | 119.84 (17) | C4—C14—H14C | 109.5 |
C6—C7—H7 | 120.1 | H14A—C14—H14C | 109.5 |
C2—C7—H7 | 120.1 | H14B—C14—H14C | 109.5 |
C8—N1—C1—O1 | 3.5 (3) | C1—N1—C8—C13 | 81.8 (2) |
C8—N1—C1—C2 | −177.04 (16) | C1—N1—C8—C9 | −100.2 (2) |
O1—C1—C2—C7 | −152.45 (18) | C13—C8—C9—C10 | 1.1 (3) |
N1—C1—C2—C7 | 28.1 (2) | N1—C8—C9—C10 | −176.96 (17) |
O1—C1—C2—C3 | 24.6 (2) | C13—C8—C9—Cl1 | −179.28 (13) |
N1—C1—C2—C3 | −154.84 (16) | N1—C8—C9—Cl1 | 2.7 (2) |
C7—C2—C3—C4 | −0.9 (3) | C8—C9—C10—C11 | −0.8 (3) |
C1—C2—C3—C4 | −178.08 (17) | Cl1—C9—C10—C11 | 179.57 (17) |
C2—C3—C4—C5 | 2.1 (3) | C9—C10—C11—C12 | −0.5 (3) |
C2—C3—C4—C14 | −178.3 (2) | C10—C11—C12—C13 | 1.5 (3) |
C3—C4—C5—C6 | −2.2 (3) | C9—C8—C13—C12 | −0.1 (3) |
C14—C4—C5—C6 | 178.3 (2) | N1—C8—C13—C12 | 177.97 (17) |
C4—C5—C6—C7 | 1.0 (4) | C9—C8—C13—Cl2 | 178.92 (14) |
C5—C6—C7—C2 | 0.4 (3) | N1—C8—C13—Cl2 | −3.0 (2) |
C3—C2—C7—C6 | −0.4 (3) | C11—C12—C13—C8 | −1.2 (3) |
C1—C2—C7—C6 | 176.62 (18) | C11—C12—C13—Cl2 | 179.77 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.07 | 2.866 (2) | 155 |
Symmetry code: (i) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H11Cl2NO |
Mr | 280.14 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 295 |
a, b, c (Å) | 11.9433 (8), 12.5397 (6), 9.5305 (5) |
β (°) | 111.859 (7) |
V (Å3) | 1324.72 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.48 |
Crystal size (mm) | 0.53 × 0.34 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.756, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28271, 2553, 2368 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.068, 1.10 |
No. of reflections | 2553 |
No. of parameters | 164 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.22 |
Absolute structure | Flack (1983), 1272 Friedel pairs |
Absolute structure parameter | −0.02 (5) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.07 | 2.866 (2) | 155 |
Symmetry code: (i) x, −y+1, z+1/2. |
Acknowledgements
MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.
References
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o770. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230. CAS Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o540. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tokarčík, M., Gowda, B. T., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1637–o1638. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008; Tokarčík et al., 2009), in the present work, the structure of N-(2,6-dichlorophenyl)-3-methylbenzamide (I) has been determined. The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 3-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008), N-(2,6-dichlorophenyl)benzamide (III) (Gowda, Tokarčík et al., 2008), 4-chloro-N-(2,6-dichlorophenyl)benzamide (Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003). The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl-phenyl ring and 82.5 (1) ° with the dichloro-phenyl-ring.
The dihedral angle between the two benzene rings in (I) is 70.9 (1)°, compared to the values of of 22.17 (18)°) & 75.86 (12) in the molecules 1 and 2 of (II), respectively, and 56.8 (1)° & 59.1 (1)° in the first and second molecules of (III), respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into chains running along the c-axis of the crystal. (Fig. 2).