organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

c-3,t-3-Di­methyl-r-2,c-7-di­phenyl-1,4-diazepan-5-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 10 October 2009; accepted 20 October 2009; online 28 October 2009)

In the title compound, C19H22N2O, the diazepine ring adopts a distorted chair conformation. One of the N—H groups forms an inter­molecular N—H⋯O hydrogen bond generating an R22(8) graph-set motif. The other N—H group does not form a hydrogen bond.

Related literature

For general background to diazepine derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619-624.]); Jeyaraman & Ponnuswamy (1997[Jeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem. 62, 7984-7990.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis, see: Jeyaraman et al. (1995[Jeyaraman, R., Senthil kumar, U. P. & Bigler, P. (1995). J. Org. Chem. 60, 7461-7470.]); Ponnuswamy et al. (2006[Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059-2070.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O

  • Mr = 294.39

  • Triclinic, [P \overline 1]

  • a = 6.7354 (4) Å

  • b = 10.6867 (6) Å

  • c = 11.4186 (7) Å

  • α = 82.191 (3)°

  • β = 88.218 (4)°

  • γ = 80.317 (3)°

  • V = 802.65 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.985

  • 17703 measured reflections

  • 3958 independent reflections

  • 3196 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.167

  • S = 1.08

  • 3958 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (3) 2.02 (3) 2.928 (2) 177 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998). Various substituted diazepin-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound, namely c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one, has been carried out.

The ORTEP diagram of the title compound is shown in Fig. 1. The diazepine ring adopts a distorted chair conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.348 (2)Å, q3 = 0.677 (2)Å, φ2 = 105.2 (3)°, φ3 =99.9 (2)° and Δs(N5)= 12.2 (2)°. The sum of the bond angles around the N1 atom (359.4°) of the diazepine ring is in sp2-hybridization, whereas the other atom, N5 (331.1°), is in accordance with sp3-hybridization.

The crystal packing is stabilized by intermolecular N—H···O interactions. The molecules at (x, y, z) and (-x+1, -y+1, -z+1) are linked through intermolecular N1—H1···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Bernstein et al. 1995).

Related literature top

For general background to diazepine derivatives, see: Hirokawa et al. (1998); Jeyaraman & Ponnuswamy (1997). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1995); Ponnuswamy et al. (2006).

Experimental top

In a typical reaction, c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one was first converted into its hydrochloride and the dry, powdered c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one hydrochloride (10.0 g) was added, in portions, to cold conc. H2SO4 (25.0 ml). The temperature of the solution was allowed to rise to 25°C and NaN3 (3.0 g) was added in portions with vigorous stirring. The solution was poured into crushed ice and cold NaOH solution (2 N) was added slowly with stirring until the pH was 8. The separated white solid was filtered and crystallized using ethanol and pet-ether (60–80°C) in the ratio of 9.5:0.5 (Jeyaraman et al., 1995; Ponnuswamy et al., 2006).

Refinement top

The amino H atoms were refined and the other H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998). Various substituted diazepin-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound, namely c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one, has been carried out.

The ORTEP diagram of the title compound is shown in Fig. 1. The diazepine ring adopts a distorted chair conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.348 (2)Å, q3 = 0.677 (2)Å, φ2 = 105.2 (3)°, φ3 =99.9 (2)° and Δs(N5)= 12.2 (2)°. The sum of the bond angles around the N1 atom (359.4°) of the diazepine ring is in sp2-hybridization, whereas the other atom, N5 (331.1°), is in accordance with sp3-hybridization.

The crystal packing is stabilized by intermolecular N—H···O interactions. The molecules at (x, y, z) and (-x+1, -y+1, -z+1) are linked through intermolecular N1—H1···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Bernstein et al. 1995).

For general background to diazepine derivatives, see: Hirokawa et al. (1998); Jeyaraman & Ponnuswamy (1997). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1995); Ponnuswamy et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.
c-3,t-3-Dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one top
Crystal data top
C19H22N2OZ = 2
Mr = 294.39F(000) = 316
Triclinic, P1Dx = 1.218 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7354 (4) ÅCell parameters from 3562 reflections
b = 10.6867 (6) Åθ = 2.5–28.4°
c = 11.4186 (7) ŵ = 0.08 mm1
α = 82.191 (3)°T = 293 K
β = 88.218 (4)°Block, colorless
γ = 80.317 (3)°0.25 × 0.20 × 0.20 mm
V = 802.65 (8) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3958 independent reflections
Radiation source: fine-focus sealed tube3196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 88
Tmin = 0.982, Tmax = 0.985k = 1414
17703 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.472P]
where P = (Fo2 + 2Fc2)/3
3958 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H22N2Oγ = 80.317 (3)°
Mr = 294.39V = 802.65 (8) Å3
Triclinic, P1Z = 2
a = 6.7354 (4) ÅMo Kα radiation
b = 10.6867 (6) ŵ = 0.08 mm1
c = 11.4186 (7) ÅT = 293 K
α = 82.191 (3)°0.25 × 0.20 × 0.20 mm
β = 88.218 (4)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3958 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3196 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.985Rint = 0.029
17703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.26 e Å3
3958 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3091 (2)0.63384 (13)0.48222 (13)0.0459 (4)
N10.3506 (2)0.48085 (15)0.36366 (15)0.0377 (4)
H10.453 (4)0.443 (2)0.412 (2)0.053 (6)*
C20.2588 (3)0.59310 (17)0.39357 (16)0.0350 (4)
C30.0919 (3)0.67316 (17)0.31721 (18)0.0390 (4)
H3A0.14280.68790.23700.047*
H3B0.05730.75580.34530.047*
C40.0997 (3)0.61476 (16)0.31459 (16)0.0332 (4)
H40.13740.58420.39570.040*
N50.0711 (2)0.50751 (14)0.24522 (14)0.0358 (4)
H50.191 (3)0.4839 (19)0.2375 (18)0.037 (5)*
C60.0652 (2)0.39247 (15)0.29509 (16)0.0313 (4)
H60.04100.38030.38060.038*
C70.2915 (3)0.40542 (17)0.27481 (16)0.0343 (4)
C80.2685 (3)0.71712 (16)0.26079 (17)0.0350 (4)
C90.3855 (3)0.7958 (2)0.3313 (2)0.0503 (5)
H90.36290.78420.41230.060*
C100.5362 (4)0.8919 (2)0.2834 (3)0.0650 (7)
H100.61300.94470.33220.078*
C110.5727 (3)0.9095 (2)0.1653 (3)0.0652 (7)
H110.67470.97360.13330.078*
C120.4587 (4)0.8324 (2)0.0943 (3)0.0635 (7)
H120.48280.84450.01350.076*
C130.3075 (3)0.7363 (2)0.1414 (2)0.0482 (5)
H130.23140.68400.09190.058*
C140.0070 (3)0.27925 (17)0.24575 (18)0.0370 (4)
C150.0316 (3)0.2835 (2)0.1270 (2)0.0499 (5)
H150.01860.35660.07500.060*
C160.0896 (4)0.1794 (3)0.0848 (3)0.0680 (8)
H160.11380.18280.00460.082*
C170.1115 (4)0.0715 (3)0.1608 (3)0.0749 (9)
H170.15010.00170.13250.090*
C180.0763 (4)0.0676 (2)0.2778 (3)0.0692 (8)
H180.09180.00530.32960.083*
C190.0175 (3)0.17043 (19)0.3214 (2)0.0510 (5)
H190.00550.16620.40180.061*
C200.3380 (3)0.4639 (2)0.14928 (18)0.0493 (5)
H20A0.25360.54580.13100.074*
H20B0.31270.40820.09430.074*
H20C0.47680.47460.14370.074*
C210.4225 (3)0.2742 (2)0.3012 (2)0.0470 (5)
H21A0.56140.28410.30290.071*
H21B0.40420.22300.24070.071*
H21C0.38450.23280.37640.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0448 (8)0.0471 (8)0.0484 (8)0.0047 (6)0.0165 (6)0.0155 (6)
N10.0325 (8)0.0402 (8)0.0414 (9)0.0027 (6)0.0140 (7)0.0102 (6)
C20.0321 (9)0.0366 (9)0.0381 (9)0.0098 (7)0.0081 (7)0.0045 (7)
C30.0395 (10)0.0304 (8)0.0481 (11)0.0066 (7)0.0146 (8)0.0044 (7)
C40.0335 (9)0.0301 (8)0.0354 (9)0.0036 (6)0.0043 (7)0.0032 (6)
N50.0279 (7)0.0329 (7)0.0481 (9)0.0036 (6)0.0112 (6)0.0098 (6)
C60.0273 (8)0.0301 (8)0.0368 (9)0.0034 (6)0.0037 (6)0.0060 (6)
C70.0279 (8)0.0397 (9)0.0376 (9)0.0056 (7)0.0060 (7)0.0113 (7)
C80.0292 (8)0.0309 (8)0.0446 (10)0.0061 (6)0.0036 (7)0.0022 (7)
C90.0463 (12)0.0448 (11)0.0570 (13)0.0004 (9)0.0059 (10)0.0072 (9)
C100.0439 (12)0.0467 (12)0.099 (2)0.0065 (10)0.0125 (13)0.0097 (13)
C110.0375 (12)0.0496 (12)0.100 (2)0.0004 (9)0.0148 (12)0.0137 (13)
C120.0550 (14)0.0604 (14)0.0699 (16)0.0067 (11)0.0253 (12)0.0121 (12)
C130.0457 (11)0.0468 (11)0.0497 (12)0.0016 (9)0.0111 (9)0.0032 (9)
C140.0239 (8)0.0342 (8)0.0545 (11)0.0040 (6)0.0018 (7)0.0125 (8)
C150.0437 (11)0.0544 (12)0.0573 (13)0.0126 (9)0.0076 (10)0.0202 (10)
C160.0493 (13)0.0785 (18)0.0888 (19)0.0147 (12)0.0088 (13)0.0494 (16)
C170.0434 (13)0.0535 (14)0.141 (3)0.0130 (10)0.0009 (15)0.0523 (17)
C180.0470 (13)0.0324 (10)0.129 (3)0.0067 (9)0.0004 (15)0.0145 (13)
C190.0399 (11)0.0357 (10)0.0763 (16)0.0042 (8)0.0006 (10)0.0068 (9)
C200.0415 (11)0.0707 (14)0.0408 (11)0.0208 (10)0.0030 (8)0.0116 (10)
C210.0320 (10)0.0484 (11)0.0615 (13)0.0035 (8)0.0095 (9)0.0205 (9)
Geometric parameters (Å, º) top
O1—C21.233 (2)C10—H100.9300
N1—C21.337 (2)C11—C121.362 (4)
N1—C71.481 (2)C11—H110.9300
N1—H10.90 (3)C12—C131.383 (3)
C2—C31.513 (2)C12—H120.9300
C3—C41.528 (2)C13—H130.9300
C3—H3A0.9700C14—C191.381 (3)
C3—H3B0.9700C14—C151.382 (3)
C4—N51.463 (2)C15—C161.388 (3)
C4—C81.519 (2)C15—H150.9300
C4—H40.9800C16—C171.372 (4)
N5—C61.463 (2)C16—H160.9300
N5—H50.89 (2)C17—C181.358 (4)
C6—C141.515 (2)C17—H170.9300
C6—C71.561 (2)C18—C191.385 (3)
C6—H60.9800C18—H180.9300
C7—C211.523 (3)C19—H190.9300
C7—C201.529 (3)C20—H20A0.9600
C8—C131.377 (3)C20—H20B0.9600
C8—C91.378 (3)C20—H20C0.9600
C9—C101.384 (3)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.360 (4)C21—H21C0.9600
C2—N1—C7129.23 (15)C9—C10—H10119.8
C2—N1—H1113.2 (15)C10—C11—C12119.5 (2)
C7—N1—H1117.0 (15)C10—C11—H11120.2
O1—C2—N1121.10 (16)C12—C11—H11120.2
O1—C2—C3118.95 (16)C11—C12—C13120.6 (2)
N1—C2—C3119.94 (16)C11—C12—H12119.7
C2—C3—C4115.13 (15)C13—C12—H12119.7
C2—C3—H3A108.5C8—C13—C12120.7 (2)
C4—C3—H3A108.5C8—C13—H13119.7
C2—C3—H3B108.5C12—C13—H13119.7
C4—C3—H3B108.5C19—C14—C15118.53 (19)
H3A—C3—H3B107.5C19—C14—C6119.65 (19)
N5—C4—C8109.15 (14)C15—C14—C6121.76 (18)
N5—C4—C3111.58 (15)C14—C15—C16120.5 (2)
C8—C4—C3109.06 (14)C14—C15—H15119.8
N5—C4—H4109.0C16—C15—H15119.8
C8—C4—H4109.0C17—C16—C15120.3 (3)
C3—C4—H4109.0C17—C16—H16119.8
C4—N5—C6116.12 (14)C15—C16—H16119.8
C4—N5—H5108.4 (13)C18—C17—C16119.4 (2)
C6—N5—H5106.6 (13)C18—C17—H17120.3
N5—C6—C14107.83 (13)C16—C17—H17120.3
N5—C6—C7112.49 (14)C17—C18—C19121.1 (3)
C14—C6—C7113.70 (14)C17—C18—H18119.5
N5—C6—H6107.5C19—C18—H18119.5
C14—C6—H6107.5C14—C19—C18120.2 (2)
C7—C6—H6107.5C14—C19—H19119.9
N1—C7—C21104.82 (14)C18—C19—H19119.9
N1—C7—C20111.22 (16)C7—C20—H20A109.5
C21—C7—C20108.80 (17)C7—C20—H20B109.5
N1—C7—C6108.63 (14)H20A—C20—H20B109.5
C21—C7—C6109.66 (15)C7—C20—H20C109.5
C20—C7—C6113.36 (15)H20A—C20—H20C109.5
C13—C8—C9117.95 (18)H20B—C20—H20C109.5
C13—C8—C4121.90 (17)C7—C21—H21A109.5
C9—C8—C4120.15 (18)C7—C21—H21B109.5
C8—C9—C10120.9 (2)H21A—C21—H21B109.5
C8—C9—H9119.5C7—C21—H21C109.5
C10—C9—H9119.5H21A—C21—H21C109.5
C11—C10—C9120.3 (2)H21B—C21—H21C109.5
C11—C10—H10119.8
C7—N1—C2—O1168.29 (18)C3—C4—C8—C987.3 (2)
C7—N1—C2—C312.5 (3)C13—C8—C9—C100.6 (3)
O1—C2—C3—C4114.2 (2)C4—C8—C9—C10178.2 (2)
N1—C2—C3—C466.6 (2)C8—C9—C10—C110.6 (4)
C2—C3—C4—N573.1 (2)C9—C10—C11—C120.5 (4)
C2—C3—C4—C8166.24 (16)C10—C11—C12—C130.4 (4)
C8—C4—N5—C6171.21 (15)C9—C8—C13—C120.5 (3)
C3—C4—N5—C668.2 (2)C4—C8—C13—C12178.3 (2)
C4—N5—C6—C14155.20 (16)C11—C12—C13—C80.4 (4)
C4—N5—C6—C778.64 (19)N5—C6—C14—C19131.39 (18)
C2—N1—C7—C21166.7 (2)C7—C6—C14—C19103.2 (2)
C2—N1—C7—C2075.9 (2)N5—C6—C14—C1545.6 (2)
C2—N1—C7—C649.5 (3)C7—C6—C14—C1579.8 (2)
N5—C6—C7—N179.63 (18)C19—C14—C15—C161.3 (3)
C14—C6—C7—N1157.44 (15)C6—C14—C15—C16178.35 (19)
N5—C6—C7—C21166.35 (15)C14—C15—C16—C170.7 (4)
C14—C6—C7—C2143.4 (2)C15—C16—C17—C180.1 (4)
N5—C6—C7—C2044.5 (2)C16—C17—C18—C190.4 (4)
C14—C6—C7—C2078.4 (2)C15—C14—C19—C181.1 (3)
N5—C4—C8—C1330.7 (2)C6—C14—C19—C18178.18 (18)
C3—C4—C8—C1391.4 (2)C17—C18—C19—C140.2 (3)
N5—C4—C8—C9150.53 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (3)2.02 (3)2.928 (2)177 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H22N2O
Mr294.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7354 (4), 10.6867 (6), 11.4186 (7)
α, β, γ (°)82.191 (3), 88.218 (4), 80.317 (3)
V3)802.65 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.982, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
17703, 3958, 3196
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.167, 1.08
No. of reflections3958
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (3)2.02 (3)2.928 (2)177 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection, and the management of Kandaswami Kandar's College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme. SS thanks the UGC for a fellowship under the Rajiv Gandhi National Fellowship Scheme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619–624.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem. 62, 7984–7990.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJeyaraman, R., Senthil kumar, U. P. & Bigler, P. (1995). J. Org. Chem. 60, 7461–7470.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059–2070.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds