organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-7,8-di­methyl­quinoline-3-carbaldehyde

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2009; accepted 6 October 2009; online 10 October 2009)

All the non-H atoms of the title compound, C12H10ClNO, lie on a crystallographic mirror plane orientated perpendicular to the crystallographic b axis.

Related literature

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClNO

  • Mr = 219.66

  • Orthorhombic, P n m a

  • a = 20.4542 (13) Å

  • b = 6.7393 (4) Å

  • c = 7.5675 (4) Å

  • V = 1043.16 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 290 K

  • 0.28 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.912, Tmax = 0.945

  • 7145 measured reflections

  • 1299 independent reflections

  • 1078 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.115

  • S = 1.07

  • 1299 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and N,N-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added to N-(2,3-dimethylphenyl)acetamide (1.63 g, 10 mmol). The mixture was heated at 353 K for 15 h. The mixture was poured onto ice; the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement top

H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Structure description top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C12H10ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-7,8-dimethylquinoline-3-carbaldehyde top
Crystal data top
C12H10ClNOF(000) = 456
Mr = 219.66Dx = 1.399 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 753 reflections
a = 20.4542 (13) Åθ = 2.0–24.4°
b = 6.7393 (4) ŵ = 0.34 mm1
c = 7.5675 (4) ÅT = 290 K
V = 1043.16 (11) Å3Block, colorless
Z = 40.28 × 0.21 × 0.17 mm
Data collection top
Bruker SMART area-detector
diffractometer
1299 independent reflections
Radiation source: fine-focus sealed tube1078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2526
Tmin = 0.912, Tmax = 0.945k = 84
7145 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1299 reflectionsΔρmax = 0.29 e Å3
94 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C12H10ClNOV = 1043.16 (11) Å3
Mr = 219.66Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 20.4542 (13) ŵ = 0.34 mm1
b = 6.7393 (4) ÅT = 290 K
c = 7.5675 (4) Å0.28 × 0.21 × 0.17 mm
Data collection top
Bruker SMART area-detector
diffractometer
1299 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1078 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.945Rint = 0.022
7145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
1299 reflectionsΔρmin = 0.30 e Å3
94 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.59400 (3)0.25000.07517 (7)0.0568 (2)
N10.48555 (8)0.25000.24995 (19)0.0363 (4)
O10.68317 (9)0.25000.5872 (3)0.0672 (5)
C10.54815 (9)0.25000.2711 (2)0.0369 (4)
C20.58228 (10)0.25000.4343 (3)0.0385 (4)
C30.54382 (10)0.25000.5832 (3)0.0382 (4)
H30.56350.25000.69390.046*
C40.47569 (10)0.25000.5712 (2)0.0347 (4)
C50.43407 (11)0.25000.7208 (3)0.0428 (5)
H50.45170.25000.83410.051*
C60.36779 (11)0.25000.6971 (3)0.0461 (5)
H60.34080.25000.79600.055*
C70.33908 (10)0.25000.5279 (3)0.0411 (5)
C80.37829 (9)0.25000.3777 (3)0.0361 (4)
C90.44701 (9)0.25000.3993 (2)0.0322 (4)
C100.65428 (11)0.25000.4503 (3)0.0531 (6)
H100.67870.25000.34670.064*
C110.26571 (11)0.25000.5126 (4)0.0583 (6)
H11A0.24680.27660.62620.087*0.50
H11B0.25120.12270.47130.087*0.50
H11C0.25240.35070.43050.087*0.50
C120.34939 (11)0.25000.1950 (3)0.0532 (6)
H12A0.37940.18820.11440.080*0.50
H12B0.34140.38420.15830.080*0.50
H12C0.30900.17760.19570.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0424 (3)0.0881 (5)0.0400 (3)0.0000.0087 (2)0.000
N10.0355 (8)0.0437 (8)0.0298 (7)0.0000.0008 (6)0.000
O10.0480 (10)0.0820 (12)0.0716 (12)0.0000.0252 (9)0.000
C10.0356 (10)0.0415 (9)0.0336 (9)0.0000.0018 (7)0.000
C20.0344 (10)0.0387 (9)0.0423 (11)0.0000.0058 (7)0.000
C30.0417 (11)0.0389 (9)0.0341 (9)0.0000.0097 (7)0.000
C40.0411 (10)0.0344 (9)0.0286 (9)0.0000.0022 (7)0.000
C50.0497 (12)0.0513 (11)0.0275 (9)0.0000.0003 (8)0.000
C60.0483 (12)0.0556 (11)0.0343 (10)0.0000.0078 (9)0.000
C70.0357 (10)0.0453 (10)0.0423 (10)0.0000.0028 (8)0.000
C80.0351 (10)0.0386 (9)0.0346 (9)0.0000.0021 (7)0.000
C90.0361 (9)0.0324 (8)0.0281 (8)0.0000.0014 (7)0.000
C100.0375 (11)0.0623 (13)0.0595 (14)0.0000.0064 (10)0.000
C110.0367 (11)0.0783 (16)0.0600 (15)0.0000.0085 (10)0.000
C120.0395 (11)0.0814 (15)0.0387 (11)0.0000.0054 (9)0.000
Geometric parameters (Å, º) top
Cl1—C11.7545 (19)C6—C71.409 (3)
N1—C11.290 (2)C6—H60.9300
N1—C91.378 (2)C7—C81.391 (3)
O1—C101.192 (3)C7—C111.505 (3)
C1—C21.419 (3)C8—C91.415 (3)
C2—C31.374 (3)C8—C121.504 (3)
C2—C101.478 (3)C10—H100.9300
C3—C41.396 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.416 (3)C11—H11C0.9600
C4—C91.427 (2)C12—H12A0.9600
C5—C61.367 (3)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C1—N1—C9117.76 (16)C7—C8—C9118.58 (17)
N1—C1—C2126.61 (17)C7—C8—C12121.64 (18)
N1—C1—Cl1115.19 (14)C9—C8—C12119.79 (17)
C2—C1—Cl1118.20 (15)N1—C9—C8118.25 (15)
C3—C2—C1115.60 (18)N1—C9—C4120.82 (16)
C3—C2—C10120.21 (18)C8—C9—C4120.92 (16)
C1—C2—C10124.20 (19)O1—C10—C2124.4 (2)
C2—C3—C4121.19 (17)O1—C10—H10117.8
C2—C3—H3119.4C2—C10—H10117.8
C4—C3—H3119.4C7—C11—H11A109.5
C3—C4—C5123.21 (17)C7—C11—H11B109.5
C3—C4—C9118.02 (16)H11A—C11—H11B109.5
C5—C4—C9118.77 (18)C7—C11—H11C109.5
C6—C5—C4119.43 (18)H11A—C11—H11C109.5
C6—C5—H5120.3H11B—C11—H11C109.5
C4—C5—H5120.3C8—C12—H12A109.5
C5—C6—C7122.15 (18)C8—C12—H12B109.5
C5—C6—H6118.9H12A—C12—H12B109.5
C7—C6—H6118.9C8—C12—H12C109.5
C8—C7—C6120.15 (19)H12A—C12—H12C109.5
C8—C7—C11120.8 (2)H12B—C12—H12C109.5
C6—C7—C11119.0 (2)
C9—N1—C1—C20.0C11—C7—C8—C9180.0
C9—N1—C1—Cl1180.0C6—C7—C8—C12180.0
N1—C1—C2—C30.0C11—C7—C8—C120.0
Cl1—C1—C2—C3180.0C1—N1—C9—C8180.0
N1—C1—C2—C10180.0C1—N1—C9—C40.0
Cl1—C1—C2—C100.0C7—C8—C9—N1180.0
C1—C2—C3—C40.0C12—C8—C9—N10.0
C10—C2—C3—C4180.0C7—C8—C9—C40.0
C2—C3—C4—C5180.0C12—C8—C9—C4180.0
C2—C3—C4—C90.0C3—C4—C9—N10.0
C3—C4—C5—C6180.0C5—C4—C9—N1180.0
C9—C4—C5—C60.0C3—C4—C9—C8180.0
C4—C5—C6—C70.0C5—C4—C9—C80.0
C5—C6—C7—C80.0C3—C2—C10—O10.0
C5—C6—C7—C11180.0C1—C2—C10—O1180.0
C6—C7—C8—C90.0

Experimental details

Crystal data
Chemical formulaC12H10ClNO
Mr219.66
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)290
a, b, c (Å)20.4542 (13), 6.7393 (4), 7.5675 (4)
V3)1043.16 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.28 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.912, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
7145, 1299, 1078
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.115, 1.07
No. of reflections1299
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program; FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds