organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-6-meth­oxy­quinoline-3-carbaldehyde

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2009; accepted 6 October 2009; online 13 October 2009)

The quinoline fused-ring system of the title compound, C11H8ClNO2, is planar (r.m.s. deviation = 0.0095 Å); the formyl group is slightly bent out of this plane [C—C—C—O torsion angles = −2.4 (3) and 175.9 (2)°].

Related literature

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8ClNO2

  • Mr = 221.63

  • Monoclinic, P 21 /c

  • a = 7.7072 (9) Å

  • b = 14.3474 (13) Å

  • c = 9.3487 (10) Å

  • β = 109.415 (2)°

  • V = 974.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 290 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.917, Tmax = 0.937

  • 6533 measured reflections

  • 2221 independent reflections

  • 1702 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.03

  • 2221 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and N,N-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added to N-(4-anisyl)acetamide (1.65 g, 10 mmol). The mixture was heated at 353 K for 15 h. The mixture was poured onto ice; the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement top

H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Structure description top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-6-methoxyquinoline-3-carbaldehyde top
Crystal data top
C11H8ClNO2F(000) = 456
Mr = 221.63Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 842 reflections
a = 7.7072 (9) Åθ = 2.0–24.7°
b = 14.3474 (13) ŵ = 0.37 mm1
c = 9.3487 (10) ÅT = 290 K
β = 109.415 (2)°Block, colorless
V = 974.98 (18) Å30.24 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
2221 independent reflections
Radiation source: fine-focus sealed tube1702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.917, Tmax = 0.937k = 1810
6533 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.068P)2 + 0.0419P]
where P = (Fo2 + 2Fc2)/3
2221 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H8ClNO2V = 974.98 (18) Å3
Mr = 221.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7072 (9) ŵ = 0.37 mm1
b = 14.3474 (13) ÅT = 290 K
c = 9.3487 (10) Å0.24 × 0.21 × 0.18 mm
β = 109.415 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
2221 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1702 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.937Rint = 0.030
6533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2221 reflectionsΔρmin = 0.24 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12213 (7)0.04921 (3)0.68956 (6)0.05816 (19)
O10.02629 (18)0.34429 (9)0.71932 (16)0.0563 (4)
O20.77125 (17)0.34949 (8)0.35759 (14)0.0480 (3)
N10.35512 (19)0.10458 (9)0.56310 (15)0.0399 (3)
C10.2333 (2)0.13533 (11)0.62026 (18)0.0386 (4)
C20.1913 (2)0.23022 (11)0.63341 (17)0.0365 (4)
C30.2892 (2)0.29435 (11)0.58240 (18)0.0366 (3)
H30.26590.35760.58850.044*
C40.4244 (2)0.26584 (10)0.52104 (16)0.0340 (3)
C50.5323 (2)0.32923 (11)0.47029 (18)0.0372 (4)
H50.51650.39310.47720.045*
C60.6601 (2)0.29554 (11)0.41088 (18)0.0375 (4)
C70.6864 (2)0.19874 (12)0.40126 (18)0.0406 (4)
H70.77330.17710.36000.049*
C80.5865 (2)0.13662 (11)0.45142 (18)0.0403 (4)
H80.60670.07300.44560.048*
C90.4520 (2)0.16836 (10)0.51239 (17)0.0342 (3)
C100.0534 (2)0.26334 (14)0.70166 (19)0.0446 (4)
H100.01530.21910.73220.054*
C110.7544 (3)0.44805 (12)0.3677 (2)0.0542 (5)
H11A0.83780.47830.32590.081*
H11B0.78350.46570.47210.081*
H11C0.63060.46650.31200.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0724 (4)0.0424 (3)0.0754 (4)0.0099 (2)0.0455 (3)0.0028 (2)
O10.0572 (8)0.0491 (9)0.0728 (9)0.0069 (6)0.0355 (7)0.0077 (6)
O20.0529 (7)0.0395 (7)0.0631 (8)0.0047 (5)0.0347 (6)0.0021 (5)
N10.0497 (8)0.0302 (8)0.0442 (7)0.0003 (6)0.0216 (6)0.0002 (5)
C10.0455 (9)0.0337 (8)0.0394 (8)0.0033 (7)0.0176 (7)0.0014 (6)
C20.0376 (8)0.0358 (8)0.0369 (8)0.0018 (6)0.0136 (7)0.0017 (6)
C30.0423 (8)0.0285 (8)0.0411 (8)0.0043 (6)0.0168 (7)0.0013 (6)
C40.0379 (8)0.0307 (8)0.0346 (8)0.0030 (6)0.0135 (6)0.0001 (6)
C50.0425 (8)0.0278 (8)0.0435 (8)0.0003 (6)0.0174 (7)0.0018 (6)
C60.0393 (8)0.0353 (9)0.0397 (8)0.0029 (6)0.0157 (7)0.0001 (6)
C70.0437 (9)0.0385 (9)0.0442 (9)0.0056 (7)0.0209 (7)0.0032 (7)
C80.0493 (9)0.0303 (9)0.0448 (9)0.0069 (7)0.0205 (7)0.0013 (6)
C90.0406 (8)0.0278 (8)0.0350 (8)0.0019 (6)0.0138 (6)0.0001 (6)
C100.0431 (9)0.0510 (11)0.0445 (9)0.0002 (8)0.0208 (7)0.0024 (8)
C110.0605 (12)0.0381 (10)0.0751 (13)0.0109 (8)0.0373 (10)0.0039 (8)
Geometric parameters (Å, º) top
Cl1—C11.7461 (16)C4—C91.421 (2)
O1—C101.201 (2)C5—C61.370 (2)
O2—C61.3654 (18)C5—H50.9300
O2—C111.426 (2)C6—C71.411 (2)
N1—C11.302 (2)C7—C81.359 (2)
N1—C91.362 (2)C7—H70.9300
C1—C21.414 (2)C8—C91.414 (2)
C2—C31.372 (2)C8—H80.9300
C2—C101.487 (2)C10—H100.9300
C3—C41.407 (2)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.416 (2)C11—H11C0.9600
C6—O2—C11117.12 (13)C5—C6—C7120.73 (14)
C1—N1—C9117.96 (13)C8—C7—C6120.92 (14)
N1—C1—C2125.38 (14)C8—C7—H7119.5
N1—C1—Cl1114.97 (12)C6—C7—H7119.5
C2—C1—Cl1119.62 (12)C7—C8—C9120.21 (14)
C3—C2—C1116.56 (14)C7—C8—H8119.9
C3—C2—C10119.25 (15)C9—C8—H8119.9
C1—C2—C10124.17 (15)N1—C9—C8118.96 (14)
C2—C3—C4120.94 (14)N1—C9—C4122.11 (13)
C2—C3—H3119.5C8—C9—C4118.93 (14)
C4—C3—H3119.5O1—C10—C2123.35 (17)
C3—C4—C5123.14 (14)O1—C10—H10118.3
C3—C4—C9117.05 (14)C2—C10—H10118.3
C5—C4—C9119.81 (13)O2—C11—H11A109.5
C6—C5—C4119.40 (15)O2—C11—H11B109.5
C6—C5—H5120.3H11A—C11—H11B109.5
C4—C5—H5120.3O2—C11—H11C109.5
O2—C6—C5124.81 (15)H11A—C11—H11C109.5
O2—C6—C7114.46 (13)H11B—C11—H11C109.5
C9—N1—C1—C20.5 (2)C4—C5—C6—C70.6 (2)
C9—N1—C1—Cl1177.49 (11)O2—C6—C7—C8179.38 (15)
N1—C1—C2—C30.6 (2)C5—C6—C7—C80.4 (2)
Cl1—C1—C2—C3177.35 (12)C6—C7—C8—C90.9 (2)
N1—C1—C2—C10178.93 (16)C1—N1—C9—C8179.30 (15)
Cl1—C1—C2—C101.0 (2)C1—N1—C9—C40.3 (2)
C1—C2—C3—C40.2 (2)C7—C8—C9—N1179.39 (15)
C10—C2—C3—C4178.22 (15)C7—C8—C9—C40.4 (2)
C2—C3—C4—C5178.40 (15)C3—C4—C9—N11.1 (2)
C2—C3—C4—C91.0 (2)C5—C4—C9—N1178.34 (14)
C3—C4—C5—C6179.51 (15)C3—C4—C9—C8179.98 (14)
C9—C4—C5—C61.1 (2)C5—C4—C9—C80.6 (2)
C11—O2—C6—C51.3 (2)C3—C2—C10—O12.4 (3)
C11—O2—C6—C7178.48 (16)C1—C2—C10—O1175.9 (2)
C4—C5—C6—O2179.62 (15)

Experimental details

Crystal data
Chemical formulaC11H8ClNO2
Mr221.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)7.7072 (9), 14.3474 (13), 9.3487 (10)
β (°) 109.415 (2)
V3)974.98 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.917, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
6533, 2221, 1702
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.03
No. of reflections2221
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program; FNK thanks the DST for Fast Track Proposal funding. We also thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds