organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-t-3-methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 8 October 2009; accepted 20 October 2009; online 28 October 2009)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C22H24ClNO4. The piperidine ring in both mol­ecules adopts a distorted boat conformation. The crystal packing is stabilized by C—H⋯O and C—H⋯Cl inter­actions.

Related literature

For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For the pharmacological properties of piperidin-4-ones, see: El-Subbagh, Abu-Zaid, Mahran, Badria & Al-obaid (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.]); Hagenbach & Gysin (1952[Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.]); Jerom & Spencer (1988[Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.]); Katritzky & Fan (1990[Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]); Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24ClNO4

  • Mr = 401.87

  • Triclinic, [P \overline 1]

  • a = 8.9147 (8) Å

  • b = 11.9648 (10) Å

  • c = 19.1365 (16) Å

  • α = 99.729 (5)°

  • β = 93.665 (5)°

  • γ = 90.112 (6)°

  • V = 2007.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.14 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.970

  • 37036 measured reflections

  • 9971 independent reflections

  • 5739 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.164

  • S = 1.05

  • 9971 reflections

  • 512 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A⋯O1Bi 0.98 2.53 3.350 (3) 142
C6B—H6B⋯O1A 0.98 2.54 3.363 (3) 142
C8A—H8B⋯Cl1Bi 0.97 2.81 3.684 (3) 150
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the family of heterocyclic compounds, nitrogen containing heterocycles especially piperidin-4-ones presumably gaining considerable importance owing to their varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom et al., 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. There are two crystallographically independent molecules in the asymmetric unit. The piperidine ring in both the molecules adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: for molecule A: q2 = 0.654 (3) Å, q3 = -0.071 (2) Å, φ2 = 248.9 (2)° and Δs(C2A & C5A)= 9.6 (2)°; for molecule B: q2 = 0.655 (3) Å, q3 = 0.065 (3) Å, φ2 = 69.3 (2)° and Δs(C2B & C5B)= 10.0 (2)°. The sum of the bond angles around N atoms [N1A(358.2°) & N1B(357.9°)] of the piperidine ring in both the molecules are accordance with sp2 hybridization. One of the methoxy phenyl rings in both the molecules are approaximately orthogonal to the piperidine ring, which is evident from the interplanar angles of 87.6 (1)° & 88.3 (1)°, whereas the other rings are twisted by 76.3 (1) ° & 74.4 (1) °, respectively. The chloroacetyl group in each molecule is in extended conformation as can be seen from the torsion angles N1A—C7A—C8A—Cl1A (-179.7 (2)°) and N1B—C7B—C8B—Cl1B (-177.7 (1) °).

The crystal packing is stabilized by C—H···O and C—H···Cl interactions, which link the molecules into a chain extending along a–axis. Atoms C6A and C6B of the molecules at (x, y, z) donate one proton each to atoms O1B and O1A of the molecules at (x + 1, y, z) and (x, y, z), respectively, forming a C5 zig–zag chain running along a–axis.

Related literature top

For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983). For the pharmacological properties of piperidin-4-ones, see: El-Subbagh, Abu-Zaid, Mahran, Badria & Al-obaid (2000); Ganellin & Spickett (1965); Hagenbach & Gysin (1952); Jerom & Spencer (1988); Katritzky & Fan (1990); Mobio et al. (1989); Perumal et al. (2001).

Experimental top

To a solution of r-2,c-6-bis(4-methoxyphenyl)-t-3-methylpiperidin-4-one (1.625 g) in anhydrous benzene (60 ml) was added triethylamine (2.78 ml) and Chloroacetylchloride (1.59 ml). The reaction mixture was allowed to stirr at room temperature for 2hrs. The resulting solution was washed with sodium bicarbonate solution (10%), water and the organic layer was dried over anhydrous sodium sulfate, evaporated and crystallized from benzene: pet- ether (60–80°C) in the ratio of 95:05.

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

In the family of heterocyclic compounds, nitrogen containing heterocycles especially piperidin-4-ones presumably gaining considerable importance owing to their varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom et al., 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. There are two crystallographically independent molecules in the asymmetric unit. The piperidine ring in both the molecules adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: for molecule A: q2 = 0.654 (3) Å, q3 = -0.071 (2) Å, φ2 = 248.9 (2)° and Δs(C2A & C5A)= 9.6 (2)°; for molecule B: q2 = 0.655 (3) Å, q3 = 0.065 (3) Å, φ2 = 69.3 (2)° and Δs(C2B & C5B)= 10.0 (2)°. The sum of the bond angles around N atoms [N1A(358.2°) & N1B(357.9°)] of the piperidine ring in both the molecules are accordance with sp2 hybridization. One of the methoxy phenyl rings in both the molecules are approaximately orthogonal to the piperidine ring, which is evident from the interplanar angles of 87.6 (1)° & 88.3 (1)°, whereas the other rings are twisted by 76.3 (1) ° & 74.4 (1) °, respectively. The chloroacetyl group in each molecule is in extended conformation as can be seen from the torsion angles N1A—C7A—C8A—Cl1A (-179.7 (2)°) and N1B—C7B—C8B—Cl1B (-177.7 (1) °).

The crystal packing is stabilized by C—H···O and C—H···Cl interactions, which link the molecules into a chain extending along a–axis. Atoms C6A and C6B of the molecules at (x, y, z) donate one proton each to atoms O1B and O1A of the molecules at (x + 1, y, z) and (x, y, z), respectively, forming a C5 zig–zag chain running along a–axis.

For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983). For the pharmacological properties of piperidin-4-ones, see: El-Subbagh, Abu-Zaid, Mahran, Badria & Al-obaid (2000); Ganellin & Spickett (1965); Hagenbach & Gysin (1952); Jerom & Spencer (1988); Katritzky & Fan (1990); Mobio et al. (1989); Perumal et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of one of the two molecules in the asymmetric unit of the title compound showing displacement ellipsoids at 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down b–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Chloroacetyl-r-2,c-6-bis(4-methoxyphenyl)- t-3-methylpiperidin-4-one top
Crystal data top
C22H24ClNO4Z = 4
Mr = 401.87F(000) = 848
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9147 (8) ÅCell parameters from 4567 reflections
b = 11.9648 (10) Åθ = 1.1–28.4°
c = 19.1365 (16) ŵ = 0.22 mm1
α = 99.729 (5)°T = 293 K
β = 93.665 (5)°Block, colorless
γ = 90.112 (6)°0.15 × 0.15 × 0.14 mm
V = 2007.5 (3) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
9971 independent reflections
Radiation source: fine-focus sealed tube5739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 28.4°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.968, Tmax = 0.970k = 1515
37036 measured reflectionsl = 2524
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.4246P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
9971 reflectionsΔρmax = 0.49 e Å3
512 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (11)
Crystal data top
C22H24ClNO4γ = 90.112 (6)°
Mr = 401.87V = 2007.5 (3) Å3
Triclinic, P1Z = 4
a = 8.9147 (8) ÅMo Kα radiation
b = 11.9648 (10) ŵ = 0.22 mm1
c = 19.1365 (16) ÅT = 293 K
α = 99.729 (5)°0.15 × 0.15 × 0.14 mm
β = 93.665 (5)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
9971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5739 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.970Rint = 0.043
37036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.49 e Å3
9971 reflectionsΔρmin = 0.37 e Å3
512 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.69594 (8)0.10702 (6)0.06473 (4)0.0702 (2)
O1A0.65647 (19)0.09415 (15)0.21138 (9)0.0626 (5)
O2A0.7515 (2)0.36334 (16)0.42043 (11)0.0770 (6)
O3A1.2325 (2)0.12592 (16)0.38722 (10)0.0706 (5)
O4A1.1117 (2)0.44641 (14)0.05999 (10)0.0697 (5)
N1A0.8822 (2)0.02377 (14)0.24329 (9)0.0446 (4)
C2A0.8500 (3)0.04894 (19)0.31906 (12)0.0494 (5)
H2A0.75560.09080.32140.059*
C3A0.9715 (3)0.1301 (2)0.35698 (14)0.0578 (6)
H3A0.96390.20090.33880.069*
H3B0.95410.14630.40720.069*
C4A1.1273 (3)0.08538 (18)0.34847 (13)0.0512 (6)
C5A1.1443 (2)0.01490 (19)0.29002 (13)0.0497 (5)
H5A1.11690.08240.30940.060*
C6A1.0360 (2)0.01290 (17)0.22340 (12)0.0449 (5)
H6A1.07590.04280.19710.054*
C7A0.7816 (3)0.06039 (18)0.19605 (12)0.0475 (5)
C8A0.8334 (3)0.0573 (2)0.12192 (13)0.0605 (6)
H8A0.85850.01990.10220.073*
H8B0.92380.10360.12470.073*
C9A0.8240 (2)0.05747 (19)0.35050 (11)0.0453 (5)
C10A0.7107 (3)0.1336 (2)0.32057 (13)0.0574 (6)
H10A0.64850.11670.28290.069*
C11A0.6880 (3)0.2336 (2)0.34529 (14)0.0631 (7)
H11A0.61170.28350.32410.076*
C12A0.7778 (3)0.2598 (2)0.40118 (13)0.0563 (6)
C13A0.8878 (3)0.1850 (2)0.43326 (13)0.0579 (6)
H13A0.94780.20140.47170.070*
C14A0.9092 (3)0.0844 (2)0.40798 (12)0.0551 (6)
H14A0.98330.03360.43050.066*
C15A0.8486 (4)0.3965 (3)0.47465 (18)0.0905 (10)
H15A0.95010.39840.46060.136*
H15B0.81930.47060.48230.136*
H15C0.84200.34320.51780.136*
C16A1.3063 (3)0.0307 (3)0.27004 (17)0.0746 (8)
H16A1.33290.02670.24340.112*
H16B1.31650.10420.24170.112*
H16C1.37160.02460.31240.112*
C17A1.0383 (2)0.12792 (17)0.17620 (11)0.0420 (5)
C18A1.1144 (3)0.1434 (2)0.11456 (13)0.0537 (6)
H18A1.15280.08060.09860.064*
C19A1.1343 (3)0.2505 (2)0.07620 (13)0.0564 (6)
H19A1.18510.25910.03470.068*
C20A1.0794 (3)0.34451 (19)0.09928 (12)0.0498 (5)
C21A0.9971 (3)0.33057 (19)0.15832 (13)0.0544 (6)
H21A0.95440.39320.17270.065*
C22A0.9780 (3)0.22299 (19)0.19627 (13)0.0506 (5)
H22A0.92300.21460.23650.061*
C23A1.0734 (4)0.5463 (2)0.08604 (16)0.0838 (9)
H23A1.12050.54390.13280.126*
H23B1.10750.61150.05490.126*
H23C0.96630.55110.08800.126*
Cl1B0.18993 (8)0.15752 (6)0.06531 (4)0.0739 (2)
O1B0.15794 (18)0.24812 (15)0.21225 (9)0.0618 (5)
O2B0.2506 (2)0.81846 (16)0.42158 (11)0.0777 (6)
O3B0.7357 (2)0.31515 (16)0.38623 (10)0.0720 (5)
O4B0.5886 (3)0.70404 (15)0.05185 (10)0.0773 (6)
N1B0.38311 (19)0.33705 (14)0.24239 (10)0.0452 (4)
C2B0.3520 (3)0.35249 (19)0.31822 (12)0.0491 (5)
H2B0.25800.31130.32100.059*
C3B0.4754 (3)0.2927 (2)0.35614 (14)0.0587 (6)
H3C0.45910.30420.40650.070*
H3D0.46800.21190.33830.070*
C4B0.6295 (3)0.33301 (19)0.34681 (13)0.0531 (6)
C5B0.6454 (2)0.40160 (19)0.28828 (13)0.0512 (6)
H5B0.61760.47940.30760.061*
C6B0.5369 (2)0.36252 (18)0.22178 (12)0.0462 (5)
H6B0.57640.29250.19550.055*
C7B0.2822 (3)0.27392 (17)0.19570 (12)0.0472 (5)
C8B0.3329 (3)0.2340 (2)0.12212 (13)0.0582 (6)
H8C0.41990.18600.12510.070*
H8D0.36300.29910.10200.070*
C9B0.3264 (2)0.47558 (19)0.35026 (11)0.0460 (5)
C10B0.2110 (3)0.5346 (2)0.32129 (13)0.0567 (6)
H10B0.14810.49680.28410.068*
C11B0.1870 (3)0.6480 (2)0.34620 (14)0.0630 (7)
H11B0.10930.68570.32550.076*
C12B0.2780 (3)0.7051 (2)0.40158 (13)0.0571 (6)
C13B0.3896 (3)0.6475 (2)0.43301 (13)0.0592 (6)
H13B0.44970.68470.47140.071*
C14B0.4119 (3)0.5341 (2)0.40725 (13)0.0559 (6)
H14B0.48730.49600.42920.067*
C15B0.3483 (4)0.8816 (3)0.47489 (19)0.0936 (10)
H15D0.34160.85300.51860.140*
H15E0.32020.95990.48170.140*
H15F0.44970.87470.46070.140*
C16B0.8068 (3)0.4073 (3)0.26829 (17)0.0766 (8)
H16D0.87200.42530.31060.115*
H16E0.81650.46500.23950.115*
H16F0.83390.33540.24210.115*
C17B0.5366 (2)0.45185 (17)0.17413 (12)0.0442 (5)
C18B0.6123 (3)0.4349 (2)0.11269 (13)0.0562 (6)
H18B0.65450.36450.09790.067*
C19B0.6272 (3)0.5191 (2)0.07250 (14)0.0610 (6)
H19B0.67780.50500.03100.073*
C20B0.5665 (3)0.6245 (2)0.09421 (13)0.0531 (6)
C21B0.4870 (3)0.6429 (2)0.15428 (14)0.0560 (6)
H21B0.44290.71280.16840.067*
C22B0.4730 (3)0.55669 (19)0.19369 (13)0.0513 (6)
H22B0.41950.56990.23440.062*
C23B0.5585 (4)0.8176 (2)0.08017 (17)0.0823 (9)
H23D0.45280.82580.08620.124*
H23E0.58890.86600.04830.124*
H23F0.61340.83830.12540.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0836 (5)0.0706 (4)0.0615 (4)0.0252 (3)0.0072 (3)0.0245 (3)
O1A0.0493 (10)0.0767 (12)0.0659 (11)0.0196 (8)0.0120 (8)0.0209 (9)
O2A0.0729 (12)0.0712 (12)0.0928 (14)0.0160 (10)0.0030 (11)0.0344 (11)
O3A0.0686 (12)0.0707 (12)0.0683 (12)0.0169 (9)0.0010 (10)0.0023 (9)
O4A0.0953 (14)0.0449 (9)0.0646 (11)0.0087 (9)0.0128 (10)0.0055 (8)
N1A0.0456 (10)0.0415 (9)0.0482 (11)0.0085 (8)0.0088 (8)0.0096 (8)
C2A0.0477 (13)0.0493 (12)0.0506 (13)0.0117 (10)0.0096 (10)0.0045 (10)
C3A0.0674 (16)0.0426 (12)0.0602 (15)0.0061 (11)0.0056 (12)0.0012 (11)
C4A0.0565 (14)0.0390 (11)0.0591 (14)0.0064 (10)0.0023 (11)0.0121 (10)
C5A0.0453 (12)0.0427 (12)0.0615 (14)0.0036 (9)0.0046 (11)0.0092 (10)
C6A0.0423 (12)0.0388 (11)0.0557 (13)0.0040 (9)0.0111 (10)0.0112 (9)
C7A0.0490 (13)0.0394 (11)0.0559 (14)0.0040 (9)0.0086 (11)0.0114 (10)
C8A0.0552 (14)0.0681 (16)0.0647 (16)0.0121 (12)0.0104 (12)0.0272 (13)
C9A0.0417 (12)0.0519 (12)0.0427 (12)0.0065 (9)0.0106 (9)0.0063 (10)
C10A0.0425 (13)0.0775 (17)0.0544 (14)0.0012 (11)0.0010 (11)0.0193 (13)
C11A0.0517 (14)0.0775 (18)0.0613 (16)0.0163 (13)0.0013 (12)0.0173 (13)
C12A0.0520 (14)0.0608 (15)0.0587 (15)0.0044 (11)0.0087 (12)0.0158 (12)
C13A0.0590 (15)0.0670 (16)0.0490 (14)0.0031 (12)0.0023 (11)0.0158 (12)
C14A0.0587 (15)0.0570 (14)0.0477 (13)0.0064 (11)0.0011 (11)0.0053 (11)
C15A0.101 (2)0.085 (2)0.096 (2)0.0094 (18)0.0058 (19)0.0486 (19)
C16A0.0462 (14)0.0823 (19)0.090 (2)0.0076 (13)0.0011 (14)0.0000 (16)
C17A0.0397 (11)0.0389 (11)0.0479 (12)0.0058 (8)0.0077 (9)0.0069 (9)
C18A0.0614 (15)0.0453 (12)0.0576 (15)0.0022 (10)0.0159 (12)0.0131 (11)
C19A0.0677 (16)0.0535 (14)0.0495 (14)0.0022 (11)0.0180 (12)0.0073 (11)
C20A0.0561 (14)0.0437 (12)0.0476 (13)0.0075 (10)0.0035 (11)0.0023 (10)
C21A0.0629 (15)0.0389 (12)0.0624 (15)0.0046 (10)0.0107 (12)0.0086 (10)
C22A0.0529 (13)0.0452 (12)0.0551 (14)0.0002 (10)0.0176 (11)0.0074 (10)
C23A0.132 (3)0.0422 (14)0.0745 (19)0.0136 (15)0.0016 (18)0.0047 (13)
Cl1B0.0847 (5)0.0642 (4)0.0679 (4)0.0272 (3)0.0132 (4)0.0059 (3)
O1B0.0498 (10)0.0651 (11)0.0693 (11)0.0137 (8)0.0118 (8)0.0053 (8)
O2B0.0761 (13)0.0598 (11)0.0915 (14)0.0171 (9)0.0023 (11)0.0006 (10)
O3B0.0679 (12)0.0776 (12)0.0729 (12)0.0189 (9)0.0030 (10)0.0221 (10)
O4B0.1166 (16)0.0590 (11)0.0629 (11)0.0122 (11)0.0186 (11)0.0247 (9)
N1B0.0441 (10)0.0406 (9)0.0524 (11)0.0041 (7)0.0094 (8)0.0097 (8)
C2B0.0477 (13)0.0494 (12)0.0535 (14)0.0056 (10)0.0096 (10)0.0164 (10)
C3B0.0702 (16)0.0482 (13)0.0621 (15)0.0013 (11)0.0054 (13)0.0214 (11)
C4B0.0587 (14)0.0409 (12)0.0597 (15)0.0095 (10)0.0025 (12)0.0091 (10)
C5B0.0459 (13)0.0451 (12)0.0640 (15)0.0017 (10)0.0046 (11)0.0131 (11)
C6B0.0421 (12)0.0402 (11)0.0577 (14)0.0005 (9)0.0108 (10)0.0098 (10)
C7B0.0478 (13)0.0349 (10)0.0596 (14)0.0001 (9)0.0083 (11)0.0082 (10)
C8B0.0526 (14)0.0541 (14)0.0656 (16)0.0057 (11)0.0119 (12)0.0008 (12)
C9B0.0411 (12)0.0550 (13)0.0445 (12)0.0024 (10)0.0120 (9)0.0124 (10)
C10B0.0422 (13)0.0705 (16)0.0555 (14)0.0039 (11)0.0018 (11)0.0057 (12)
C11B0.0536 (14)0.0705 (17)0.0635 (16)0.0189 (12)0.0004 (12)0.0082 (13)
C12B0.0514 (14)0.0604 (15)0.0599 (15)0.0098 (11)0.0110 (12)0.0083 (12)
C13B0.0601 (15)0.0618 (15)0.0520 (14)0.0022 (12)0.0016 (12)0.0013 (12)
C14B0.0571 (14)0.0602 (15)0.0517 (14)0.0078 (11)0.0001 (11)0.0145 (11)
C15B0.101 (2)0.0663 (19)0.101 (2)0.0106 (17)0.009 (2)0.0164 (17)
C16B0.0470 (15)0.097 (2)0.090 (2)0.0051 (14)0.0015 (14)0.0308 (17)
C17B0.0413 (11)0.0410 (11)0.0517 (13)0.0035 (9)0.0083 (10)0.0096 (9)
C18B0.0637 (15)0.0447 (12)0.0604 (15)0.0017 (11)0.0162 (12)0.0052 (11)
C19B0.0740 (17)0.0560 (15)0.0542 (15)0.0080 (12)0.0215 (12)0.0062 (12)
C20B0.0623 (15)0.0493 (13)0.0499 (13)0.0106 (11)0.0033 (11)0.0150 (11)
C21B0.0631 (15)0.0436 (12)0.0641 (16)0.0052 (11)0.0088 (12)0.0153 (11)
C22B0.0534 (13)0.0483 (13)0.0555 (14)0.0037 (10)0.0158 (11)0.0137 (11)
C23B0.104 (2)0.0595 (17)0.091 (2)0.0104 (16)0.0120 (18)0.0324 (16)
Geometric parameters (Å, º) top
Cl1A—C8A1.762 (2)Cl1B—C8B1.768 (2)
O1A—C7A1.223 (3)O1B—C7B1.225 (3)
O2A—C12A1.375 (3)O2B—C12B1.372 (3)
O2A—C15A1.417 (4)O2B—C15B1.412 (4)
O3A—C4A1.205 (3)O3B—C4B1.215 (3)
O4A—C20A1.362 (3)O4B—C20B1.372 (3)
O4A—C23A1.420 (3)O4B—C23B1.408 (4)
N1A—C7A1.359 (3)N1B—C7B1.358 (3)
N1A—C2A1.477 (3)N1B—C2B1.476 (3)
N1A—C6A1.494 (3)N1B—C6B1.496 (3)
C2A—C3A1.517 (3)C2B—C9B1.520 (3)
C2A—C9A1.521 (3)C2B—C3B1.525 (3)
C2A—H2A0.9800C2B—H2B0.9800
C3A—C4A1.499 (3)C3B—C4B1.486 (3)
C3A—H3A0.9700C3B—H3C0.9700
C3A—H3B0.9700C3B—H3D0.9700
C4A—C5A1.511 (3)C4B—C5B1.510 (3)
C5A—C16A1.521 (3)C5B—C16B1.516 (3)
C5A—C6A1.553 (3)C5B—C6B1.553 (3)
C5A—H5A0.9800C5B—H5B0.9800
C6A—C17A1.514 (3)C6B—C17B1.518 (3)
C6A—H6A0.9800C6B—H6B0.9800
C7A—C8A1.515 (3)C7B—C8B1.507 (3)
C8A—H8A0.9700C8B—H8C0.9700
C8A—H8B0.9700C8B—H8D0.9700
C9A—C14A1.380 (3)C9B—C14B1.376 (3)
C9A—C10A1.387 (3)C9B—C10B1.388 (3)
C10A—C11A1.378 (4)C10B—C11B1.382 (4)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.374 (3)C11B—C12B1.376 (4)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.369 (3)C12B—C13B1.375 (3)
C13A—C14A1.388 (3)C13B—C14B1.383 (3)
C13A—H13A0.9300C13B—H13B0.9300
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C16A—H16A0.9600C16B—H16D0.9600
C16A—H16B0.9600C16B—H16E0.9600
C16A—H16C0.9600C16B—H16F0.9600
C17A—C22A1.379 (3)C17B—C18B1.379 (3)
C17A—C18A1.384 (3)C17B—C22B1.380 (3)
C18A—C19A1.383 (3)C18B—C19B1.378 (3)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.376 (3)C19B—C20B1.382 (4)
C19A—H19A0.9300C19B—H19B0.9300
C20A—C21A1.373 (3)C20B—C21B1.375 (3)
C21A—C22A1.383 (3)C21B—C22B1.387 (3)
C21A—H21A0.9300C21B—H21B0.9300
C22A—H22A0.9300C22B—H22B0.9300
C23A—H23A0.9600C23B—H23D0.9600
C23A—H23B0.9600C23B—H23E0.9600
C23A—H23C0.9600C23B—H23F0.9600
C12A—O2A—C15A117.9 (2)C12B—O2B—C15B118.1 (2)
C20A—O4A—C23A118.0 (2)C20B—O4B—C23B117.1 (2)
C7A—N1A—C2A117.15 (18)C7B—N1B—C2B116.88 (17)
C7A—N1A—C6A121.55 (18)C7B—N1B—C6B121.37 (18)
C2A—N1A—C6A119.48 (17)C2B—N1B—C6B119.69 (17)
N1A—C2A—C3A107.47 (19)N1B—C2B—C9B113.03 (17)
N1A—C2A—C9A112.76 (17)N1B—C2B—C3B107.54 (19)
C3A—C2A—C9A116.32 (19)C9B—C2B—C3B115.62 (19)
N1A—C2A—H2A106.6N1B—C2B—H2B106.7
C3A—C2A—H2A106.6C9B—C2B—H2B106.7
C9A—C2A—H2A106.6C3B—C2B—H2B106.7
C4A—C3A—C2A113.41 (19)C4B—C3B—C2B113.53 (19)
C4A—C3A—H3A108.9C4B—C3B—H3C108.9
C2A—C3A—H3A108.9C2B—C3B—H3C108.9
C4A—C3A—H3B108.9C4B—C3B—H3D108.9
C2A—C3A—H3B108.9C2B—C3B—H3D108.9
H3A—C3A—H3B107.7H3C—C3B—H3D107.7
O3A—C4A—C3A121.6 (2)O3B—C4B—C3B121.3 (2)
O3A—C4A—C5A122.0 (2)O3B—C4B—C5B122.0 (2)
C3A—C4A—C5A116.36 (19)C3B—C4B—C5B116.6 (2)
C4A—C5A—C16A112.2 (2)C4B—C5B—C16B112.1 (2)
C4A—C5A—C6A113.58 (18)C4B—C5B—C6B113.52 (18)
C16A—C5A—C6A111.3 (2)C16B—C5B—C6B111.3 (2)
C4A—C5A—H5A106.4C4B—C5B—H5B106.5
C16A—C5A—H5A106.4C16B—C5B—H5B106.5
C6A—C5A—H5A106.4C6B—C5B—H5B106.5
N1A—C6A—C17A113.52 (17)N1B—C6B—C17B112.70 (17)
N1A—C6A—C5A111.62 (18)N1B—C6B—C5B111.29 (18)
C17A—C6A—C5A108.61 (17)C17B—C6B—C5B108.99 (17)
N1A—C6A—H6A107.6N1B—C6B—H6B107.9
C17A—C6A—H6A107.6C17B—C6B—H6B107.9
C5A—C6A—H6A107.6C5B—C6B—H6B107.9
O1A—C7A—N1A123.0 (2)O1B—C7B—N1B122.5 (2)
O1A—C7A—C8A121.1 (2)O1B—C7B—C8B121.2 (2)
N1A—C7A—C8A115.8 (2)N1B—C7B—C8B116.25 (19)
C7A—C8A—Cl1A112.47 (17)C7B—C8B—Cl1B112.11 (16)
C7A—C8A—H8A109.1C7B—C8B—H8C109.2
Cl1A—C8A—H8A109.1Cl1B—C8B—H8C109.2
C7A—C8A—H8B109.1C7B—C8B—H8D109.2
Cl1A—C8A—H8B109.1Cl1B—C8B—H8D109.2
H8A—C8A—H8B107.8H8C—C8B—H8D107.9
C14A—C9A—C10A116.9 (2)C14B—C9B—C10B116.8 (2)
C14A—C9A—C2A123.3 (2)C14B—C9B—C2B123.9 (2)
C10A—C9A—C2A119.7 (2)C10B—C9B—C2B119.4 (2)
C11A—C10A—C9A121.6 (2)C11B—C10B—C9B121.8 (2)
C11A—C10A—H10A119.2C11B—C10B—H10B119.1
C9A—C10A—H10A119.2C9B—C10B—H10B119.1
C12A—C11A—C10A120.2 (2)C12B—C11B—C10B119.9 (2)
C12A—C11A—H11A119.9C12B—C11B—H11B120.0
C10A—C11A—H11A119.9C10B—C11B—H11B120.0
C13A—C12A—C11A119.7 (2)O2B—C12B—C13B124.1 (2)
C13A—C12A—O2A124.0 (2)O2B—C12B—C11B116.5 (2)
C11A—C12A—O2A116.3 (2)C13B—C12B—C11B119.4 (2)
C12A—C13A—C14A119.5 (2)C12B—C13B—C14B119.8 (2)
C12A—C13A—H13A120.3C12B—C13B—H13B120.1
C14A—C13A—H13A120.3C14B—C13B—H13B120.1
C9A—C14A—C13A122.1 (2)C9B—C14B—C13B122.2 (2)
C9A—C14A—H14A119.0C9B—C14B—H14B118.9
C13A—C14A—H14A119.0C13B—C14B—H14B118.9
O2A—C15A—H15A109.5O2B—C15B—H15D109.5
O2A—C15A—H15B109.5O2B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O2A—C15A—H15C109.5O2B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C5A—C16A—H16A109.5C5B—C16B—H16D109.5
C5A—C16A—H16B109.5C5B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C5A—C16A—H16C109.5C5B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C22A—C17A—C18A117.4 (2)C18B—C17B—C22B117.4 (2)
C22A—C17A—C6A121.5 (2)C18B—C17B—C6B120.8 (2)
C18A—C17A—C6A120.81 (19)C22B—C17B—C6B121.5 (2)
C19A—C18A—C17A121.2 (2)C19B—C18B—C17B121.9 (2)
C19A—C18A—H18A119.4C19B—C18B—H18B119.0
C17A—C18A—H18A119.4C17B—C18B—H18B119.0
C20A—C19A—C18A120.2 (2)C18B—C19B—C20B119.7 (2)
C20A—C19A—H19A119.9C18B—C19B—H19B120.2
C18A—C19A—H19A119.9C20B—C19B—H19B120.2
O4A—C20A—C21A124.9 (2)O4B—C20B—C21B124.4 (2)
O4A—C20A—C19A115.7 (2)O4B—C20B—C19B116.0 (2)
C21A—C20A—C19A119.4 (2)C21B—C20B—C19B119.6 (2)
C20A—C21A—C22A119.7 (2)C20B—C21B—C22B119.6 (2)
C20A—C21A—H21A120.1C20B—C21B—H21B120.2
C22A—C21A—H21A120.1C22B—C21B—H21B120.2
C17A—C22A—C21A121.9 (2)C17B—C22B—C21B121.7 (2)
C17A—C22A—H22A119.1C17B—C22B—H22B119.1
C21A—C22A—H22A119.1C21B—C22B—H22B119.1
O4A—C23A—H23A109.5O4B—C23B—H23D109.5
O4A—C23A—H23B109.5O4B—C23B—H23E109.5
H23A—C23A—H23B109.5H23D—C23B—H23E109.5
O4A—C23A—H23C109.5O4B—C23B—H23F109.5
H23A—C23A—H23C109.5H23D—C23B—H23F109.5
H23B—C23A—H23C109.5H23E—C23B—H23F109.5
C7A—N1A—C2A—C3A114.3 (2)C7B—N1B—C2B—C9B116.8 (2)
C6A—N1A—C2A—C3A50.6 (2)C6B—N1B—C2B—C9B79.3 (2)
C7A—N1A—C2A—C9A116.2 (2)C7B—N1B—C2B—C3B114.3 (2)
C6A—N1A—C2A—C9A78.9 (2)C6B—N1B—C2B—C3B49.6 (2)
N1A—C2A—C3A—C4A57.1 (3)N1B—C2B—C3B—C4B56.5 (3)
C9A—C2A—C3A—C4A70.4 (3)C9B—C2B—C3B—C4B70.9 (3)
C2A—C3A—C4A—O3A162.9 (2)C2B—C3B—C4B—O3B162.0 (2)
C2A—C3A—C4A—C5A15.6 (3)C2B—C3B—C4B—C5B15.2 (3)
O3A—C4A—C5A—C16A19.6 (3)O3B—C4B—C5B—C16B20.4 (3)
C3A—C4A—C5A—C16A161.9 (2)C3B—C4B—C5B—C16B162.4 (2)
O3A—C4A—C5A—C6A146.9 (2)O3B—C4B—C5B—C6B147.6 (2)
C3A—C4A—C5A—C6A34.7 (3)C3B—C4B—C5B—C6B35.2 (3)
C7A—N1A—C6A—C17A74.5 (2)C7B—N1B—C6B—C17B75.1 (2)
C2A—N1A—C6A—C17A121.3 (2)C2B—N1B—C6B—C17B121.8 (2)
C7A—N1A—C6A—C5A162.34 (18)C7B—N1B—C6B—C5B162.16 (19)
C2A—N1A—C6A—C5A1.9 (2)C2B—N1B—C6B—C5B1.0 (3)
C4A—C5A—C6A—N1A41.6 (2)C4B—C5B—C6B—N1B42.3 (3)
C16A—C5A—C6A—N1A169.42 (19)C16B—C5B—C6B—N1B169.9 (2)
C4A—C5A—C6A—C17A167.52 (18)C4B—C5B—C6B—C17B167.23 (19)
C16A—C5A—C6A—C17A64.7 (2)C16B—C5B—C6B—C17B65.2 (2)
C2A—N1A—C7A—O1A13.2 (3)C2B—N1B—C7B—O1B13.3 (3)
C6A—N1A—C7A—O1A177.7 (2)C6B—N1B—C7B—O1B176.9 (2)
C2A—N1A—C7A—C8A166.74 (19)C2B—N1B—C7B—C8B165.06 (19)
C6A—N1A—C7A—C8A2.2 (3)C6B—N1B—C7B—C8B1.5 (3)
O1A—C7A—C8A—Cl1A0.2 (3)O1B—C7B—C8B—Cl1B3.9 (3)
N1A—C7A—C8A—Cl1A179.68 (16)N1B—C7B—C8B—Cl1B177.72 (16)
N1A—C2A—C9A—C14A121.4 (2)N1B—C2B—C9B—C14B121.1 (2)
C3A—C2A—C9A—C14A3.4 (3)C3B—C2B—C9B—C14B3.5 (3)
N1A—C2A—C9A—C10A57.8 (3)N1B—C2B—C9B—C10B58.8 (3)
C3A—C2A—C9A—C10A177.4 (2)C3B—C2B—C9B—C10B176.7 (2)
C14A—C9A—C10A—C11A2.5 (4)C14B—C9B—C10B—C11B2.8 (4)
C2A—C9A—C10A—C11A176.8 (2)C2B—C9B—C10B—C11B177.0 (2)
C9A—C10A—C11A—C12A0.5 (4)C9B—C10B—C11B—C12B0.6 (4)
C10A—C11A—C12A—C13A1.4 (4)C15B—O2B—C12B—C13B3.9 (4)
C10A—C11A—C12A—O2A177.3 (2)C15B—O2B—C12B—C11B175.7 (3)
C15A—O2A—C12A—C13A2.9 (4)C10B—C11B—C12B—O2B177.7 (2)
C15A—O2A—C12A—C11A175.8 (3)C10B—C11B—C12B—C13B1.9 (4)
C11A—C12A—C13A—C14A1.2 (4)O2B—C12B—C13B—C14B177.6 (2)
O2A—C12A—C13A—C14A177.4 (2)C11B—C12B—C13B—C14B2.0 (4)
C10A—C9A—C14A—C13A2.6 (4)C10B—C9B—C14B—C13B2.8 (4)
C2A—C9A—C14A—C13A176.6 (2)C2B—C9B—C14B—C13B177.1 (2)
C12A—C13A—C14A—C9A0.8 (4)C12B—C13B—C14B—C9B0.4 (4)
N1A—C6A—C17A—C22A55.9 (3)N1B—C6B—C17B—C18B131.7 (2)
C5A—C6A—C17A—C22A68.8 (3)C5B—C6B—C17B—C18B104.2 (2)
N1A—C6A—C17A—C18A130.6 (2)N1B—C6B—C17B—C22B54.4 (3)
C5A—C6A—C17A—C18A104.6 (2)C5B—C6B—C17B—C22B69.6 (3)
C22A—C17A—C18A—C19A2.5 (3)C22B—C17B—C18B—C19B1.1 (3)
C6A—C17A—C18A—C19A171.2 (2)C6B—C17B—C18B—C19B173.0 (2)
C17A—C18A—C19A—C20A0.6 (4)C17B—C18B—C19B—C20B0.8 (4)
C23A—O4A—C20A—C21A7.8 (4)C23B—O4B—C20B—C21B15.2 (4)
C23A—O4A—C20A—C19A172.7 (2)C23B—O4B—C20B—C19B166.2 (3)
C18A—C19A—C20A—O4A176.6 (2)C18B—C19B—C20B—O4B178.9 (2)
C18A—C19A—C20A—C21A3.8 (4)C18B—C19B—C20B—C21B2.4 (4)
O4A—C20A—C21A—C22A176.6 (2)O4B—C20B—C21B—C22B179.3 (2)
C19A—C20A—C21A—C22A3.8 (4)C19B—C20B—C21B—C22B2.2 (4)
C18A—C17A—C22A—C21A2.5 (3)C18B—C17B—C22B—C21B1.4 (3)
C6A—C17A—C22A—C21A171.2 (2)C6B—C17B—C22B—C21B172.7 (2)
C20A—C21A—C22A—C17A0.7 (4)C20B—C21B—C22B—C17B0.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···O3B0.972.583.063 (3)111
C6A—H6A···O1Bi0.982.533.350 (3)142
C6B—H6B···O1A0.982.543.363 (3)142
C8A—H8B···Cl1Bi0.972.813.684 (3)150
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H24ClNO4
Mr401.87
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9147 (8), 11.9648 (10), 19.1365 (16)
α, β, γ (°)99.729 (5), 93.665 (5), 90.112 (6)
V3)2007.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.15 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.968, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
37036, 9971, 5739
Rint0.043
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.164, 1.05
No. of reflections9971
No. of parameters512
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···O3B0.972.583.063 (3)110.8
C6A—H6A···O1Bi0.982.533.350 (3)141.7
C6B—H6B···O1A0.982.543.363 (3)141.5
C8A—H8B···Cl1Bi0.972.813.684 (3)149.6
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.  Google Scholar
First citationKatritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds