organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl(2′,4′,6′-triiso­propylbi­phenyl-2-yl)phosphine–di­chloro­phenylborane

aInstitut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
*Correspondence e-mail: H.Braunschweig@mail.uni-wuerzburg.de

(Received 9 October 2009; accepted 13 October 2009; online 17 October 2009)

In the crystal structure of the title compound, C39H54BCl2P, the phospho­rus atom is coordinated by a dichloro­phenyl­borane unit. The substituted biphenyl group and the two cyclo­hexyl groups at the phospho­rus atom are arranged in such a way to avoid steric crowding in the mol­ecule as far as possible.

Related literature

For related structures, see: Charmant et al. (2007[Charmant, J. P. H., Fan, C., Norman, N. C. & Pringle, P. G. (2007). Dalton Trans. pp. 114-123.]); Grabulosa et al. (2005[Grabulosa, A., Muller, G., Ordinas, J. I., Mezzetti, A., Maestro, M. Á., Font-Bardia, M. & Solans, X. (2005). Organometallics, 24, 4961-4973.]); Strieter et al. (2003[Strieter, E. R., Blackmond, D. G. & Buchwald, S. L. (2003). J. Am. Chem. Soc. 125, 13978-13980.]).

[Scheme 1]

Experimental

Crystal data
  • C39H54BCl2P

  • Mr = 635.50

  • Orthorhombic, P b c a

  • a = 16.9716 (8) Å

  • b = 15.5992 (7) Å

  • c = 26.5497 (12) Å

  • V = 7028.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.19 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.963

  • 277684 measured reflections

  • 10642 independent reflections

  • 8513 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.04

  • 10642 reflections

  • 394 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, previously not known in the literature, was prepared by the reaction of dichlorophenylborane with 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl. The second precursor is also known as XPhos and is used for example in Pd-catalysed C–N bond-forming processes (Strieter et al., 2003). There is one similar structurally characterized compound (PhMe2PBCl3), which is a byproduct in the reaction of a platinum boryl complex with phosphine (Charmant et al., 2007). However in this molecule there is no biphenyl ring attached to the phosphorus atom. The compound (2-biphenylyl)methoxyphenylphosphine-P-borane(1/1) which is used by Grabulosa et al. (2005) in the asymmetric hydrovinylation of styrene, contains a biphenyl ring but has no halogens at the boron. Beyond that this biphenyl ring is not substitued by isopropyl groups. So the choice of the substituents in the title compound makes it different from currently known compounds, in that the biphenylphosphines so far have not been combined with reactive haloboranes. The P—B distance is comparable with that found in PhMe2P—BCl3 (Charmant et al., 2007) and in BiphMePhP—BH3 (Biph = Ph-2-Ph) (Grabulosa et al., 2005) The B—Cl distance is comparable with those found in PhMe2PBCl3 (Grabulosa et al., 2005). The biphenyl substituent is positioned away from the boron so that the isopropyl groups have sufficient space. The two phenyl rings of the biphenyl group adopt an almost perpendicular postition to each other, as is the typical conformation. The boron centre displays a slightly disordered tetrahedral coordination.

Related literature top

For related structures, see: Charmant et al. (2007); Grabulosa et al. (2005); Strieter et al. (2003).

Experimental top

To prepare the title compound, 2-(dicyclohexylphosphino)-2',4',6'-triisopropylbiphenyl (0.20 g, 0.42 mmol) dissolved in 2 ml benzene, and dichlorophenylborane (0.07 g, 0.46 mmol) dissolved in 2 ml benzene were combined and stirred for 3 h at ambient temperature. All volatiles were removed under reduced pressure. The obtained solid was washed twice with 4 ml hexane. Recrystallization at ambient temperature from hexane gave colourless crystals of (I) 0.11 g (0.23 mmol, 54%).

Structure description top

The title compound, previously not known in the literature, was prepared by the reaction of dichlorophenylborane with 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl. The second precursor is also known as XPhos and is used for example in Pd-catalysed C–N bond-forming processes (Strieter et al., 2003). There is one similar structurally characterized compound (PhMe2PBCl3), which is a byproduct in the reaction of a platinum boryl complex with phosphine (Charmant et al., 2007). However in this molecule there is no biphenyl ring attached to the phosphorus atom. The compound (2-biphenylyl)methoxyphenylphosphine-P-borane(1/1) which is used by Grabulosa et al. (2005) in the asymmetric hydrovinylation of styrene, contains a biphenyl ring but has no halogens at the boron. Beyond that this biphenyl ring is not substitued by isopropyl groups. So the choice of the substituents in the title compound makes it different from currently known compounds, in that the biphenylphosphines so far have not been combined with reactive haloboranes. The P—B distance is comparable with that found in PhMe2P—BCl3 (Charmant et al., 2007) and in BiphMePhP—BH3 (Biph = Ph-2-Ph) (Grabulosa et al., 2005) The B—Cl distance is comparable with those found in PhMe2PBCl3 (Grabulosa et al., 2005). The biphenyl substituent is positioned away from the boron so that the isopropyl groups have sufficient space. The two phenyl rings of the biphenyl group adopt an almost perpendicular postition to each other, as is the typical conformation. The boron centre displays a slightly disordered tetrahedral coordination.

For related structures, see: Charmant et al. (2007); Grabulosa et al. (2005); Strieter et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.
Dicyclohexyl(2',4',6'-triisopropylbiphenyl-2-yl)phosphine–dichlorophenylborane top
Crystal data top
C39H54BCl2PF(000) = 2736
Mr = 635.50Dx = 1.201 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9927 reflections
a = 16.9716 (8) Åθ = 2.4–30.2°
b = 15.5992 (7) ŵ = 0.26 mm1
c = 26.5497 (12) ÅT = 100 K
V = 7028.9 (6) Å3Block, colourless
Z = 80.19 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
10642 independent reflections
Radiation source: rotating anode8513 reflections with I > 2σ(I)
Multi-layer mirror monochromatorRint = 0.063
φ and ω scansθmax = 30.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2424
Tmin = 0.844, Tmax = 0.963k = 2220
277684 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0317P)2 + 4.3765P]
where P = (Fo2 + 2Fc2)/3
10642 reflections(Δ/σ)max = 0.003
394 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C39H54BCl2PV = 7028.9 (6) Å3
Mr = 635.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.9716 (8) ŵ = 0.26 mm1
b = 15.5992 (7) ÅT = 100 K
c = 26.5497 (12) Å0.19 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
10642 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
8513 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.963Rint = 0.063
277684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
10642 reflectionsΔρmin = 0.33 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B11.05541 (8)0.09574 (8)0.16307 (5)0.0151 (2)
Cl11.133928 (16)0.082518 (18)0.212825 (11)0.01754 (6)
Cl21.087313 (17)0.033702 (18)0.105927 (11)0.01780 (6)
P11.059876 (17)0.220694 (19)0.142349 (11)0.01277 (6)
C1_10.97152 (7)0.06567 (7)0.18435 (5)0.0159 (2)
C2_10.91983 (7)0.01550 (8)0.15579 (5)0.0187 (2)
H2_10.93370.00100.12220.022*
C3_10.84859 (8)0.01383 (9)0.17526 (5)0.0227 (3)
H3_10.81480.04800.15500.027*
C4_10.82682 (8)0.00660 (9)0.22411 (5)0.0246 (3)
H4_10.77830.01340.23750.030*
C5_10.87684 (8)0.05679 (9)0.25332 (5)0.0241 (3)
H5_10.86240.07140.28680.029*
C6_10.94788 (7)0.08555 (8)0.23368 (5)0.0202 (2)
H6_10.98140.11960.25420.024*
C1_21.02197 (7)0.24348 (8)0.07851 (4)0.0153 (2)
H1_21.00220.30390.07900.018*
C2_21.08364 (7)0.23841 (8)0.03600 (4)0.0181 (2)
H2A_21.12850.27670.04390.022*
H2B_21.10400.17910.03340.022*
C3_21.04676 (8)0.26500 (9)0.01429 (5)0.0230 (3)
H3A_21.03150.32620.01260.028*
H3B_21.08650.25880.04140.028*
C4_20.97440 (8)0.21136 (9)0.02744 (5)0.0245 (3)
H4A_20.99040.15110.03330.029*
H4B_20.95030.23340.05880.029*
C5_20.91412 (7)0.21498 (9)0.01520 (5)0.0223 (3)
H5A_20.86900.17730.00700.027*
H5B_20.89410.27430.01870.027*
C6_20.95107 (7)0.18630 (8)0.06503 (4)0.0176 (2)
H6A_20.96860.12600.06220.021*
H6B_20.91120.18960.09220.021*
C1_31.16256 (7)0.25864 (7)0.14871 (5)0.0151 (2)
H1_31.17520.25160.18530.018*
C2_31.17297 (7)0.35500 (8)0.13836 (5)0.0171 (2)
H2A_31.16140.36710.10250.021*
H2B_31.13530.38800.15920.021*
C3_31.25726 (7)0.38311 (8)0.15063 (5)0.0194 (2)
H3A_31.26410.44410.14140.023*
H3B_31.26650.37760.18730.023*
C4_31.31759 (7)0.32892 (8)0.12220 (5)0.0198 (2)
H4A_31.31090.33760.08550.024*
H4B_31.37140.34750.13150.024*
C5_31.30739 (7)0.23414 (8)0.13477 (5)0.0199 (2)
H5A_31.31660.22510.17120.024*
H5B_31.34680.20000.11600.024*
C6_31.22441 (7)0.20354 (8)0.12102 (5)0.0182 (2)
H6A_31.21810.14260.13070.022*
H6B_31.21650.20820.08420.022*
C1_41.00678 (7)0.28522 (7)0.18927 (4)0.0138 (2)
C2_41.04114 (7)0.27716 (8)0.23743 (4)0.0164 (2)
H2_41.08460.23940.24150.020*
C3_41.01407 (7)0.32198 (8)0.27894 (5)0.0185 (2)
H3_41.03840.31470.31090.022*
C4_40.95100 (7)0.37757 (8)0.27341 (5)0.0181 (2)
H4_40.93240.41000.30130.022*
C5_40.91551 (7)0.38515 (8)0.22673 (5)0.0179 (2)
H5_40.87180.42280.22350.022*
C6_40.94081 (7)0.33994 (7)0.18394 (4)0.0144 (2)
C1_50.89316 (7)0.36063 (8)0.13742 (4)0.0149 (2)
C2_50.91033 (7)0.43574 (8)0.11028 (5)0.0160 (2)
C3_50.86058 (7)0.46083 (8)0.07074 (5)0.0176 (2)
H3_50.87310.51100.05210.021*
C4_50.79375 (7)0.41455 (8)0.05803 (4)0.0172 (2)
C5_50.77703 (7)0.34126 (8)0.08620 (5)0.0173 (2)
H5_50.73130.30900.07800.021*
C6_50.82427 (7)0.31315 (8)0.12589 (5)0.0159 (2)
C1_60.98039 (7)0.49241 (8)0.12311 (5)0.0180 (2)
H1_61.01100.46370.15050.022*
C2_61.03543 (7)0.50442 (9)0.07779 (5)0.0229 (3)
H2A_61.05180.44820.06510.034*
H2B_61.08200.53700.08820.034*
H2C_61.00760.53570.05120.034*
C3_60.95346 (8)0.58019 (9)0.14270 (5)0.0235 (3)
H3A_60.92280.60940.11660.035*
H3B_60.99970.61490.15130.035*
H3C_60.92070.57230.17270.035*
C1_70.73849 (7)0.44011 (9)0.01540 (5)0.0197 (2)
H1_70.73270.38930.00730.024*
C2_70.76810 (8)0.51495 (11)0.01673 (6)0.0323 (3)
H2A_70.77080.56690.00400.048*
H2B_70.73180.52440.04490.048*
H2C_70.82070.50150.02980.048*
C3_70.65651 (7)0.46242 (9)0.03553 (5)0.0205 (2)
H3A_70.66010.51260.05760.031*
H3B_70.63560.41370.05460.031*
H3C_70.62130.47520.00730.031*
C1_80.79939 (7)0.23518 (8)0.15674 (5)0.0183 (2)
H1_80.84820.20650.16950.022*
C2_80.75264 (8)0.16926 (9)0.12615 (6)0.0254 (3)
H2A_80.70130.19350.11700.038*
H2B_80.74480.11740.14640.038*
H2C_80.78190.15470.09550.038*
C3_80.74970 (8)0.26215 (9)0.20256 (5)0.0273 (3)
H3A_80.78070.30050.22410.041*
H3B_80.73450.21110.22180.041*
H3C_80.70220.29200.19100.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0159 (6)0.0135 (6)0.0160 (6)0.0009 (5)0.0015 (5)0.0001 (5)
Cl10.01597 (13)0.01586 (13)0.02081 (14)0.00011 (10)0.00419 (10)0.00321 (10)
Cl20.01872 (13)0.01529 (13)0.01940 (14)0.00262 (10)0.00104 (10)0.00148 (10)
P10.01143 (13)0.01235 (13)0.01451 (14)0.00036 (10)0.00018 (10)0.00016 (10)
C1_10.0148 (5)0.0132 (5)0.0197 (6)0.0000 (4)0.0012 (4)0.0026 (4)
C2_10.0180 (5)0.0187 (6)0.0195 (6)0.0015 (5)0.0024 (4)0.0014 (5)
C3_10.0195 (6)0.0212 (6)0.0275 (7)0.0048 (5)0.0047 (5)0.0034 (5)
C4_10.0178 (6)0.0241 (7)0.0320 (7)0.0035 (5)0.0033 (5)0.0055 (5)
C5_10.0242 (6)0.0244 (6)0.0237 (6)0.0015 (5)0.0058 (5)0.0004 (5)
C6_10.0211 (6)0.0181 (6)0.0213 (6)0.0021 (5)0.0009 (5)0.0006 (5)
C1_20.0152 (5)0.0152 (5)0.0154 (5)0.0018 (4)0.0010 (4)0.0004 (4)
C2_20.0168 (5)0.0215 (6)0.0160 (6)0.0005 (4)0.0009 (4)0.0006 (5)
C3_20.0232 (6)0.0297 (7)0.0162 (6)0.0026 (5)0.0009 (5)0.0034 (5)
C4_20.0229 (6)0.0337 (7)0.0168 (6)0.0048 (5)0.0032 (5)0.0015 (5)
C5_20.0184 (6)0.0280 (7)0.0206 (6)0.0025 (5)0.0040 (5)0.0004 (5)
C6_20.0154 (5)0.0197 (6)0.0176 (6)0.0004 (4)0.0012 (4)0.0007 (5)
C1_30.0122 (5)0.0146 (5)0.0185 (6)0.0010 (4)0.0006 (4)0.0004 (4)
C2_30.0154 (5)0.0149 (5)0.0210 (6)0.0011 (4)0.0002 (4)0.0009 (4)
C3_30.0170 (5)0.0180 (6)0.0232 (6)0.0041 (4)0.0003 (5)0.0010 (5)
C4_30.0154 (5)0.0225 (6)0.0215 (6)0.0038 (5)0.0017 (5)0.0003 (5)
C5_30.0134 (5)0.0224 (6)0.0240 (6)0.0004 (4)0.0005 (4)0.0016 (5)
C6_30.0132 (5)0.0166 (6)0.0248 (6)0.0008 (4)0.0009 (4)0.0000 (5)
C1_40.0134 (5)0.0121 (5)0.0160 (5)0.0012 (4)0.0009 (4)0.0000 (4)
C2_40.0153 (5)0.0156 (5)0.0183 (6)0.0001 (4)0.0012 (4)0.0006 (4)
C3_40.0206 (6)0.0189 (6)0.0159 (5)0.0029 (5)0.0018 (4)0.0000 (4)
C4_40.0218 (6)0.0155 (6)0.0171 (6)0.0019 (4)0.0038 (4)0.0020 (4)
C5_40.0168 (5)0.0157 (6)0.0213 (6)0.0022 (4)0.0026 (4)0.0004 (5)
C6_40.0130 (5)0.0133 (5)0.0170 (5)0.0015 (4)0.0007 (4)0.0014 (4)
C1_50.0133 (5)0.0156 (5)0.0158 (5)0.0032 (4)0.0016 (4)0.0000 (4)
C2_50.0135 (5)0.0160 (5)0.0187 (6)0.0023 (4)0.0011 (4)0.0004 (4)
C3_50.0155 (5)0.0187 (6)0.0185 (6)0.0026 (4)0.0018 (4)0.0031 (5)
C4_50.0144 (5)0.0206 (6)0.0166 (5)0.0045 (4)0.0010 (4)0.0009 (4)
C5_50.0134 (5)0.0189 (6)0.0197 (6)0.0013 (4)0.0004 (4)0.0018 (4)
C6_50.0134 (5)0.0161 (5)0.0184 (5)0.0017 (4)0.0017 (4)0.0010 (4)
C1_60.0149 (5)0.0170 (6)0.0220 (6)0.0008 (4)0.0013 (4)0.0046 (5)
C2_60.0180 (6)0.0204 (6)0.0303 (7)0.0013 (5)0.0037 (5)0.0034 (5)
C3_60.0228 (6)0.0225 (6)0.0253 (6)0.0011 (5)0.0002 (5)0.0015 (5)
C1_70.0170 (6)0.0264 (6)0.0157 (5)0.0029 (5)0.0018 (4)0.0003 (5)
C2_70.0212 (6)0.0502 (9)0.0256 (7)0.0002 (6)0.0007 (5)0.0162 (7)
C3_70.0163 (5)0.0253 (6)0.0200 (6)0.0027 (5)0.0006 (5)0.0004 (5)
C1_80.0147 (5)0.0163 (6)0.0238 (6)0.0005 (4)0.0011 (4)0.0028 (5)
C2_80.0197 (6)0.0200 (6)0.0364 (7)0.0044 (5)0.0034 (5)0.0016 (6)
C3_80.0273 (7)0.0244 (7)0.0302 (7)0.0008 (5)0.0108 (6)0.0039 (6)
Geometric parameters (Å, º) top
B1—C1_11.6020 (17)C6_3—H6B_30.9900
B1—Cl21.8792 (14)C1_4—C2_41.4108 (16)
B1—Cl11.8876 (13)C1_4—C6_41.4151 (16)
B1—P12.0268 (13)C2_4—C3_41.3836 (17)
P1—C1_41.8377 (12)C2_4—H2_40.9500
P1—C1_21.8474 (12)C3_4—C4_41.3854 (18)
P1—C1_31.8483 (11)C3_4—H3_40.9500
C1_1—C2_11.3988 (17)C4_4—C5_41.3828 (17)
C1_1—C6_11.4044 (17)C4_4—H4_40.9500
C2_1—C3_11.3922 (17)C5_4—C6_41.4044 (17)
C2_1—H2_10.9500C5_4—H5_40.9500
C3_1—C4_11.386 (2)C6_4—C1_51.5112 (16)
C3_1—H3_10.9500C1_5—C2_51.4061 (17)
C4_1—C5_11.391 (2)C1_5—C6_51.4174 (16)
C4_1—H4_10.9500C2_5—C3_51.4029 (16)
C5_1—C6_11.3880 (18)C2_5—C1_61.5202 (17)
C5_1—H5_10.9500C3_5—C4_51.3862 (17)
C6_1—H6_10.9500C3_5—H3_50.9500
C1_2—C6_21.5401 (16)C4_5—C5_51.3954 (17)
C1_2—C2_21.5413 (16)C4_5—C1_71.5230 (16)
C1_2—H1_21.0000C5_5—C6_51.3947 (17)
C2_2—C3_21.5320 (17)C5_5—H5_50.9500
C2_2—H2A_20.9900C6_5—C1_81.5259 (17)
C2_2—H2B_20.9900C1_6—C3_61.5345 (18)
C3_2—C4_21.5266 (19)C1_6—C2_61.5346 (17)
C3_2—H3A_20.9900C1_6—H1_61.0000
C3_2—H3B_20.9900C2_6—H2A_60.9800
C4_2—C5_21.5269 (18)C2_6—H2B_60.9800
C4_2—H4A_20.9900C2_6—H2C_60.9800
C4_2—H4B_20.9900C3_6—H3A_60.9800
C5_2—C6_21.5309 (17)C3_6—H3B_60.9800
C5_2—H5A_20.9900C3_6—H3C_60.9800
C5_2—H5B_20.9900C1_7—C2_71.5306 (19)
C6_2—H6A_20.9900C1_7—C3_71.5306 (17)
C6_2—H6B_20.9900C1_7—H1_71.0000
C1_3—C2_31.5381 (16)C2_7—H2A_70.9800
C1_3—C6_31.5431 (16)C2_7—H2B_70.9800
C1_3—H1_31.0000C2_7—H2C_70.9800
C2_3—C3_31.5314 (16)C3_7—H3A_70.9800
C2_3—H2A_30.9900C3_7—H3B_70.9800
C2_3—H2B_30.9900C3_7—H3C_70.9800
C3_3—C4_31.5271 (17)C1_8—C2_81.5317 (18)
C3_3—H3A_30.9900C1_8—C3_81.5390 (18)
C3_3—H3B_30.9900C1_8—H1_81.0000
C4_3—C5_31.5256 (18)C2_8—H2A_80.9800
C4_3—H4A_30.9900C2_8—H2B_80.9800
C4_3—H4B_30.9900C2_8—H2C_80.9800
C5_3—C6_31.5313 (16)C3_8—H3A_80.9800
C5_3—H5A_30.9900C3_8—H3B_80.9800
C5_3—H5B_30.9900C3_8—H3C_80.9800
C6_3—H6A_30.9900
C1_1—B1—Cl2112.95 (9)C5_3—C6_3—C1_3109.78 (10)
C1_1—B1—Cl1110.41 (8)C5_3—C6_3—H6A_3109.7
Cl2—B1—Cl1107.78 (7)C1_3—C6_3—H6A_3109.7
C1_1—B1—P1114.24 (8)C5_3—C6_3—H6B_3109.7
Cl2—B1—P1105.39 (6)C1_3—C6_3—H6B_3109.7
Cl1—B1—P1105.58 (6)H6A_3—C6_3—H6B_3108.2
C1_4—P1—C1_2110.23 (5)C2_4—C1_4—C6_4118.13 (10)
C1_4—P1—C1_3103.00 (5)C2_4—C1_4—P1111.28 (8)
C1_2—P1—C1_3110.52 (5)C6_4—C1_4—P1130.59 (9)
C1_4—P1—B1108.93 (5)C3_4—C2_4—C1_4122.66 (11)
C1_2—P1—B1114.90 (5)C3_4—C2_4—H2_4118.7
C1_3—P1—B1108.57 (5)C1_4—C2_4—H2_4118.7
C2_1—C1_1—C6_1116.73 (11)C2_4—C3_4—C4_4119.24 (11)
C2_1—C1_1—B1122.01 (11)C2_4—C3_4—H3_4120.4
C6_1—C1_1—B1121.20 (11)C4_4—C3_4—H3_4120.4
C3_1—C2_1—C1_1121.82 (12)C5_4—C4_4—C3_4119.02 (11)
C3_1—C2_1—H2_1119.1C5_4—C4_4—H4_4120.5
C1_1—C2_1—H2_1119.1C3_4—C4_4—H4_4120.5
C4_1—C3_1—C2_1120.23 (12)C4_4—C5_4—C6_4123.28 (11)
C4_1—C3_1—H3_1119.9C4_4—C5_4—H5_4118.4
C2_1—C3_1—H3_1119.9C6_4—C5_4—H5_4118.4
C3_1—C4_1—C5_1119.24 (12)C5_4—C6_4—C1_4117.64 (11)
C3_1—C4_1—H4_1120.4C5_4—C6_4—C1_5112.97 (10)
C5_1—C4_1—H4_1120.4C1_4—C6_4—C1_5129.35 (10)
C6_1—C5_1—C4_1120.18 (13)C2_5—C1_5—C6_5119.72 (11)
C6_1—C5_1—H5_1119.9C2_5—C1_5—C6_4119.07 (10)
C4_1—C5_1—H5_1119.9C6_5—C1_5—C6_4120.41 (10)
C5_1—C6_1—C1_1121.81 (12)C3_5—C2_5—C1_5119.42 (11)
C5_1—C6_1—H6_1119.1C3_5—C2_5—C1_6118.44 (11)
C1_1—C6_1—H6_1119.1C1_5—C2_5—C1_6122.13 (10)
C6_2—C1_2—C2_2109.31 (10)C4_5—C3_5—C2_5121.96 (11)
C6_2—C1_2—P1111.96 (8)C4_5—C3_5—H3_5119.0
C2_2—C1_2—P1115.18 (8)C2_5—C3_5—H3_5119.0
C6_2—C1_2—H1_2106.6C3_5—C4_5—C5_5117.55 (11)
C2_2—C1_2—H1_2106.6C3_5—C4_5—C1_7123.26 (11)
P1—C1_2—H1_2106.6C5_5—C4_5—C1_7119.19 (11)
C3_2—C2_2—C1_2110.30 (10)C6_5—C5_5—C4_5123.08 (11)
C3_2—C2_2—H2A_2109.6C6_5—C5_5—H5_5118.5
C1_2—C2_2—H2A_2109.6C4_5—C5_5—H5_5118.5
C3_2—C2_2—H2B_2109.6C5_5—C6_5—C1_5118.23 (11)
C1_2—C2_2—H2B_2109.6C5_5—C6_5—C1_8119.80 (11)
H2A_2—C2_2—H2B_2108.1C1_5—C6_5—C1_8121.93 (11)
C4_2—C3_2—C2_2112.31 (11)C2_5—C1_6—C3_6111.22 (10)
C4_2—C3_2—H3A_2109.1C2_5—C1_6—C2_6111.80 (10)
C2_2—C3_2—H3A_2109.1C3_6—C1_6—C2_6109.76 (10)
C4_2—C3_2—H3B_2109.1C2_5—C1_6—H1_6108.0
C2_2—C3_2—H3B_2109.1C3_6—C1_6—H1_6108.0
H3A_2—C3_2—H3B_2107.9C2_6—C1_6—H1_6108.0
C3_2—C4_2—C5_2110.44 (11)C1_6—C2_6—H2A_6109.5
C3_2—C4_2—H4A_2109.6C1_6—C2_6—H2B_6109.5
C5_2—C4_2—H4A_2109.6H2A_6—C2_6—H2B_6109.5
C3_2—C4_2—H4B_2109.6C1_6—C2_6—H2C_6109.5
C5_2—C4_2—H4B_2109.6H2A_6—C2_6—H2C_6109.5
H4A_2—C4_2—H4B_2108.1H2B_6—C2_6—H2C_6109.5
C4_2—C5_2—C6_2110.82 (10)C1_6—C3_6—H3A_6109.5
C4_2—C5_2—H5A_2109.5C1_6—C3_6—H3B_6109.5
C6_2—C5_2—H5A_2109.5H3A_6—C3_6—H3B_6109.5
C4_2—C5_2—H5B_2109.5C1_6—C3_6—H3C_6109.5
C6_2—C5_2—H5B_2109.5H3A_6—C3_6—H3C_6109.5
H5A_2—C5_2—H5B_2108.1H3B_6—C3_6—H3C_6109.5
C5_2—C6_2—C1_2110.59 (10)C4_5—C1_7—C2_7114.31 (11)
C5_2—C6_2—H6A_2109.5C4_5—C1_7—C3_7111.08 (10)
C1_2—C6_2—H6A_2109.5C2_7—C1_7—C3_7108.64 (11)
C5_2—C6_2—H6B_2109.5C4_5—C1_7—H1_7107.5
C1_2—C6_2—H6B_2109.5C2_7—C1_7—H1_7107.5
H6A_2—C6_2—H6B_2108.1C3_7—C1_7—H1_7107.5
C2_3—C1_3—C6_3112.40 (10)C1_7—C2_7—H2A_7109.5
C2_3—C1_3—P1113.89 (8)C1_7—C2_7—H2B_7109.5
C6_3—C1_3—P1114.80 (8)H2A_7—C2_7—H2B_7109.5
C2_3—C1_3—H1_3104.8C1_7—C2_7—H2C_7109.5
C6_3—C1_3—H1_3104.8H2A_7—C2_7—H2C_7109.5
P1—C1_3—H1_3104.8H2B_7—C2_7—H2C_7109.5
C3_3—C2_3—C1_3110.43 (10)C1_7—C3_7—H3A_7109.5
C3_3—C2_3—H2A_3109.6C1_7—C3_7—H3B_7109.5
C1_3—C2_3—H2A_3109.6H3A_7—C3_7—H3B_7109.5
C3_3—C2_3—H2B_3109.6C1_7—C3_7—H3C_7109.5
C1_3—C2_3—H2B_3109.6H3A_7—C3_7—H3C_7109.5
H2A_3—C2_3—H2B_3108.1H3B_7—C3_7—H3C_7109.5
C4_3—C3_3—C2_3111.27 (10)C6_5—C1_8—C2_8113.20 (11)
C4_3—C3_3—H3A_3109.4C6_5—C1_8—C3_8110.98 (10)
C2_3—C3_3—H3A_3109.4C2_8—C1_8—C3_8108.59 (10)
C4_3—C3_3—H3B_3109.4C6_5—C1_8—H1_8108.0
C2_3—C3_3—H3B_3109.4C2_8—C1_8—H1_8108.0
H3A_3—C3_3—H3B_3108.0C3_8—C1_8—H1_8108.0
C5_3—C4_3—C3_3110.62 (10)C1_8—C2_8—H2A_8109.5
C5_3—C4_3—H4A_3109.5C1_8—C2_8—H2B_8109.5
C3_3—C4_3—H4A_3109.5H2A_8—C2_8—H2B_8109.5
C5_3—C4_3—H4B_3109.5C1_8—C2_8—H2C_8109.5
C3_3—C4_3—H4B_3109.5H2A_8—C2_8—H2C_8109.5
H4A_3—C4_3—H4B_3108.1H2B_8—C2_8—H2C_8109.5
C4_3—C5_3—C6_3110.75 (10)C1_8—C3_8—H3A_8109.5
C4_3—C5_3—H5A_3109.5C1_8—C3_8—H3B_8109.5
C6_3—C5_3—H5A_3109.5H3A_8—C3_8—H3B_8109.5
C4_3—C5_3—H5B_3109.5C1_8—C3_8—H3C_8109.5
C6_3—C5_3—H5B_3109.5H3A_8—C3_8—H3C_8109.5
H5A_3—C5_3—H5B_3108.1H3B_8—C3_8—H3C_8109.5
C1_1—B1—P1—C1_441.34 (10)P1—C1_3—C6_3—C5_3172.51 (8)
Cl2—B1—P1—C1_4165.91 (6)C1_2—P1—C1_4—C2_4172.56 (8)
Cl1—B1—P1—C1_480.17 (7)C1_3—P1—C1_4—C2_454.62 (9)
C1_1—B1—P1—C1_282.88 (10)B1—P1—C1_4—C2_460.51 (10)
Cl2—B1—P1—C1_241.69 (8)C1_2—P1—C1_4—C6_46.24 (12)
Cl1—B1—P1—C1_2155.62 (6)C1_3—P1—C1_4—C6_4124.18 (11)
C1_1—B1—P1—C1_3152.81 (8)B1—P1—C1_4—C6_4120.69 (11)
Cl2—B1—P1—C1_382.62 (7)C6_4—C1_4—C2_4—C3_41.57 (17)
Cl1—B1—P1—C1_331.30 (8)P1—C1_4—C2_4—C3_4177.40 (10)
Cl2—B1—C1_1—C2_115.69 (15)C1_4—C2_4—C3_4—C4_40.38 (18)
Cl1—B1—C1_1—C2_1136.45 (10)C2_4—C3_4—C4_4—C5_41.60 (18)
P1—B1—C1_1—C2_1104.75 (12)C3_4—C4_4—C5_4—C6_40.89 (19)
Cl2—B1—C1_1—C6_1161.48 (10)C4_4—C5_4—C6_4—C1_41.07 (18)
Cl1—B1—C1_1—C6_140.73 (14)C4_4—C5_4—C6_4—C1_5179.01 (11)
P1—B1—C1_1—C6_178.08 (13)C2_4—C1_4—C6_4—C5_42.22 (16)
C6_1—C1_1—C2_1—C3_10.34 (18)P1—C1_4—C6_4—C5_4176.51 (9)
B1—C1_1—C2_1—C3_1176.96 (11)C2_4—C1_4—C6_4—C1_5179.77 (11)
C1_1—C2_1—C3_1—C4_10.21 (19)P1—C1_4—C6_4—C1_51.03 (19)
C2_1—C3_1—C4_1—C5_10.1 (2)C5_4—C6_4—C1_5—C2_580.69 (13)
C3_1—C4_1—C5_1—C6_10.3 (2)C1_4—C6_4—C1_5—C2_596.95 (15)
C4_1—C5_1—C6_1—C1_10.2 (2)C5_4—C6_4—C1_5—C6_589.09 (13)
C2_1—C1_1—C6_1—C5_10.13 (18)C1_4—C6_4—C1_5—C6_593.27 (15)
B1—C1_1—C6_1—C5_1177.19 (12)C6_5—C1_5—C2_5—C3_52.53 (17)
C1_4—P1—C1_2—C6_287.52 (9)C6_4—C1_5—C2_5—C3_5172.38 (11)
C1_3—P1—C1_2—C6_2159.28 (8)C6_5—C1_5—C2_5—C1_6175.99 (11)
B1—P1—C1_2—C6_236.00 (10)C6_4—C1_5—C2_5—C1_66.14 (17)
C1_4—P1—C1_2—C2_2146.78 (9)C1_5—C2_5—C3_5—C4_51.22 (18)
C1_3—P1—C1_2—C2_233.58 (10)C1_6—C2_5—C3_5—C4_5177.35 (11)
B1—P1—C1_2—C2_289.70 (10)C2_5—C3_5—C4_5—C5_50.13 (18)
C6_2—C1_2—C2_2—C3_257.18 (13)C2_5—C3_5—C4_5—C1_7179.91 (11)
P1—C1_2—C2_2—C3_2175.76 (9)C3_5—C4_5—C5_5—C6_50.15 (18)
C1_2—C2_2—C3_2—C4_256.22 (14)C1_7—C4_5—C5_5—C6_5179.94 (11)
C2_2—C3_2—C4_2—C5_255.18 (15)C4_5—C5_5—C6_5—C1_51.15 (18)
C3_2—C4_2—C5_2—C6_255.89 (15)C4_5—C5_5—C6_5—C1_8176.55 (11)
C4_2—C5_2—C6_2—C1_258.69 (14)C2_5—C1_5—C6_5—C5_52.47 (17)
C2_2—C1_2—C6_2—C5_258.93 (13)C6_4—C1_5—C6_5—C5_5172.19 (10)
P1—C1_2—C6_2—C5_2172.21 (8)C2_5—C1_5—C6_5—C1_8175.17 (11)
C1_4—P1—C1_3—C2_359.75 (10)C6_4—C1_5—C6_5—C1_85.46 (17)
C1_2—P1—C1_3—C2_357.99 (10)C3_5—C2_5—C1_6—C3_664.96 (14)
B1—P1—C1_3—C2_3175.14 (8)C1_5—C2_5—C1_6—C3_6113.57 (13)
C1_4—P1—C1_3—C6_3168.67 (9)C3_5—C2_5—C1_6—C2_658.12 (14)
C1_2—P1—C1_3—C6_373.59 (10)C1_5—C2_5—C1_6—C2_6123.35 (12)
B1—P1—C1_3—C6_353.28 (10)C3_5—C4_5—C1_7—C2_77.27 (18)
C6_3—C1_3—C2_3—C3_354.13 (13)C5_5—C4_5—C1_7—C2_7172.95 (12)
P1—C1_3—C2_3—C3_3173.13 (8)C3_5—C4_5—C1_7—C3_7116.10 (13)
C1_3—C2_3—C3_3—C4_354.90 (13)C5_5—C4_5—C1_7—C3_763.68 (15)
C2_3—C3_3—C4_3—C5_357.81 (14)C5_5—C6_5—C1_8—C2_831.10 (16)
C3_3—C4_3—C5_3—C6_358.99 (14)C1_5—C6_5—C1_8—C2_8151.28 (11)
C4_3—C5_3—C6_3—C1_357.08 (14)C5_5—C6_5—C1_8—C3_891.30 (14)
C2_3—C1_3—C6_3—C5_355.20 (13)C1_5—C6_5—C1_8—C3_886.31 (14)

Experimental details

Crystal data
Chemical formulaC39H54BCl2P
Mr635.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)16.9716 (8), 15.5992 (7), 26.5497 (12)
V3)7028.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.19 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.844, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
277684, 10642, 8513
Rint0.063
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.04
No. of reflections10642
No. of parameters394
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.33

Computer programs: APEX2 (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2001). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharmant, J. P. H., Fan, C., Norman, N. C. & Pringle, P. G. (2007). Dalton Trans. pp. 114–123.  Web of Science CSD CrossRef Google Scholar
First citationGrabulosa, A., Muller, G., Ordinas, J. I., Mezzetti, A., Maestro, M. Á., Font-Bardia, M. & Solans, X. (2005). Organometallics, 24, 4961–4973.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrieter, E. R., Blackmond, D. G. & Buchwald, S. L. (2003). J. Am. Chem. Soc. 125, 13978–13980.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds