organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 October 2009; accepted 15 October 2009; online 23 October 2009)

The asymmetric unit of the title compound, C12H13NO3, contains two independent mol­ecules. The conformation of the N—H bond and the C=O bond in the amide segment are anti to each other. The mol­ecular conformation of each mol­ecule is stabilized by an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are connected through intermolecular N—H⋯O hydrogen bonds. In addition, there is a carbon­yl–carbonyl dipolar inter­action with an O⋯C contact of 2.926 (3) Å.

Related literature

For our sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o2056.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.],c[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891-o892.]). For bond-length data, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). For modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3

  • Mr = 219.23

  • Orthorhombic, P 21 21 21

  • a = 12.5268 (4) Å

  • b = 12.9226 (4) Å

  • c = 14.6835 (5) Å

  • V = 2376.95 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.56 × 0.54 × 0.48 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.940, Tmax = 0.955

  • 38472 measured reflections

  • 2533 independent reflections

  • 2201 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.07

  • 2533 reflections

  • 305 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.87 (2) 2.01 (2) 2.824 (2) 156 (2)
N2—H2N⋯O5ii 0.839 (19) 2.04 (2) 2.856 (2) 166 (2)
O2—H2A⋯O1 0.94 (3) 1.53 (3) 2.465 (2) 173 (2)
O6—H6A⋯O4 0.96 (4) 1.52 (4) 2.462 (2) 163 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide moiety is an important constituent of many biologically important compounds. As a part of studying the effect of ring and side chain substitutions on the crystal structures of this class of compounds (Gowda et al., 2009a,b,c; Prasad et al., 2002), the crystal structure of N-(2,6-dimethylphenyl)-maleamic acid (I) has been determined. The asymmetric unit of the cell contains two independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the present study, the rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-(3,5-dichlorophenyl)succinamic acid (Gowda et al., 2009c), but contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group in N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994). One intramolecular hydrogen O—H···O bond is present within each maleamic acid moiety. The crystal packing is determined by intermolecular N–H···O hydrogen bonds (Table 1) as seen in Fig. 2. Other intermolecular interactions, which seem to play some role, are the carbonyl-carbonyl interactions, first analyzed in the paper of Allen et al. (1998). These dipolar interactions are observed through a short O···C contact of 2.926 (3) Å between the O4 atom of amide moiety in molecule 2 and the C10 atom of the carboxyl moiety in molecule 1 at the position x + 1,y,z. The amido group –NHCO– forms dihedral angles of 80.5 (1)° and 64.0 (2)° with the aromatic ring in the first and second molecules, respectively.

Related literature top

For our sudies on the effect of ring- and side-chain

substitutions on the crystal structures of amides, see: Gowda et al. (2009a,b,c); Prasad et al. (2002). For bond-length data, see: Allen et al. (1998). For modes of interlinking carboxylic acids by hydrogen

bonds, see: Leiserowitz (1976); Jagannathan et al. (1994).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2,6-dimethylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,6-dimethylaniline. The resultant solid N-(2,6-dimethylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

C-bonded H atoms were placed in calculated positions with C–H distances of 0.93 Å (C aromatic) and 0.96 Å (C methyl). H atoms attached to nitrogen were refined with the N–H distance restrained to 0.86 (3) Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5 Ueq(C methyl). The hydroxyl H atoms were freely refined. The absolute structure cannot be determined reliably because anomalous scattering power is too small. In the final refinement cycles the 1938 Friedel pairs were merged.

Structure description top

The amide moiety is an important constituent of many biologically important compounds. As a part of studying the effect of ring and side chain substitutions on the crystal structures of this class of compounds (Gowda et al., 2009a,b,c; Prasad et al., 2002), the crystal structure of N-(2,6-dimethylphenyl)-maleamic acid (I) has been determined. The asymmetric unit of the cell contains two independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the present study, the rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-(3,5-dichlorophenyl)succinamic acid (Gowda et al., 2009c), but contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group in N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994). One intramolecular hydrogen O—H···O bond is present within each maleamic acid moiety. The crystal packing is determined by intermolecular N–H···O hydrogen bonds (Table 1) as seen in Fig. 2. Other intermolecular interactions, which seem to play some role, are the carbonyl-carbonyl interactions, first analyzed in the paper of Allen et al. (1998). These dipolar interactions are observed through a short O···C contact of 2.926 (3) Å between the O4 atom of amide moiety in molecule 2 and the C10 atom of the carboxyl moiety in molecule 1 at the position x + 1,y,z. The amido group –NHCO– forms dihedral angles of 80.5 (1)° and 64.0 (2)° with the aromatic ring in the first and second molecules, respectively.

For our sudies on the effect of ring- and side-chain

substitutions on the crystal structures of amides, see: Gowda et al. (2009a,b,c); Prasad et al. (2002). For bond-length data, see: Allen et al. (1998). For modes of interlinking carboxylic acids by hydrogen

bonds, see: Leiserowitz (1976); Jagannathan et al. (1994).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two molecules in the asymmetric unit of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. Symmetry codes (i): -x,y - 1/2,-z + 1/2; (ii) x - 1/2,-y + 3/2,-z.
N-(2,6-Dimethylphenyl)maleamic acid top
Crystal data top
C12H13NO3F(000) = 928
Mr = 219.23Dx = 1.225 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20238 reflections
a = 12.5268 (4) Åθ = 2.1–29.4°
b = 12.9226 (4) ŵ = 0.09 mm1
c = 14.6835 (5) ÅT = 295 K
V = 2376.95 (13) Å3Prism, colourless
Z = 80.56 × 0.54 × 0.48 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2533 independent reflections
Graphite monochromator2201 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.025
ω scansθmax = 25.6°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1515
Tmin = 0.940, Tmax = 0.955k = 1515
38472 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C12H13NO3V = 2376.95 (13) Å3
Mr = 219.23Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.5268 (4) ŵ = 0.09 mm1
b = 12.9226 (4) ÅT = 295 K
c = 14.6835 (5) Å0.56 × 0.54 × 0.48 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2201 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.955Rint = 0.025
38472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.14 e Å3
2533 reflectionsΔρmin = 0.12 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25341 (16)0.39170 (14)0.10573 (14)0.0489 (5)
C20.34832 (18)0.37146 (16)0.15245 (15)0.0570 (5)
C30.44161 (19)0.3689 (2)0.10282 (19)0.0703 (7)
H30.50570.35340.13170.084*
C40.4408 (2)0.3891 (2)0.0114 (2)0.0824 (8)
H40.50450.38750.02110.099*
C50.3477 (2)0.4115 (2)0.03281 (17)0.0767 (7)
H50.34940.42710.09460.092*
C60.2509 (2)0.41152 (16)0.01250 (16)0.0617 (6)
C70.10578 (16)0.47012 (14)0.18861 (14)0.0486 (5)
C80.00863 (15)0.44838 (14)0.24183 (14)0.0475 (4)
H80.00790.37870.24930.057*
C90.05843 (15)0.51409 (14)0.28054 (14)0.0469 (5)
H90.11520.48290.31070.056*
C100.05898 (16)0.62944 (15)0.28426 (14)0.0483 (5)
C110.3486 (3)0.3555 (2)0.25411 (18)0.0814 (7)
H11A0.41850.33420.27340.122*
H11B0.29760.3030.26980.122*
H11C0.32990.41910.28390.122*
C120.1475 (3)0.4315 (3)0.0362 (2)0.0929 (9)
H12A0.11690.4950.01460.139*
H12B0.09890.37550.02460.139*
H12C0.16050.43650.10050.139*
N10.15528 (13)0.38779 (12)0.15561 (12)0.0514 (4)
H1N0.1307 (18)0.3268 (17)0.1688 (16)0.062*
O10.14060 (13)0.55904 (11)0.17420 (12)0.0726 (5)
O20.01844 (12)0.68259 (10)0.24839 (12)0.0591 (4)
H2A0.067 (2)0.640 (2)0.2168 (18)0.071*
O30.13208 (14)0.67180 (12)0.32315 (12)0.0728 (5)
C210.69266 (14)0.49032 (15)0.15611 (12)0.0432 (4)
C220.64858 (15)0.48672 (16)0.24349 (13)0.0500 (5)
C230.65844 (19)0.39448 (19)0.29159 (15)0.0641 (6)
H230.62920.38960.34960.077*
C240.7103 (2)0.3108 (2)0.25536 (18)0.0734 (7)
H240.71750.25040.28930.088*
C250.7512 (2)0.31594 (19)0.16950 (16)0.0676 (6)
H250.78510.25810.14530.081*
C260.74363 (16)0.40489 (16)0.11727 (14)0.0517 (5)
C270.76542 (15)0.64136 (16)0.07866 (12)0.0452 (4)
C280.73911 (15)0.73479 (15)0.02517 (12)0.0455 (4)
H280.66690.75050.02050.055*
C290.80542 (15)0.79940 (14)0.01721 (13)0.0459 (4)
H290.77180.85480.04570.055*
C300.92344 (16)0.79890 (17)0.02710 (16)0.0556 (5)
C310.5931 (2)0.5778 (2)0.28480 (16)0.0700 (6)
H31A0.56640.55930.34390.105*
H31B0.53470.59820.24650.105*
H31C0.64250.63420.29060.105*
C320.7872 (2)0.4054 (2)0.02141 (17)0.0750 (7)
H32A0.85460.44080.02050.112*
H32B0.73790.44030.01810.112*
H32C0.79690.33550.00090.112*
N20.68287 (12)0.58427 (13)0.10535 (11)0.0455 (4)
H2N0.6232 (16)0.6091 (17)0.0914 (15)0.055*
O40.85813 (11)0.61612 (13)0.09830 (11)0.0665 (4)
O50.96486 (13)0.85754 (14)0.08053 (13)0.0768 (5)
O60.98128 (12)0.73556 (19)0.02073 (15)0.0970 (8)
H6A0.944 (3)0.685 (3)0.057 (3)0.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0508 (11)0.0374 (9)0.0585 (11)0.0027 (9)0.0129 (10)0.0054 (9)
C20.0592 (12)0.0494 (12)0.0623 (12)0.0093 (10)0.0059 (11)0.0118 (10)
C30.0507 (12)0.0769 (16)0.0835 (17)0.0117 (12)0.0087 (12)0.0201 (14)
C40.0672 (16)0.0939 (19)0.0861 (19)0.0245 (15)0.0330 (15)0.0243 (16)
C50.0903 (19)0.0815 (17)0.0581 (13)0.0216 (15)0.0227 (14)0.0082 (12)
C60.0706 (14)0.0523 (12)0.0622 (13)0.0056 (11)0.0079 (12)0.0023 (10)
C70.0476 (11)0.0342 (10)0.0641 (12)0.0011 (9)0.0063 (9)0.0024 (9)
C80.0450 (10)0.0319 (9)0.0654 (11)0.0024 (8)0.0027 (9)0.0004 (9)
C90.0408 (10)0.0411 (10)0.0587 (11)0.0007 (8)0.0003 (9)0.0018 (9)
C100.0509 (11)0.0404 (10)0.0536 (11)0.0064 (10)0.0065 (10)0.0059 (9)
C110.0836 (17)0.0905 (18)0.0702 (15)0.0041 (15)0.0008 (14)0.0064 (14)
C120.096 (2)0.107 (2)0.0757 (17)0.0050 (18)0.0048 (17)0.0136 (16)
N10.0520 (9)0.0336 (8)0.0688 (10)0.0028 (7)0.0148 (8)0.0015 (8)
O10.0681 (10)0.0378 (7)0.1120 (13)0.0057 (7)0.0323 (10)0.0003 (8)
O20.0579 (9)0.0351 (7)0.0843 (10)0.0007 (7)0.0032 (8)0.0074 (7)
O30.0757 (11)0.0502 (8)0.0924 (12)0.0134 (8)0.0203 (10)0.0100 (8)
C210.0318 (8)0.0537 (11)0.0440 (9)0.0060 (8)0.0052 (8)0.0082 (8)
C220.0418 (10)0.0618 (12)0.0464 (10)0.0055 (9)0.0012 (9)0.0078 (9)
C230.0655 (14)0.0739 (14)0.0528 (11)0.0056 (13)0.0001 (11)0.0197 (11)
C240.0832 (17)0.0629 (14)0.0742 (15)0.0040 (13)0.0054 (14)0.0225 (13)
C250.0729 (14)0.0562 (12)0.0738 (14)0.0096 (12)0.0027 (14)0.0035 (11)
C260.0468 (10)0.0558 (11)0.0525 (10)0.0011 (10)0.0035 (9)0.0008 (9)
C270.0366 (10)0.0582 (11)0.0407 (9)0.0030 (9)0.0040 (8)0.0062 (8)
C280.0344 (9)0.0538 (11)0.0484 (10)0.0008 (9)0.0007 (9)0.0040 (9)
C290.0424 (9)0.0460 (10)0.0494 (10)0.0002 (8)0.0023 (9)0.0035 (9)
C300.0449 (11)0.0578 (12)0.0643 (12)0.0118 (10)0.0003 (10)0.0091 (11)
C310.0711 (14)0.0823 (16)0.0565 (12)0.0068 (13)0.0147 (11)0.0056 (12)
C320.0820 (17)0.0803 (16)0.0626 (13)0.0058 (14)0.0126 (13)0.0049 (13)
N20.0311 (7)0.0567 (10)0.0486 (8)0.0000 (7)0.0006 (7)0.0115 (8)
O40.0365 (7)0.0845 (11)0.0784 (10)0.0085 (8)0.0110 (7)0.0377 (9)
O50.0529 (9)0.0795 (11)0.0979 (13)0.0113 (8)0.0134 (8)0.0336 (10)
O60.0379 (8)0.1251 (17)0.1281 (16)0.0123 (10)0.0069 (9)0.0741 (15)
Geometric parameters (Å, º) top
C1—C61.393 (3)C21—C261.397 (3)
C1—C21.397 (3)C21—C221.398 (3)
C1—N11.432 (3)C21—N21.430 (2)
C2—C31.378 (3)C22—C231.391 (3)
C2—C111.507 (4)C22—C311.495 (3)
C3—C41.368 (4)C23—C241.369 (4)
C3—H30.93C23—H230.93
C4—C51.365 (4)C24—C251.362 (4)
C4—H40.93C24—H240.93
C5—C61.383 (4)C25—C261.385 (3)
C5—H50.93C25—H250.93
C6—C121.502 (4)C26—C321.510 (3)
C7—O11.247 (2)C27—O41.240 (2)
C7—N11.323 (3)C27—N21.329 (2)
C7—C81.473 (3)C27—C281.478 (3)
C8—C91.323 (3)C28—C291.332 (3)
C8—H80.93C28—H280.93
C9—C101.492 (3)C29—C301.486 (3)
C9—H90.93C29—H290.93
C10—O31.210 (2)C30—O51.208 (2)
C10—O21.300 (3)C30—O61.299 (3)
C11—H11A0.96C31—H31A0.96
C11—H11B0.96C31—H31B0.96
C11—H11C0.96C31—H31C0.96
C12—H12A0.96C32—H32A0.96
C12—H12B0.96C32—H32B0.96
C12—H12C0.96C32—H32C0.96
N1—H1N0.87 (2)N2—H2N0.839 (19)
O2—H2A0.94 (3)O6—H6A0.96 (4)
C6—C1—C2122.42 (19)C26—C21—C22121.93 (17)
C6—C1—N1119.32 (19)C26—C21—N2119.83 (16)
C2—C1—N1118.21 (18)C22—C21—N2118.22 (18)
C3—C2—C1117.8 (2)C23—C22—C21117.4 (2)
C3—C2—C11121.3 (2)C23—C22—C31120.63 (18)
C1—C2—C11120.9 (2)C21—C22—C31122.01 (18)
C4—C3—C2120.5 (3)C24—C23—C22121.5 (2)
C4—C3—H3119.7C24—C23—H23119.3
C2—C3—H3119.7C22—C23—H23119.3
C5—C4—C3120.9 (2)C25—C24—C23119.9 (2)
C5—C4—H4119.5C25—C24—H24120
C3—C4—H4119.5C23—C24—H24120
C4—C5—C6121.3 (2)C24—C25—C26121.8 (2)
C4—C5—H5119.3C24—C25—H25119.1
C6—C5—H5119.3C26—C25—H25119.1
C5—C6—C1116.9 (2)C25—C26—C21117.45 (19)
C5—C6—C12121.8 (2)C25—C26—C32119.7 (2)
C1—C6—C12121.3 (2)C21—C26—C32122.85 (19)
O1—C7—N1120.98 (18)O4—C27—N2120.93 (17)
O1—C7—C8123.68 (17)O4—C27—C28123.18 (17)
N1—C7—C8115.34 (16)N2—C27—C28115.89 (16)
C9—C8—C7129.05 (17)C29—C28—C27128.42 (18)
C9—C8—H8115.5C29—C28—H28115.8
C7—C8—H8115.5C27—C28—H28115.8
C8—C9—C10131.31 (19)C28—C29—C30131.57 (18)
C8—C9—H9114.3C28—C29—H29114.2
C10—C9—H9114.3C30—C29—H29114.2
O3—C10—O2121.11 (18)O5—C30—O6120.45 (19)
O3—C10—C9118.2 (2)O5—C30—C29119.2 (2)
O2—C10—C9120.65 (18)O6—C30—C29120.32 (19)
C2—C11—H11A109.5C22—C31—H31A109.5
C2—C11—H11B109.5C22—C31—H31B109.5
H11A—C11—H11B109.5H31A—C31—H31B109.5
C2—C11—H11C109.5C22—C31—H31C109.5
H11A—C11—H11C109.5H31A—C31—H31C109.5
H11B—C11—H11C109.5H31B—C31—H31C109.5
C6—C12—H12A109.5C26—C32—H32A109.5
C6—C12—H12B109.5C26—C32—H32B109.5
H12A—C12—H12B109.5H32A—C32—H32B109.5
C6—C12—H12C109.5C26—C32—H32C109.5
H12A—C12—H12C109.5H32A—C32—H32C109.5
H12B—C12—H12C109.5H32B—C32—H32C109.5
C7—N1—C1124.14 (16)C27—N2—C21123.92 (16)
C7—N1—H1N118.8 (16)C27—N2—H2N114.2 (16)
C1—N1—H1N116.8 (15)C21—N2—H2N121.9 (16)
C10—O2—H2A111.5 (15)C30—O6—H6A117 (2)
C6—C1—C2—C31.6 (3)C26—C21—C22—C230.8 (3)
N1—C1—C2—C3175.98 (19)N2—C21—C22—C23179.67 (18)
C6—C1—C2—C11177.0 (2)C26—C21—C22—C31179.38 (19)
N1—C1—C2—C115.4 (3)N2—C21—C22—C310.5 (3)
C1—C2—C3—C42.1 (3)C21—C22—C23—C240.7 (3)
C11—C2—C3—C4176.5 (3)C31—C22—C23—C24179.1 (2)
C2—C3—C4—C50.4 (4)C22—C23—C24—C251.7 (4)
C3—C4—C5—C62.0 (4)C23—C24—C25—C261.1 (4)
C4—C5—C6—C12.5 (4)C24—C25—C26—C210.3 (4)
C4—C5—C6—C12177.3 (3)C24—C25—C26—C32178.1 (2)
C2—C1—C6—C50.7 (3)C22—C21—C26—C251.3 (3)
N1—C1—C6—C5178.2 (2)N2—C21—C26—C25179.84 (18)
C2—C1—C6—C12179.1 (2)C22—C21—C26—C32177.0 (2)
N1—C1—C6—C121.5 (3)N2—C21—C26—C321.8 (3)
O1—C7—C8—C91.8 (4)O4—C27—C28—C297.2 (3)
N1—C7—C8—C9177.9 (2)N2—C27—C28—C29172.82 (19)
C7—C8—C9—C100.4 (4)C27—C28—C29—C301.7 (4)
C8—C9—C10—O3178.4 (2)C28—C29—C30—O5168.9 (2)
C8—C9—C10—O23.2 (3)C28—C29—C30—O610.7 (4)
O1—C7—N1—C13.2 (3)O4—C27—N2—C211.2 (3)
C8—C7—N1—C1177.03 (18)C28—C27—N2—C21178.79 (17)
C6—C1—N1—C784.2 (3)C26—C21—N2—C2764.1 (3)
C2—C1—N1—C798.2 (2)C22—C21—N2—C27117.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)2.01 (2)2.824 (2)156 (2)
N2—H2N···O5ii0.84 (2)2.04 (2)2.856 (2)166 (2)
O2—H2A···O10.94 (3)1.53 (3)2.465 (2)173 (2)
O6—H6A···O40.96 (4)1.52 (4)2.462 (2)163 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC12H13NO3
Mr219.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)12.5268 (4), 12.9226 (4), 14.6835 (5)
V3)2376.95 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.54 × 0.48
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.940, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
38472, 2533, 2201
Rint0.025
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.07
No. of reflections2533
No. of parameters305
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)2.01 (2)2.824 (2)156 (2)
N2—H2N···O5ii0.839 (19)2.04 (2)2.856 (2)166 (2)
O2—H2A···O10.94 (3)1.53 (3)2.465 (2)173 (2)
O6—H6A···O40.96 (4)1.52 (4)2.462 (2)163 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+3/2, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o2056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds