organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Iso­propyl-2-(4-meth­oxy­phen­­oxy)-1-benzo­furo[3,2-d]pyrimidin-4(3H)-one

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan, Hubei 442000, People's Republic of China
*Correspondence e-mail: chenxiaobao@yahoo.com.cn

(Received 18 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title compound, C20H18N2O4, all non-H atoms of the three fused rings of the benzofuro[3,2-d]pyrimidine system are almost coplanar (r.m.s. deviation 0.021 Å). The dihedral angle between the fused ring system and the benzene ring is 1.47 (12)°. Intra­molecular and inter­molecular C—H⋯O hydrogen bonds together with weak C—H⋯π inter­actions stabilize the structure.

Related literature

For the biological activity of benzofuropyrimidine derivatives, see: Bodke & Sangapure (2003[Bodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.]). For the synthesis of the title compound, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]). For the structures of other fused pyrimidinone derivatives, see: Hu et al. (2005[Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.], 2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.], 2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O4

  • Mr = 350.36

  • Monoclinic, P 21 /c

  • a = 10.0358 (7) Å

  • b = 14.2879 (10) Å

  • c = 13.2071 (9) Å

  • β = 112.089 (1)°

  • V = 1754.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.26 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11156 measured reflections

  • 3809 independent reflections

  • 3354 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.155

  • S = 1.22

  • 3809 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 2.49 3.311 (3) 147
C11—H11⋯O2 0.98 2.25 2.761 (3) 111
C12—H12C⋯O3 0.96 2.32 2.845 (4) 114
C13—H13A⋯O3 0.96 2.41 2.957 (3) 116
C16—H16⋯Cg2ii 0.93 2.76 3.551 (2) 143
C19—H19⋯Cg3iii 0.93 2.90 3.742 (3) 152
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 and Cg3 are the centroids of the N1/C8/C7/C10/N2/C9 and C1–C6 rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzofuropyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Bodke & Sangapure, 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing pyrimidinone via aza-Wittig reactions at room temperature (Ding et al., 2004). We present here the structure of such a benzofuropyrimidinone derivative. Fig. 1 shows the molecular structure of the title compound with the atomic numbering scheme. Intramolecular C—H···O and intermolecular C—H···O hydrogen bonds together with weak C—H···π interactions (Table 1) stabilize the structure. (Fig.2).

Related literature top

For the biological activity of benzofuropyrimidine derivatives, see: Bodke & Sangapure (2003). For the synthesis of the title compound, see: Ding et al. (2004). For the structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007). Cg2 and Cg3 are the centroids of

the N1/C8/C7/C10/N2/C9 and C1–C6 rings, respectively.

Experimental top

To a solution of N-(2-ethoxycarbonylbenzofuran-3-yl)iminotriphenylphosphorane (3 mmol) in dry dichloromethane (15 ml) was added isopropyl isocyanate (3 mmol) under nitrogen at room temperature. After the reaction mixture had been allowed to stand for 20 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether-petroleum ether (1:2 v/v, 20 ml) was added to precipitate the triphenylphosphine oxide. After filtration, the solvent was removed to give the ethyl 3-((isopropylimino)methyleneamino)-2,3-dihydrobenzofuran-2-carboxylate, which was used directly without further purification. To a solution of ethyl 3-((isopropylimino)methyleneamino)-2,3- dihydrobenzofuran-2-carboxylate in acetonitrile (15 ml) were added 4-methylphenol (3 mmol) and anhydrous K2CO3 (1 mmol). The mixture was stirred for 6 h at 313–323 K. The solution was concentrated under reduced pressure and the residue was recrystallized from dichloromethane and ethanol (1:2 v/v) to give the title compound. Suitable crystals were obtained by vapour diffusion of ethanol into dichloromethane at room temperature.

Refinement top

H atoms were placed at calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp3 and sp2 C atoms, respectively. They were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Benzofuropyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Bodke & Sangapure, 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing pyrimidinone via aza-Wittig reactions at room temperature (Ding et al., 2004). We present here the structure of such a benzofuropyrimidinone derivative. Fig. 1 shows the molecular structure of the title compound with the atomic numbering scheme. Intramolecular C—H···O and intermolecular C—H···O hydrogen bonds together with weak C—H···π interactions (Table 1) stabilize the structure. (Fig.2).

For the biological activity of benzofuropyrimidine derivatives, see: Bodke & Sangapure (2003). For the synthesis of the title compound, see: Ding et al. (2004). For the structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007). Cg2 and Cg3 are the centroids of

the N1/C8/C7/C10/N2/C9 and C1–C6 rings, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT(Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I), showing the formation of C—H···O hydrogen-bonded. showing as dashed lines.
3-Isopropyl-2-(4-methoxyphenoxy)-1-benzofuro[3,2-d]pyrimidin- 4(3H)-one top
Crystal data top
C20H18N2O4F(000) = 736
Mr = 350.36Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0358 (7) ÅCell parameters from 4035 reflections
b = 14.2879 (10) Åθ = 2.2–27.2°
c = 13.2071 (9) ŵ = 0.09 mm1
β = 112.089 (1)°T = 298 K
V = 1754.8 (2) Å3Block, colorless
Z = 40.26 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3354 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
phi and ω scansh = 1212
11156 measured reflectionsk = 1418
3809 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6117P]
where P = (Fo2 + 2Fc2)/3
3809 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H18N2O4V = 1754.8 (2) Å3
Mr = 350.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0358 (7) ŵ = 0.09 mm1
b = 14.2879 (10) ÅT = 298 K
c = 13.2071 (9) Å0.26 × 0.13 × 0.10 mm
β = 112.089 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3354 reflections with I > 2σ(I)
11156 measured reflectionsRint = 0.040
3809 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.22Δρmax = 0.19 e Å3
3809 reflectionsΔρmin = 0.23 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7439 (2)0.49152 (15)0.08888 (16)0.0449 (5)
C20.8316 (3)0.53714 (18)0.04468 (19)0.0556 (6)
H20.89980.50430.02680.067*
C30.8149 (3)0.63207 (19)0.0280 (2)0.0665 (7)
H30.87250.66400.00160.080*
C40.7126 (3)0.68112 (18)0.0549 (2)0.0649 (7)
H40.70230.74510.04130.078*
C50.6270 (3)0.63811 (17)0.1005 (2)0.0588 (6)
H50.56000.67130.11940.071*
C60.6450 (2)0.54273 (16)0.11700 (17)0.0484 (5)
C70.6210 (2)0.39759 (16)0.15826 (17)0.0453 (5)
C80.7248 (2)0.39635 (15)0.11576 (16)0.0428 (5)
C90.7502 (2)0.24186 (15)0.13723 (17)0.0440 (5)
C100.5734 (2)0.31676 (17)0.19732 (17)0.0480 (5)
C110.6003 (2)0.14330 (17)0.21223 (19)0.0523 (6)
H110.51800.15700.23250.063*
C120.5457 (3)0.0739 (2)0.1184 (2)0.0671 (7)
H12A0.47820.10440.05520.101*
H12B0.49940.02260.13890.101*
H12C0.62510.05080.10190.101*
C130.7157 (3)0.10533 (19)0.3141 (2)0.0654 (7)
H13A0.80000.09100.29920.098*
H13B0.68150.04950.33690.098*
H13C0.73900.15130.37120.098*
C140.9024 (2)0.14978 (15)0.07749 (18)0.0448 (5)
C150.8475 (2)0.14131 (19)0.0328 (2)0.0605 (6)
H150.74900.14700.07140.073*
C160.9378 (2)0.12422 (18)0.08780 (19)0.0567 (6)
H160.90020.11870.16350.068*
C171.0832 (2)0.11536 (14)0.03082 (18)0.0438 (5)
C181.1364 (2)0.12380 (19)0.08137 (19)0.0601 (6)
H181.23470.11770.12070.072*
C191.0466 (2)0.14111 (19)0.13570 (19)0.0574 (6)
H191.08340.14690.21140.069*
C201.1334 (3)0.1004 (2)0.1929 (2)0.0735 (8)
H20A1.06740.04980.22340.110*
H20B1.21430.09410.21440.110*
H20C1.08590.15890.21920.110*
N10.79382 (18)0.31642 (13)0.10474 (14)0.0452 (4)
N20.64378 (18)0.23540 (13)0.17913 (14)0.0456 (4)
O10.56950 (16)0.48638 (11)0.16127 (13)0.0528 (4)
O20.48616 (19)0.31249 (13)0.24071 (16)0.0677 (5)
O30.80979 (17)0.15842 (11)0.13495 (14)0.0561 (4)
O41.18117 (17)0.09783 (12)0.07769 (13)0.0584 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (11)0.0496 (12)0.0382 (11)0.0016 (9)0.0107 (9)0.0053 (9)
C20.0547 (13)0.0561 (15)0.0600 (14)0.0039 (11)0.0262 (11)0.0047 (11)
C30.0730 (17)0.0602 (16)0.0691 (17)0.0135 (13)0.0298 (14)0.0014 (13)
C40.0740 (17)0.0493 (14)0.0637 (16)0.0016 (12)0.0171 (13)0.0009 (12)
C50.0604 (14)0.0517 (14)0.0591 (15)0.0087 (11)0.0165 (12)0.0055 (11)
C60.0458 (11)0.0535 (13)0.0413 (11)0.0041 (10)0.0112 (9)0.0028 (9)
C70.0404 (11)0.0526 (13)0.0428 (11)0.0062 (9)0.0154 (9)0.0020 (9)
C80.0387 (10)0.0508 (12)0.0369 (10)0.0011 (9)0.0121 (8)0.0028 (9)
C90.0417 (11)0.0494 (12)0.0416 (11)0.0044 (9)0.0165 (9)0.0009 (9)
C100.0412 (11)0.0598 (14)0.0440 (12)0.0039 (10)0.0172 (9)0.0007 (10)
C110.0488 (12)0.0560 (14)0.0592 (14)0.0052 (10)0.0283 (11)0.0011 (11)
C120.0556 (14)0.0657 (16)0.0727 (17)0.0083 (12)0.0159 (13)0.0067 (13)
C130.0754 (17)0.0685 (17)0.0530 (14)0.0054 (13)0.0250 (13)0.0105 (12)
C140.0465 (11)0.0387 (11)0.0533 (13)0.0051 (9)0.0236 (10)0.0039 (9)
C150.0395 (11)0.0805 (18)0.0561 (15)0.0139 (11)0.0118 (10)0.0019 (12)
C160.0485 (12)0.0753 (17)0.0423 (12)0.0080 (11)0.0126 (10)0.0022 (11)
C170.0438 (11)0.0368 (11)0.0532 (12)0.0047 (8)0.0210 (9)0.0034 (9)
C180.0355 (11)0.0880 (19)0.0519 (14)0.0053 (11)0.0109 (10)0.0042 (12)
C190.0516 (13)0.0754 (17)0.0435 (12)0.0023 (12)0.0158 (10)0.0002 (11)
C200.0799 (18)0.088 (2)0.0628 (17)0.0156 (15)0.0391 (15)0.0024 (14)
N10.0425 (9)0.0485 (10)0.0489 (10)0.0028 (8)0.0220 (8)0.0005 (8)
N20.0415 (9)0.0539 (11)0.0432 (10)0.0009 (8)0.0179 (8)0.0001 (8)
O10.0511 (9)0.0542 (9)0.0589 (10)0.0086 (7)0.0272 (8)0.0022 (7)
O20.0671 (11)0.0722 (12)0.0841 (12)0.0062 (9)0.0517 (10)0.0032 (9)
O30.0616 (10)0.0494 (9)0.0714 (11)0.0106 (7)0.0411 (8)0.0114 (8)
O40.0529 (9)0.0666 (11)0.0617 (10)0.0120 (8)0.0285 (8)0.0043 (8)
Geometric parameters (Å, º) top
C1—C21.388 (3)C11—H110.9800
C1—C61.392 (3)C12—H12A0.9600
C1—C81.436 (3)C12—H12B0.9600
C2—C31.374 (4)C12—H12C0.9600
C2—H20.9300C13—H13A0.9600
C3—C41.395 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.367 (4)C14—C151.355 (3)
C4—H40.9300C14—C191.365 (3)
C5—C61.381 (3)C14—O31.409 (2)
C5—H50.9300C15—C161.380 (3)
C6—O11.377 (3)C15—H150.9300
C7—C81.357 (3)C16—C171.373 (3)
C7—O11.376 (3)C16—H160.9300
C7—C101.418 (3)C17—O41.368 (2)
C8—N11.372 (3)C17—C181.378 (3)
C9—N11.285 (3)C18—C191.369 (3)
C9—O31.339 (3)C18—H180.9300
C9—N21.378 (3)C19—H190.9300
C10—O21.215 (3)C20—O41.414 (3)
C10—N21.427 (3)C20—H20A0.9600
C11—N21.502 (3)C20—H20B0.9600
C11—C131.508 (3)C20—H20C0.9600
C11—C121.519 (3)
C2—C1—C6119.6 (2)H12A—C12—H12C109.5
C2—C1—C8135.5 (2)H12B—C12—H12C109.5
C6—C1—C8104.85 (19)C11—C13—H13A109.5
C3—C2—C1118.2 (2)C11—C13—H13B109.5
C3—C2—H2120.9H13A—C13—H13B109.5
C1—C2—H2120.9C11—C13—H13C109.5
C2—C3—C4120.8 (2)H13A—C13—H13C109.5
C2—C3—H3119.6H13B—C13—H13C109.5
C4—C3—H3119.6C15—C14—C19120.9 (2)
C5—C4—C3122.1 (2)C15—C14—O3120.16 (19)
C5—C4—H4119.0C19—C14—O3118.6 (2)
C3—C4—H4119.0C14—C15—C16120.0 (2)
C4—C5—C6116.5 (2)C14—C15—H15120.0
C4—C5—H5121.7C16—C15—H15120.0
C6—C5—H5121.7C17—C16—C15120.0 (2)
O1—C6—C5125.7 (2)C17—C16—H16120.0
O1—C6—C1111.57 (19)C15—C16—H16120.0
C5—C6—C1122.7 (2)O4—C17—C16124.4 (2)
C8—C7—O1112.26 (19)O4—C17—C18116.66 (19)
C8—C7—C10123.7 (2)C16—C17—C18118.9 (2)
O1—C7—C10123.99 (18)C19—C18—C17120.9 (2)
C7—C8—N1123.5 (2)C19—C18—H18119.5
C7—C8—C1106.56 (19)C17—C18—H18119.5
N1—C8—C1129.93 (18)C14—C19—C18119.2 (2)
N1—C9—O3121.27 (18)C14—C19—H19120.4
N1—C9—N2127.03 (19)C18—C19—H19120.4
O3—C9—N2111.69 (18)O4—C20—H20A109.5
O2—C10—C7127.8 (2)O4—C20—H20B109.5
O2—C10—N2121.9 (2)H20A—C20—H20B109.5
C7—C10—N2110.30 (17)O4—C20—H20C109.5
N2—C11—C13111.44 (18)H20A—C20—H20C109.5
N2—C11—C12112.94 (19)H20B—C20—H20C109.5
C13—C11—C12114.4 (2)C9—N1—C8113.92 (17)
N2—C11—H11105.7C9—N2—C10121.34 (18)
C13—C11—H11105.7C9—N2—C11121.94 (18)
C12—C11—H11105.7C10—N2—C11116.67 (17)
C11—C12—H12A109.5C7—O1—C6104.74 (16)
C11—C12—H12B109.5C9—O3—C14118.74 (16)
H12A—C12—H12B109.5C17—O4—C20118.16 (19)
C11—C12—H12C109.5
C6—C1—C2—C31.4 (3)C15—C14—C19—C180.1 (4)
C8—C1—C2—C3178.1 (2)O3—C14—C19—C18173.9 (2)
C1—C2—C3—C40.0 (4)C17—C18—C19—C140.2 (4)
C2—C3—C4—C51.3 (4)O3—C9—N1—C8177.98 (18)
C3—C4—C5—C61.1 (4)N2—C9—N1—C80.8 (3)
C4—C5—C6—O1179.7 (2)C7—C8—N1—C90.8 (3)
C4—C5—C6—C10.3 (3)C1—C8—N1—C9179.9 (2)
C2—C1—C6—O1178.92 (19)N1—C9—N2—C103.9 (3)
C8—C1—C6—O11.4 (2)O3—C9—N2—C10174.94 (17)
C2—C1—C6—C51.6 (3)N1—C9—N2—C11178.7 (2)
C8—C1—C6—C5178.1 (2)O3—C9—N2—C112.5 (3)
O1—C7—C8—N1179.51 (18)O2—C10—N2—C9175.2 (2)
C10—C7—C8—N10.8 (3)C7—C10—N2—C94.8 (3)
O1—C7—C8—C10.2 (2)O2—C10—N2—C112.4 (3)
C10—C7—C8—C1178.48 (19)C7—C10—N2—C11177.66 (17)
C2—C1—C8—C7179.5 (2)C13—C11—N2—C970.7 (3)
C6—C1—C8—C71.0 (2)C12—C11—N2—C959.8 (3)
C2—C1—C8—N10.2 (4)C13—C11—N2—C10106.9 (2)
C6—C1—C8—N1179.8 (2)C12—C11—N2—C10122.7 (2)
C8—C7—C10—O2176.5 (2)C8—C7—O1—C60.7 (2)
O1—C7—C10—O22.0 (4)C10—C7—O1—C6179.3 (2)
C8—C7—C10—N23.5 (3)C5—C6—O1—C7178.2 (2)
O1—C7—C10—N2177.99 (18)C1—C6—O1—C71.3 (2)
C19—C14—C15—C160.4 (4)N1—C9—O3—C1411.9 (3)
O3—C14—C15—C16174.0 (2)N2—C9—O3—C14169.19 (17)
C14—C15—C16—C170.3 (4)C15—C14—O3—C979.2 (3)
C15—C16—C17—O4179.5 (2)C19—C14—O3—C9107.1 (2)
C15—C16—C17—C180.0 (4)C16—C17—O4—C208.2 (3)
O4—C17—C18—C19179.8 (2)C18—C17—O4—C20172.2 (2)
C16—C17—C18—C190.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.493.311 (3)147
C11—H11···O20.982.252.761 (3)111
C12—H12C···O30.962.322.845 (4)114
C13—H13A···O30.962.412.957 (3)116
C16—H16···Cg2ii0.932.763.551 (2)143
C19—H19···Cg3iii0.932.903.742 (3)152
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1/2, z3/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N2O4
Mr350.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.0358 (7), 14.2879 (10), 13.2071 (9)
β (°) 112.089 (1)
V3)1754.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11156, 3809, 3354
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.155, 1.22
No. of reflections3809
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT(Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.493.311 (3)146.9
C11—H11···O20.982.252.761 (3)111
C12—H12C···O30.962.322.845 (4)114
C13—H13A···O30.962.412.957 (3)116
C16—H16···Cg2ii0.932.763.551 (2)143
C19—H19···Cg3iii0.932.903.742 (3)152
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1/2, z3/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by Yunyang Medical College (grant No. 2007ZQB24).

References

First citationBodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187–189.  CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds