organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­yl)-1-meth­oxy­methyl-2-phenyl-1H-imidazole

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany, bUniversity Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany, and cc-a-i-r biosciences GmbH, Paul-Ehrlich-Strasse 15, 72076 Tübingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 14 October 2009; accepted 15 October 2009; online 23 October 2009)

In the crystal structure of the title compound, C17H15FN2O, the mol­ecules form a three-dimensional network stabilized by ππ inter­actions between two imidazole rings related by a centre of symmetry. The distance between the centroids is 3.5488 (8) Å. The imidazole ring makes dihedral angles of 14.30 (7) and 33.39 (7)° with the 4-fluoro­phenyl ring and the phenyl ring, respectively.

Related literature

For the preparation of diaryl­imidazoles, see: Li et al. (2002[Li, B., Chiu, C. K.-F. F., Hank, R. F., Murry, J., Roth, J. & Harry Tobiassen, H. (2002). Org. Process Res. Dev. 6, 682-683.]). For synthesis of and with related diarylimidazoles, see: Liverton et al. (1999[Liverton, N. J., Butcher, J. W., Claiborne, C. F., Claremon, D. A., Libby, B. E., Nguyen, K. T., Pitzenberger, S. M., Selnick, H. G., Smith, G. R., Tebben, A., Vacca, J. P., Varga, S. L., Agarwal, L., Dancheck, K., Forsyth, A. J., Fletcher, D. S., Frantz, B., Hanlon, W. A., Harper, C. F., Hofsess, S. J., Kostura, M., Lin, J., Luell, S., O'Neill, E. A., Orevillo, C. J., Pang, M., Sahly, S., Visco, D. M. & O'Keefe, S. J. (1999). J. Med. Chem. 42, 2180-2190.]); Kawasaki et al. (1996[Kawasaki, I., Yamashita, M. & Ohta, S. (1996). Chem. Pharm. Bull. 44, 1831-1839.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FN2O

  • Mr = 282.31

  • Monoclinic, P 21 /n

  • a = 10.524 (1) Å

  • b = 11.248 (1) Å

  • c = 11.981 (1) Å

  • β = 92.206 (3)°

  • V = 1417.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 37183 measured reflections

  • 3319 independent reflections

  • 2745 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.07

  • 3319 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Metallated imidazole intermediates can be widely used in the preparation of imidazole derivatives. To avoid N-metallation, N-protection of the imidazole is necessary. Our approach was a direct regioselective N-protection of the diarylimidazole. The regioselectivity is controlled by the steric effect of the aryl substituent in C-4 position. The title compound forms a three dimensional network stabilized by π-π interactions between two symmetry related imidazole nuclei. The distance between the centroids is 3.5488 (8) Å. The imidazole ring makes dihedral angles of 14.30 (7)° and 33.39 (7)° to the 4-fluorophenyl ring and the phenyl ring, respectively.

Related literature top

For the preparation of diarylimidazoles, see: Li et al. (2002). For related literature [on what subject?], see: Liverton et al. (1999); Kawasaki et al. (1996).

Experimental top

4-(4-fluorophenyl)-2-phenyl-1H-imidazole (3 g 13 mmol) was dissolved in dry THF (30 ml). After cooling to 273 K sodium bis(trimetyl silyl)amide (8.2 ml, 16 mmol) was added dropwise. The reaction mixture was stirred for 30 min at this temperature. Methoxymethylchloride (2.1M in toluene) (12 ml, 25 mmol) was added dropwise. Stirring was continued at 273 K for 30 min and further 60 min at room temperature. Then concentrated aqueous ammonium chloride solution (30 ml) was added, the reaction mixture was stirred for 1 h. After extraction with ethyl acetate the organic layer was washed twice with water, dried over sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography to yield 4-(4-fluorophenyl)-1-(methoxymethyl)-2-phenyl-1H-imidazole (42%).

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom) and refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Structure description top

Metallated imidazole intermediates can be widely used in the preparation of imidazole derivatives. To avoid N-metallation, N-protection of the imidazole is necessary. Our approach was a direct regioselective N-protection of the diarylimidazole. The regioselectivity is controlled by the steric effect of the aryl substituent in C-4 position. The title compound forms a three dimensional network stabilized by π-π interactions between two symmetry related imidazole nuclei. The distance between the centroids is 3.5488 (8) Å. The imidazole ring makes dihedral angles of 14.30 (7)° and 33.39 (7)° to the 4-fluorophenyl ring and the phenyl ring, respectively.

For the preparation of diarylimidazoles, see: Li et al. (2002). For related literature [on what subject?], see: Liverton et al. (1999); Kawasaki et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
4-(4-Fluorophenyl)-1-methoxymethyl-2-phenyl-1H-imidazole top
Crystal data top
C17H15FN2OF(000) = 592
Mr = 282.31Dx = 1.323 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 9878 reflections
a = 10.524 (1) Åθ = 2.4–27.6°
b = 11.2480 (11) ŵ = 0.09 mm1
c = 11.9810 (12) ÅT = 173 K
β = 92.206 (3)°Needle, colourless
V = 1417.2 (2) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2745 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.043
Graphite monochromatorθmax = 27.7°, θmin = 2.5°
CCD scanh = 1313
37183 measured reflectionsk = 1414
3319 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.5423P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H15FN2OV = 1417.2 (2) Å3
Mr = 282.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.524 (1) ŵ = 0.09 mm1
b = 11.2480 (11) ÅT = 173 K
c = 11.9810 (12) Å0.40 × 0.30 × 0.10 mm
β = 92.206 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2745 reflections with I > 2σ(I)
37183 measured reflectionsRint = 0.043
3319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
3319 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37469 (12)0.48140 (11)0.36743 (10)0.0272 (3)
N20.47445 (10)0.45452 (9)0.30842 (8)0.0284 (2)
C30.55709 (12)0.54982 (10)0.32055 (10)0.0268 (3)
C40.50522 (12)0.63404 (11)0.38760 (10)0.0289 (3)
H40.54230.70790.40930.035*
N50.38931 (10)0.59103 (9)0.41746 (8)0.0281 (2)
C60.26578 (12)0.40118 (11)0.38101 (10)0.0282 (3)
C70.14177 (12)0.44168 (12)0.39029 (11)0.0348 (3)
H70.12460.52460.38930.042*
C80.04297 (14)0.36122 (14)0.40103 (13)0.0414 (3)
H80.04130.38960.40820.050*
C90.06605 (14)0.23974 (14)0.40139 (12)0.0424 (3)
H90.00190.18520.40970.051*
C100.18894 (14)0.19848 (13)0.38951 (12)0.0390 (3)
H100.20510.11540.38790.047*
C110.28813 (13)0.27826 (11)0.37999 (11)0.0323 (3)
H110.37230.24940.37270.039*
C120.68112 (12)0.55033 (10)0.26877 (10)0.0270 (3)
C130.70870 (13)0.46715 (11)0.18610 (11)0.0318 (3)
H130.64540.41180.16180.038*
C140.82693 (13)0.46451 (11)0.13935 (11)0.0342 (3)
H140.84530.40760.08370.041*
C150.91715 (13)0.54576 (12)0.17496 (11)0.0334 (3)
C160.89444 (13)0.62991 (12)0.25570 (12)0.0370 (3)
H160.95820.68560.27840.044*
C170.77620 (13)0.63091 (12)0.30265 (11)0.0340 (3)
H170.75930.68750.35900.041*
F181.03312 (8)0.54292 (8)0.12881 (8)0.0482 (2)
C190.30688 (12)0.64839 (12)0.49708 (10)0.0312 (3)
H19A0.26920.58660.54450.037*
H19B0.35910.70120.54640.037*
O200.20865 (9)0.71516 (8)0.44560 (8)0.0363 (2)
C210.25020 (16)0.82639 (13)0.40291 (12)0.0446 (4)
H21A0.28890.87370.46390.067*
H21B0.17720.86940.36940.067*
H21C0.31300.81250.34600.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (6)0.0255 (6)0.0277 (6)0.0024 (5)0.0004 (4)0.0019 (4)
N20.0283 (5)0.0269 (5)0.0302 (5)0.0001 (4)0.0024 (4)0.0008 (4)
C30.0284 (6)0.0253 (6)0.0265 (6)0.0001 (5)0.0001 (4)0.0030 (4)
C40.0293 (6)0.0260 (6)0.0315 (6)0.0014 (5)0.0017 (5)0.0010 (5)
N50.0294 (5)0.0259 (5)0.0291 (5)0.0012 (4)0.0026 (4)0.0001 (4)
C60.0287 (6)0.0290 (6)0.0269 (6)0.0012 (5)0.0016 (4)0.0001 (5)
C70.0311 (7)0.0337 (7)0.0394 (7)0.0012 (5)0.0013 (5)0.0020 (5)
C80.0294 (7)0.0493 (9)0.0458 (8)0.0034 (6)0.0047 (6)0.0048 (6)
C90.0398 (8)0.0453 (8)0.0424 (8)0.0156 (6)0.0044 (6)0.0012 (6)
C100.0477 (8)0.0295 (7)0.0395 (7)0.0060 (6)0.0000 (6)0.0004 (5)
C110.0328 (7)0.0294 (6)0.0346 (6)0.0004 (5)0.0008 (5)0.0005 (5)
C120.0291 (6)0.0245 (6)0.0275 (6)0.0009 (5)0.0019 (4)0.0047 (4)
C130.0350 (7)0.0277 (6)0.0327 (6)0.0038 (5)0.0029 (5)0.0005 (5)
C140.0398 (7)0.0288 (6)0.0345 (6)0.0000 (5)0.0095 (5)0.0013 (5)
C150.0302 (7)0.0327 (7)0.0380 (7)0.0012 (5)0.0092 (5)0.0053 (5)
C160.0340 (7)0.0326 (7)0.0447 (8)0.0070 (5)0.0056 (6)0.0033 (6)
C170.0351 (7)0.0295 (6)0.0377 (7)0.0020 (5)0.0058 (5)0.0043 (5)
F180.0380 (5)0.0473 (5)0.0609 (6)0.0051 (4)0.0216 (4)0.0058 (4)
C190.0341 (7)0.0293 (6)0.0305 (6)0.0043 (5)0.0060 (5)0.0008 (5)
O200.0355 (5)0.0292 (5)0.0444 (5)0.0070 (4)0.0049 (4)0.0032 (4)
C210.0661 (10)0.0279 (7)0.0394 (7)0.0026 (7)0.0033 (7)0.0026 (6)
Geometric parameters (Å, º) top
C1—N21.3231 (15)C11—H110.9500
C1—N51.3772 (16)C12—C171.3987 (18)
C1—C61.4727 (17)C12—C131.4010 (17)
N2—C31.3844 (15)C13—C141.3844 (18)
C3—C41.3691 (17)C13—H130.9500
C3—C121.4666 (17)C14—C151.3738 (19)
C4—N51.3725 (16)C14—H140.9500
C4—H40.9500C15—F181.3595 (15)
N5—C191.4637 (15)C15—C161.3808 (19)
C6—C71.3907 (18)C16—C171.3853 (18)
C6—C111.4026 (18)C16—H160.9500
C7—C81.3882 (19)C17—H170.9500
C7—H70.9500C19—O201.4014 (15)
C8—C91.388 (2)C19—H19A0.9900
C8—H80.9500C19—H19B0.9900
C9—C101.387 (2)O20—C211.4266 (17)
C9—H90.9500C21—H21A0.9800
C10—C111.3846 (19)C21—H21B0.9800
C10—H100.9500C21—H21C0.9800
N2—C1—N5111.07 (11)C17—C12—C13118.20 (12)
N2—C1—C6123.78 (11)C17—C12—C3121.21 (11)
N5—C1—C6125.09 (11)C13—C12—C3120.56 (11)
C1—N2—C3105.97 (10)C14—C13—C12120.95 (12)
C4—C3—N2109.53 (11)C14—C13—H13119.5
C4—C3—C12128.82 (11)C12—C13—H13119.5
N2—C3—C12121.62 (11)C15—C14—C13118.77 (12)
C3—C4—N5106.71 (11)C15—C14—H14120.6
C3—C4—H4126.6C13—C14—H14120.6
N5—C4—H4126.6F18—C15—C14118.59 (12)
C4—N5—C1106.72 (10)F18—C15—C16118.90 (12)
C4—N5—C19124.72 (11)C14—C15—C16122.51 (12)
C1—N5—C19128.27 (11)C15—C16—C17118.19 (12)
C7—C6—C11118.81 (12)C15—C16—H16120.9
C7—C6—C1123.02 (12)C17—C16—H16120.9
C11—C6—C1118.13 (11)C16—C17—C12121.38 (12)
C8—C7—C6120.16 (13)C16—C17—H17119.3
C8—C7—H7119.9C12—C17—H17119.3
C6—C7—H7119.9O20—C19—N5113.27 (10)
C9—C8—C7120.70 (14)O20—C19—H19A108.9
C9—C8—H8119.7N5—C19—H19A108.9
C7—C8—H8119.7O20—C19—H19B108.9
C10—C9—C8119.54 (13)N5—C19—H19B108.9
C10—C9—H9120.2H19A—C19—H19B107.7
C8—C9—H9120.2C19—O20—C21113.37 (11)
C11—C10—C9120.04 (13)O20—C21—H21A109.5
C11—C10—H10120.0O20—C21—H21B109.5
C9—C10—H10120.0H21A—C21—H21B109.5
C10—C11—C6120.72 (13)O20—C21—H21C109.5
C10—C11—H11119.6H21A—C21—H21C109.5
C6—C11—H11119.6H21B—C21—H21C109.5
N5—C1—N2—C30.12 (13)C9—C10—C11—C60.7 (2)
C6—C1—N2—C3177.34 (11)C7—C6—C11—C100.84 (19)
C1—N2—C3—C40.04 (13)C1—C6—C11—C10178.34 (12)
C1—N2—C3—C12178.28 (10)C4—C3—C12—C1713.98 (19)
N2—C3—C4—N50.04 (13)N2—C3—C12—C17163.99 (11)
C12—C3—C4—N5178.21 (11)C4—C3—C12—C13168.03 (12)
C3—C4—N5—C10.11 (13)N2—C3—C12—C1314.00 (17)
C3—C4—N5—C19174.26 (11)C17—C12—C13—C140.16 (19)
N2—C1—N5—C40.15 (13)C3—C12—C13—C14177.89 (11)
C6—C1—N5—C4177.27 (11)C12—C13—C14—C150.4 (2)
N2—C1—N5—C19174.02 (11)C13—C14—C15—F18179.97 (12)
C6—C1—N5—C193.40 (19)C13—C14—C15—C160.1 (2)
N2—C1—C6—C7146.46 (13)F18—C15—C16—C17179.40 (12)
N5—C1—C6—C736.44 (18)C14—C15—C16—C170.6 (2)
N2—C1—C6—C1130.93 (17)C15—C16—C17—C120.8 (2)
N5—C1—C6—C11146.17 (12)C13—C12—C17—C160.49 (19)
C11—C6—C7—C81.54 (19)C3—C12—C17—C16178.53 (12)
C1—C6—C7—C8178.91 (12)C4—N5—C19—O2099.09 (14)
C6—C7—C8—C90.7 (2)C1—N5—C19—O2088.05 (15)
C7—C8—C9—C100.8 (2)N5—C19—O20—C2176.19 (14)
C8—C9—C10—C111.5 (2)

Experimental details

Crystal data
Chemical formulaC17H15FN2O
Mr282.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.524 (1), 11.2480 (11), 11.9810 (12)
β (°) 92.206 (3)
V3)1417.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
37183, 3319, 2745
Rint0.043
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07
No. of reflections3319
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKawasaki, I., Yamashita, M. & Ohta, S. (1996). Chem. Pharm. Bull. 44, 1831–1839.  CrossRef Google Scholar
First citationLi, B., Chiu, C. K.-F. F., Hank, R. F., Murry, J., Roth, J. & Harry Tobiassen, H. (2002). Org. Process Res. Dev. 6, 682–683.  Web of Science CrossRef CAS Google Scholar
First citationLiverton, N. J., Butcher, J. W., Claiborne, C. F., Claremon, D. A., Libby, B. E., Nguyen, K. T., Pitzenberger, S. M., Selnick, H. G., Smith, G. R., Tebben, A., Vacca, J. P., Varga, S. L., Agarwal, L., Dancheck, K., Forsyth, A. J., Fletcher, D. S., Frantz, B., Hanlon, W. A., Harper, C. F., Hofsess, S. J., Kostura, M., Lin, J., Luell, S., O'Neill, E. A., Orevillo, C. J., Pang, M., Sahly, S., Visco, D. M. & O'Keefe, S. J. (1999). J. Med. Chem. 42, 2180–2190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds