organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)-4-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 October 2009; accepted 9 October 2009; online 17 October 2009)

The title compound, C16H17NO, crystallizes with two mol­ecules in the asymmetric unit. The conformation of the N—H bond is anti to the meta-methyl substituent in the aniline ring in the first mol­ecule and syn in the second mol­ecule. The dihedral angles between the two benzene rings are 52.6 (1) and 10.5 (1)° in the first and second mol­ecules, respectively. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the b axis of the crystal.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o340.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Triclinic, [P \overline 1]

  • a = 9.4186 (3) Å

  • b = 9.55915 (18) Å

  • c = 15.8813 (4) Å

  • α = 74.361 (2)°

  • β = 79.696 (2)°

  • γ = 88.1582 (18)°

  • V = 1354.51 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.51 × 0.41 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.943, Tmax = 0.981

  • 24655 measured reflections

  • 5130 independent reflections

  • 3880 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.09

  • 5130 reflections

  • 332 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.29 3.0860 (14) 154
N2—H2N⋯O1ii 0.86 2.18 3.0101 (14) 162
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Tokarčík et al., 2008, 2009), the structure of N-(3,4-dimethylphenyl)4-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(3,4-dimethylphenyl)benzamide (Gowda, Tokarčík et al., 2008), N-(2,6-dimethylphenyl)4-methylbenzamide (Gowda, Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003).

The asymmetric unit of the cell in (I) contains two independent molecules. In the first molecule, the conformation of the N—H bond is anti to the meta-methyl-substituent in the disubstituted phenyl ring, while in the second molecule this conformation is syn. The dihedral angles between the two benzene rings are 52.6 (1)° and 10.5 (1)° in the first and second molecules, respectively. The central amido group –NH—C(=O)- forms dihedral angles of 22.2 (2)° and 31.2 (1)° with the benzoyl ring, and 30.6 (1)° and 25.5 (1)° with the disubstituted phenyl ring, in the two independent molecules.

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the b-axis is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Tokarčík et al. (2008, 2009).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

H atoms were placed in calculated positions with N–H distances of 0.86 Å and C–H distances in the range 0.93–0.96 Å. All hydrogen atoms were constrained to ride on their parent atoms. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5 Ueq(Cmethyl). The U values of the atom pairs C23—C34 and C7—O1 were subject to a rigid bond restraint (DELU instruction), i.e. the components of the displacement parameters in the direction of the bond were restrained to be equal within an effective standard deviation 0.004. The C16 and C36 methyl group exhibit orientational disorder in the hydrogen atom positions. The two sets of methyl hydrogen atoms were refined with equal occupancy.

Structure description top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Tokarčík et al., 2008, 2009), the structure of N-(3,4-dimethylphenyl)4-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(3,4-dimethylphenyl)benzamide (Gowda, Tokarčík et al., 2008), N-(2,6-dimethylphenyl)4-methylbenzamide (Gowda, Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003).

The asymmetric unit of the cell in (I) contains two independent molecules. In the first molecule, the conformation of the N—H bond is anti to the meta-methyl-substituent in the disubstituted phenyl ring, while in the second molecule this conformation is syn. The dihedral angles between the two benzene rings are 52.6 (1)° and 10.5 (1)° in the first and second molecules, respectively. The central amido group –NH—C(=O)- forms dihedral angles of 22.2 (2)° and 31.2 (1)° with the benzoyl ring, and 30.6 (1)° and 25.5 (1)° with the disubstituted phenyl ring, in the two independent molecules.

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the b-axis is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Tokarčík et al. (2008, 2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains running along the b-axis are generated by N–H···O hydrogen bonds, shown as dashed lines. Symmetry codes (i): -x + 1,-y,-z + 1; (ii) -x + 1,-y + 1,-z + 1. H atoms not involved in hydrogen bonding are omitted.
N-(3,4-Dimethylphenyl)-4-methylbenzamide top
Crystal data top
C16H17NOZ = 4
Mr = 239.31F(000) = 512
Triclinic, P1Dx = 1.173 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4186 (3) ÅCell parameters from 13000 reflections
b = 9.55915 (18) Åθ = 2.2–29.3°
c = 15.8813 (4) ŵ = 0.07 mm1
α = 74.361 (2)°T = 295 K
β = 79.696 (2)°Block, colourless
γ = 88.1582 (18)°0.51 × 0.41 × 0.22 mm
V = 1354.51 (6) Å3
Data collection top
Oxford Diffraction Xcalibur with a Ruby Gemini detector
diffractometer
5130 independent reflections
Graphite monochromator3880 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.016
ω scansθmax = 25.7°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.943, Tmax = 0.981k = 1111
24655 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.0954P]
where P = (Fo2 + 2Fc2)/3
5130 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H17NOγ = 88.1582 (18)°
Mr = 239.31V = 1354.51 (6) Å3
Triclinic, P1Z = 4
a = 9.4186 (3) ÅMo Kα radiation
b = 9.55915 (18) ŵ = 0.07 mm1
c = 15.8813 (4) ÅT = 295 K
α = 74.361 (2)°0.51 × 0.41 × 0.22 mm
β = 79.696 (2)°
Data collection top
Oxford Diffraction Xcalibur with a Ruby Gemini detector
diffractometer
5130 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3880 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.981Rint = 0.016
24655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.09Δρmax = 0.19 e Å3
5130 reflectionsΔρmin = 0.13 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.10346 (14)0.30182 (13)0.21469 (9)0.0465 (3)
C20.11199 (14)0.43910 (14)0.15658 (9)0.0488 (3)
H20.19960.48990.13990.059*
C30.00845 (15)0.50305 (14)0.12241 (9)0.0502 (3)
C40.13954 (15)0.42676 (15)0.14676 (10)0.0536 (4)
C50.14410 (15)0.28750 (16)0.20304 (10)0.0571 (4)
H50.23030.23450.21840.069*
C60.02543 (15)0.22486 (15)0.23707 (10)0.0538 (4)
H60.03220.13130.27490.065*
C70.32980 (14)0.30304 (13)0.27355 (9)0.0483 (3)
C80.43956 (14)0.20801 (13)0.31706 (9)0.0464 (3)
C90.51877 (16)0.26395 (15)0.36612 (10)0.0569 (4)
H90.50380.35910.36950.068*
C100.61908 (16)0.18210 (16)0.40995 (10)0.0601 (4)
H100.66910.22190.44370.072*
C110.64706 (15)0.04163 (15)0.40481 (10)0.0549 (4)
C120.57052 (16)0.01379 (15)0.35434 (11)0.0603 (4)
H120.58870.10760.34910.072*
C130.46711 (16)0.06721 (14)0.31119 (10)0.0554 (4)
H130.4160.0270.27820.067*
C140.00537 (19)0.65361 (16)0.06181 (11)0.0678 (4)
H14A0.10560.68050.04240.102*
H14B0.04230.72010.09290.102*
H14C0.03840.65690.01120.102*
C150.27382 (18)0.4940 (2)0.11380 (14)0.0790 (5)
H15A0.2870.58820.12430.118*
H15B0.35620.4330.14490.118*
H15C0.26360.50340.05130.118*
C160.75981 (18)0.04604 (19)0.45196 (12)0.0738 (5)
H16A0.8190.01740.46940.111*0.5
H16B0.8190.0940.41270.111*0.5
H16C0.71320.11730.50380.111*0.5
H16D0.74840.14660.45460.111*0.5
H16E0.74840.03530.51120.111*0.5
H16F0.85420.0120.42010.111*0.5
N10.22333 (12)0.23479 (11)0.25316 (8)0.0522 (3)
H1N0.22770.14170.26430.063*
O10.33726 (11)0.43667 (9)0.25845 (7)0.0638 (3)
C210.74411 (15)0.18251 (13)0.82751 (10)0.0510 (3)
C220.64037 (16)0.22586 (15)0.88897 (10)0.0549 (4)
H220.57950.30120.86880.066*
C230.62458 (16)0.16037 (16)0.97944 (10)0.0585 (4)
C240.71696 (18)0.04716 (15)1.00955 (10)0.0626 (4)
C250.81944 (19)0.00514 (16)0.94732 (11)0.0651 (4)
H250.88040.07040.96710.078*
C260.83512 (17)0.07014 (15)0.85765 (11)0.0605 (4)
H260.90560.03930.81780.073*
C270.81041 (15)0.21391 (14)0.66478 (10)0.0513 (3)
C280.81065 (15)0.32107 (14)0.57693 (9)0.0490 (3)
C290.91799 (16)0.31421 (16)0.50555 (11)0.0575 (4)
H290.9870.24230.51340.069*
C300.92379 (17)0.41186 (17)0.42359 (11)0.0621 (4)
H300.99810.40650.37740.074*
C310.82068 (18)0.51821 (16)0.40875 (10)0.0598 (4)
C320.71185 (18)0.52273 (16)0.47904 (10)0.0612 (4)
H320.64030.59180.47030.073*
C330.70702 (16)0.42699 (15)0.56190 (10)0.0567 (4)
H330.63340.43350.60820.068*
C340.5104 (2)0.2114 (2)1.04295 (12)0.0811 (5)
H34A0.55440.23911.08630.122*
H34B0.44130.13431.07240.122*
H34C0.46270.29341.01080.122*
C350.7065 (2)0.0265 (2)1.10752 (12)0.0877 (6)
H35A0.77350.10471.11540.132*
H35B0.61020.06411.13190.132*
H35C0.7290.04271.13740.132*
C360.8276 (2)0.6250 (2)0.31868 (12)0.0885 (6)
H36A0.91050.60560.27880.133*0.5
H36B0.83490.7220.3240.133*0.5
H36C0.74180.61520.29590.133*0.5
H36D0.74760.68960.32030.133*0.5
H36E0.82320.57320.27510.133*0.5
H36F0.91640.680.30330.133*0.5
N20.75630 (13)0.26110 (11)0.73672 (8)0.0549 (3)
H2N0.72570.34880.72640.066*
O20.85769 (12)0.09069 (10)0.67005 (7)0.0667 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0471 (7)0.0423 (7)0.0512 (8)0.0065 (6)0.0090 (6)0.0149 (6)
C20.0438 (7)0.0467 (7)0.0571 (8)0.0020 (6)0.0106 (6)0.0144 (6)
C30.0564 (8)0.0446 (7)0.0529 (8)0.0033 (6)0.0142 (7)0.0158 (6)
C40.0478 (8)0.0568 (8)0.0618 (9)0.0048 (6)0.0153 (7)0.0223 (7)
C50.0457 (8)0.0577 (8)0.0681 (10)0.0055 (7)0.0070 (7)0.0183 (7)
C60.0537 (8)0.0452 (7)0.0590 (9)0.0006 (6)0.0042 (7)0.0115 (6)
C70.0518 (8)0.0403 (6)0.0518 (8)0.0060 (6)0.0073 (6)0.0123 (6)
C80.0447 (7)0.0406 (7)0.0491 (8)0.0056 (6)0.0035 (6)0.0078 (6)
C90.0590 (9)0.0468 (7)0.0689 (10)0.0088 (7)0.0138 (7)0.0215 (7)
C100.0569 (9)0.0615 (9)0.0638 (10)0.0040 (7)0.0158 (7)0.0171 (7)
C110.0454 (8)0.0547 (8)0.0542 (8)0.0054 (6)0.0045 (6)0.0004 (7)
C120.0628 (9)0.0410 (7)0.0742 (10)0.0126 (7)0.0124 (8)0.0114 (7)
C130.0561 (8)0.0461 (7)0.0661 (9)0.0083 (6)0.0155 (7)0.0162 (7)
C140.0778 (11)0.0526 (8)0.0736 (11)0.0044 (8)0.0314 (9)0.0069 (8)
C150.0593 (10)0.0817 (11)0.1008 (14)0.0088 (9)0.0308 (9)0.0226 (10)
C160.0613 (10)0.0733 (10)0.0743 (11)0.0121 (8)0.0174 (8)0.0035 (9)
N10.0549 (7)0.0350 (5)0.0658 (8)0.0044 (5)0.0144 (6)0.0101 (5)
O10.0730 (7)0.0377 (4)0.0875 (8)0.0087 (5)0.0319 (6)0.0175 (5)
C210.0560 (8)0.0375 (6)0.0605 (9)0.0002 (6)0.0165 (7)0.0106 (6)
C220.0542 (8)0.0464 (7)0.0659 (10)0.0028 (6)0.0163 (7)0.0148 (7)
C230.0608 (9)0.0524 (8)0.0644 (10)0.0087 (7)0.0128 (7)0.0168 (7)
C240.0765 (10)0.0475 (8)0.0630 (10)0.0104 (7)0.0211 (8)0.0063 (7)
C250.0776 (11)0.0451 (8)0.0720 (11)0.0081 (7)0.0262 (9)0.0072 (7)
C260.0673 (10)0.0451 (7)0.0689 (10)0.0092 (7)0.0175 (8)0.0124 (7)
C270.0501 (8)0.0401 (7)0.0668 (9)0.0054 (6)0.0163 (7)0.0163 (6)
C280.0500 (8)0.0417 (7)0.0604 (9)0.0033 (6)0.0162 (7)0.0185 (6)
C290.0523 (8)0.0555 (8)0.0726 (10)0.0107 (7)0.0161 (7)0.0287 (8)
C300.0642 (10)0.0676 (9)0.0596 (9)0.0015 (8)0.0054 (8)0.0291 (8)
C310.0743 (10)0.0550 (8)0.0552 (9)0.0011 (7)0.0147 (8)0.0215 (7)
C320.0705 (10)0.0540 (8)0.0600 (9)0.0164 (7)0.0172 (8)0.0152 (7)
C330.0595 (9)0.0520 (8)0.0577 (9)0.0122 (7)0.0082 (7)0.0157 (7)
C340.0821 (12)0.0884 (12)0.0752 (12)0.0012 (10)0.0092 (9)0.0289 (10)
C350.1162 (16)0.0751 (11)0.0675 (11)0.0026 (11)0.0260 (11)0.0052 (9)
C360.1194 (16)0.0842 (12)0.0585 (11)0.0085 (11)0.0133 (10)0.0158 (9)
N20.0663 (8)0.0392 (6)0.0596 (7)0.0121 (5)0.0157 (6)0.0123 (5)
O20.0815 (7)0.0407 (5)0.0802 (7)0.0160 (5)0.0193 (6)0.0187 (5)
Geometric parameters (Å, º) top
C1—C61.3796 (19)C21—C261.3885 (19)
C1—C21.3812 (18)C21—C221.389 (2)
C1—N11.4309 (16)C21—N21.4209 (18)
C2—C31.3970 (18)C22—C231.387 (2)
C2—H20.93C22—H220.93
C3—C41.393 (2)C23—C241.402 (2)
C3—C141.495 (2)C23—C341.501 (2)
C4—C51.386 (2)C24—C251.385 (2)
C4—C151.513 (2)C24—C351.512 (2)
C5—C61.378 (2)C25—C261.375 (2)
C5—H50.93C25—H250.93
C6—H60.93C26—H260.93
C7—O11.2364 (15)C27—O21.2326 (15)
C7—N11.3448 (17)C27—N21.3502 (18)
C7—C81.4927 (18)C27—C281.491 (2)
C8—C91.3812 (19)C28—C331.3872 (19)
C8—C131.3871 (18)C28—C291.392 (2)
C9—C101.372 (2)C29—C301.375 (2)
C9—H90.93C29—H290.93
C10—C111.381 (2)C30—C311.386 (2)
C10—H100.93C30—H300.93
C11—C121.380 (2)C31—C321.383 (2)
C11—C161.510 (2)C31—C361.508 (2)
C12—C131.3863 (19)C32—C331.380 (2)
C12—H120.93C32—H320.93
C13—H130.93C33—H330.93
C14—H14A0.96C34—H34A0.96
C14—H14B0.96C34—H34B0.96
C14—H14C0.96C34—H34C0.96
C15—H15A0.96C35—H35A0.96
C15—H15B0.96C35—H35B0.96
C15—H15C0.96C35—H35C0.96
C16—H16A0.96C36—H36A0.96
C16—H16B0.96C36—H36B0.96
C16—H16C0.96C36—H36C0.96
C16—H16D0.96C36—H36D0.96
C16—H16E0.96C36—H36E0.96
C16—H16F0.96C36—H36F0.96
N1—H1N0.86N2—H2N0.86
C6—C1—C2119.20 (12)C26—C21—C22118.95 (14)
C6—C1—N1118.01 (11)C26—C21—N2123.14 (13)
C2—C1—N1122.79 (12)C22—C21—N2117.83 (12)
C1—C2—C3121.25 (12)C23—C22—C21122.13 (13)
C1—C2—H2119.4C23—C22—H22118.9
C3—C2—H2119.4C21—C22—H22118.9
C4—C3—C2119.52 (12)C22—C23—C24118.70 (14)
C4—C3—C14121.29 (13)C22—C23—C34119.93 (14)
C2—C3—C14119.17 (13)C24—C23—C34121.37 (15)
C5—C4—C3118.06 (12)C25—C24—C23118.36 (14)
C5—C4—C15120.72 (14)C25—C24—C35120.60 (15)
C3—C4—C15121.22 (13)C23—C24—C35121.03 (16)
C6—C5—C4122.34 (13)C26—C25—C24122.92 (14)
C6—C5—H5118.8C26—C25—H25118.5
C4—C5—H5118.8C24—C25—H25118.5
C5—C6—C1119.57 (13)C25—C26—C21118.94 (15)
C5—C6—H6120.2C25—C26—H26120.5
C1—C6—H6120.2C21—C26—H26120.5
O1—C7—N1122.74 (12)O2—C27—N2122.99 (13)
O1—C7—C8121.06 (12)O2—C27—C28121.21 (13)
N1—C7—C8116.20 (11)N2—C27—C28115.80 (11)
C9—C8—C13117.98 (12)C33—C28—C29117.72 (13)
C9—C8—C7117.90 (11)C33—C28—C27123.19 (13)
C13—C8—C7124.11 (12)C29—C28—C27119.08 (12)
C10—C9—C8121.37 (13)C30—C29—C28121.18 (13)
C10—C9—H9119.3C30—C29—H29119.4
C8—C9—H9119.3C28—C29—H29119.4
C9—C10—C11121.13 (14)C29—C30—C31121.05 (14)
C9—C10—H10119.4C29—C30—H30119.5
C11—C10—H10119.4C31—C30—H30119.5
C12—C11—C10117.77 (13)C32—C31—C30117.79 (14)
C12—C11—C16121.72 (14)C32—C31—C36121.41 (15)
C10—C11—C16120.50 (15)C30—C31—C36120.79 (15)
C11—C12—C13121.47 (13)C33—C32—C31121.46 (14)
C11—C12—H12119.3C33—C32—H32119.3
C13—C12—H12119.3C31—C32—H32119.3
C12—C13—C8120.26 (13)C32—C33—C28120.77 (14)
C12—C13—H13119.9C32—C33—H33119.6
C8—C13—H13119.9C28—C33—H33119.6
C3—C14—H14A109.5C23—C34—H34A109.5
C3—C14—H14B109.5C23—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C3—C14—H14C109.5C23—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C4—C15—H15A109.5C24—C35—H35A109.5
C4—C15—H15B109.5C24—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C4—C15—H15C109.5C24—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
C11—C16—H16A109.5C31—C36—H36A109.5
C11—C16—H16B109.5C31—C36—H36B109.5
H16A—C16—H16B109.5H36A—C36—H36B109.5
C11—C16—H16C109.5C31—C36—H36C109.5
H16A—C16—H16C109.5H36A—C36—H36C109.5
H16B—C16—H16C109.5H36B—C36—H36C109.5
C11—C16—H16D109.5C31—C36—H36D109.5
H16A—C16—H16D141.1H36A—C36—H36D141.1
H16B—C16—H16D56.3H36B—C36—H36D56.3
H16C—C16—H16D56.3H36C—C36—H36D56.3
C11—C16—H16E109.5C31—C36—H36E109.5
H16A—C16—H16E56.3H36A—C36—H36E56.3
H16B—C16—H16E141.1H36B—C36—H36E141.1
H16C—C16—H16E56.3H36C—C36—H36E56.3
H16D—C16—H16E109.5H36D—C36—H36E109.5
C11—C16—H16F109.5C31—C36—H36F109.5
H16A—C16—H16F56.3H36A—C36—H36F56.3
H16B—C16—H16F56.3H36B—C36—H36F56.3
H16C—C16—H16F141.1H36C—C36—H36F141.1
H16D—C16—H16F109.5H36D—C36—H36F109.5
H16E—C16—H16F109.5H36E—C36—H36F109.5
C7—N1—C1126.38 (10)C27—N2—C21127.45 (11)
C7—N1—H1N116.8C27—N2—H2N116.3
C1—N1—H1N116.8C21—N2—H2N116.3
C6—C1—C2—C32.1 (2)C26—C21—C22—C230.1 (2)
N1—C1—C2—C3177.99 (11)N2—C21—C22—C23177.00 (12)
C1—C2—C3—C40.5 (2)C21—C22—C23—C240.3 (2)
C1—C2—C3—C14178.23 (13)C21—C22—C23—C34179.90 (14)
C2—C3—C4—C51.4 (2)C22—C23—C24—C250.4 (2)
C14—C3—C4—C5179.87 (14)C34—C23—C24—C25179.74 (15)
C2—C3—C4—C15177.87 (14)C22—C23—C24—C35178.91 (14)
C14—C3—C4—C150.8 (2)C34—C23—C24—C350.9 (2)
C3—C4—C5—C61.8 (2)C23—C24—C25—C260.5 (2)
C15—C4—C5—C6177.47 (14)C35—C24—C25—C26178.86 (15)
C4—C5—C6—C10.3 (2)C24—C25—C26—C210.3 (2)
C2—C1—C6—C51.7 (2)C22—C21—C26—C250.2 (2)
N1—C1—C6—C5178.37 (12)N2—C21—C26—C25176.86 (13)
O1—C7—C8—C921.3 (2)O2—C27—C28—C33148.70 (14)
N1—C7—C8—C9157.96 (13)N2—C27—C28—C3331.60 (19)
O1—C7—C8—C13158.56 (14)O2—C27—C28—C2930.15 (19)
N1—C7—C8—C1322.2 (2)N2—C27—C28—C29149.55 (13)
C13—C8—C9—C101.8 (2)C33—C28—C29—C302.0 (2)
C7—C8—C9—C10178.34 (13)C27—C28—C29—C30179.12 (13)
C8—C9—C10—C111.6 (2)C28—C29—C30—C311.6 (2)
C9—C10—C11—C120.2 (2)C29—C30—C31—C320.0 (2)
C9—C10—C11—C16178.81 (14)C29—C30—C31—C36179.97 (14)
C10—C11—C12—C131.0 (2)C30—C31—C32—C331.4 (2)
C16—C11—C12—C13180.00 (14)C36—C31—C32—C33178.70 (16)
C11—C12—C13—C80.8 (2)C31—C32—C33—C281.0 (2)
C9—C8—C13—C120.6 (2)C29—C28—C33—C320.6 (2)
C7—C8—C13—C12179.55 (13)C27—C28—C33—C32179.50 (13)
O1—C7—N1—C11.9 (2)O2—C27—N2—C210.1 (2)
C8—C7—N1—C1177.33 (12)C28—C27—N2—C21179.59 (12)
C6—C1—N1—C7148.38 (14)C26—C21—N2—C2727.1 (2)
C2—C1—N1—C731.7 (2)C22—C21—N2—C27156.12 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.293.0860 (14)154
N2—H2N···O1ii0.862.183.0101 (14)162
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.4186 (3), 9.55915 (18), 15.8813 (4)
α, β, γ (°)74.361 (2), 79.696 (2), 88.1582 (18)
V3)1354.51 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.51 × 0.41 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur with a Ruby Gemini detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.943, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
24655, 5130, 3880
Rint0.016
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.09
No. of reflections5130
No. of parameters332
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.293.0860 (14)154
N2—H2N···O1ii0.862.183.0101 (14)162
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds