metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua(butane-1,2,3,4-tetra­carboxyl­ato)dimanganese(II)] mono­hydrate]

aJilin Agriculture Engineering Polytechnic College, Siping 136000, People's Republic of China
*Correspondence e-mail: jlliangshizhuangke@yahoo.com.cn

(Received 19 October 2009; accepted 19 October 2009; online 23 October 2009)

The asymmetric unit of the title MnII coordination polymer, {[Mn2(C8H6O8)(H2O)3]·H2O}n, contains two crystallographic­ally independent MnII cations, two half butane-1,2,3,4-tetra­carboxyl­ato anions, each lying on a centre of inversion, and four water mol­ecules. The MnII cation has a distorted octa­hedral coordination environment. One Mn centre is coordinated by four carboxyl­ate O atoms from two different anions and two water O atoms. The other Mn centre is coordinated by five carboxyl­ate O atoms from four different anions and one water O atom. One water mol­ecule does not coordinate to a Mn centre. The crystal packing is stabilized by several O—H⋯O hydrogen bonds, forming a three-dimensional framework.

Related literature

For multicarboxyl­ate ligands in the construction of coordin­ation polymers, see: Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]). For butane-1,2,3,4-tetracarboxylic acid in coordination chemistry, see: Liu et al. (2008[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894-904.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C8H6O8)(H2O)3]·H2O

  • Mr = 824.14

  • Monoclinic, P 21 /n

  • a = 8.1962 (4) Å

  • b = 12.3291 (7) Å

  • c = 12.9758 (6) Å

  • β = 97.760 (5)°

  • V = 1299.22 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 293 K

  • 0.33 × 0.21 × 0.17 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.764, Tmax = 0.852

  • 7085 measured reflections

  • 3031 independent reflections

  • 1990 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 0.88

  • 3031 reflections

  • 227 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—HW22⋯O6i 0.843 (10) 2.46 (5) 2.998 (4) 122 (4)
O2W—HW22⋯O4W 0.843 (10) 2.39 (4) 2.985 (10) 128 (4)
O3W—HW31⋯O4ii 0.850 (10) 2.075 (19) 2.874 (4) 156 (4)
O4W—HW41⋯O1ii 0.86 (12) 2.43 (14) 3.091 (12) 133 (16)
O4W—HW42⋯O6iii 0.85 (13) 2.58 (14) 3.124 (11) 123 (14)
O1W—HW11⋯O7iv 0.850 (10) 2.098 (11) 2.944 (4) 173 (4)
O1W—HW12⋯O3ii 0.854 (10) 2.39 (4) 2.935 (4) 123 (3)
O2W—HW21⋯O2iii 0.845 (10) 1.919 (18) 2.731 (4) 161 (4)
O3W—HW32⋯O2Wv 0.849 (10) 2.333 (17) 3.155 (5) 163 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

So far, the multicarboxylate ligands, such as 1,2,3-benzenedicarboxylic acid, 1,2,4-benzenedicarboxylic acid and 1,3,5-benzenedicarboxylic acid, are widely used to construct the coordination polymers with interesting properties (Yang et al. 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al. 2008). In this contribution, H4L was selected as a bridging ligand, and a new manganese coordination polymer, namely [Mn2(L)(H2O)3].H2O (I).

As shown in Fig. 1, the asymmetric unit of (I) contains two crystallographically MnII cation, two half L anions and four water molecules. The L ligand ligand is at an inversion center. Each MnII cation has a distorted octahedral coordination environment. Mn1 is coordinated by four carboxylate O atoms from two different L anions and two water O atoms. Mn2 is coordinated by five carboxylate O atoms from three different L anions and one water O atom. The L ligands bridging the neighboring MnII centers to form a complicated three-dimensional framework structure of (I) (Fig. 2). The hydrogen-bonding interactions between the water molecules and the carboxylate O atoms further stabilize the three-dimensional framework structure of (I).

Related literature top

For multicarboxylate ligands in the construction of coordination polymers, see: Yang et al. (2008). For butane-1,2,3,4-tetracarboxylatic acid in coordination chemistry, see: Liu et al. (2008);

Experimental top

A mixture of Mn(NO3)2.6H2O (0.10 mmol), H4L (0.05 mmol) and water (12 ml) was sealed in a Teflon reactor (15 ml), which was heated at 140 °C for 3 days and then gradually cooled to room temperature. Purple crystals of (I) were isolated (yield 64% based on Mn).

Refinement top

H atoms bonded to C atom were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85±0.01 Å and H···H = 1.35±0.01 Å; their temperature factors were tied to those of parent atoms by a factor of 1.5.

Structure description top

So far, the multicarboxylate ligands, such as 1,2,3-benzenedicarboxylic acid, 1,2,4-benzenedicarboxylic acid and 1,3,5-benzenedicarboxylic acid, are widely used to construct the coordination polymers with interesting properties (Yang et al. 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al. 2008). In this contribution, H4L was selected as a bridging ligand, and a new manganese coordination polymer, namely [Mn2(L)(H2O)3].H2O (I).

As shown in Fig. 1, the asymmetric unit of (I) contains two crystallographically MnII cation, two half L anions and four water molecules. The L ligand ligand is at an inversion center. Each MnII cation has a distorted octahedral coordination environment. Mn1 is coordinated by four carboxylate O atoms from two different L anions and two water O atoms. Mn2 is coordinated by five carboxylate O atoms from three different L anions and one water O atom. The L ligands bridging the neighboring MnII centers to form a complicated three-dimensional framework structure of (I) (Fig. 2). The hydrogen-bonding interactions between the water molecules and the carboxylate O atoms further stabilize the three-dimensional framework structure of (I).

For multicarboxylate ligands in the construction of coordination polymers, see: Yang et al. (2008). For butane-1,2,3,4-tetracarboxylatic acid in coordination chemistry, see: Liu et al. (2008);

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the MnII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids at the 30% probability level (symmetry operations i: 2.5-x, y-0.5, 1.5-z; ii: x-0.5, 1.5-y, z-0.5; iii: 1.5-x, y+0.5, 1.5-z; iv: 2-x, 1-y, 2-z); v: 2-x, 2-y, 2-z).
catena-Poly[triaqua[bis[manganese(II)]]-butane-1,2,3,4-tetracarboxylato] hydrate top
Crystal data top
[Mn2(C8H6O8)(H2O)3]·H2OF(000) = 832
Mr = 824.14Dx = 2.107 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3031 reflections
a = 8.1962 (4) Åθ = 3.0–29.1°
b = 12.3291 (7) ŵ = 2.01 mm1
c = 12.9758 (6) ÅT = 293 K
β = 97.760 (5)°Block, colorless
V = 1299.22 (11) Å30.33 × 0.21 × 0.17 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3031 independent reflections
Radiation source: fine-focus sealed tube1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 117
Tmin = 0.764, Tmax = 0.852k = 1215
7085 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
3031 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.63 e Å3
12 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Mn2(C8H6O8)(H2O)3]·H2OV = 1299.22 (11) Å3
Mr = 824.14Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.1962 (4) ŵ = 2.01 mm1
b = 12.3291 (7) ÅT = 293 K
c = 12.9758 (6) Å0.33 × 0.21 × 0.17 mm
β = 97.760 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3031 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1990 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.852Rint = 0.040
7085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04112 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.63 e Å3
3031 reflectionsΔρmin = 0.83 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1879 (4)0.8429 (3)0.8558 (3)0.0198 (8)
C21.0480 (4)0.8783 (3)0.9135 (3)0.0271 (9)
H2A1.02410.81970.95900.033*
H2B0.95070.88930.86300.033*
C31.0781 (4)0.9804 (3)0.9778 (3)0.0205 (7)
H31.11091.03780.93250.025*
C41.2178 (4)0.9664 (3)1.0691 (3)0.0193 (8)
C50.9481 (4)0.5441 (3)0.8594 (3)0.0193 (8)
C60.9556 (4)0.4695 (3)0.9522 (2)0.0220 (8)
H61.02030.40520.93950.026*
C70.7837 (5)0.4336 (3)0.9692 (3)0.0306 (9)
H7A0.79150.39391.03430.037*
H7B0.71720.49760.97600.037*
C80.6978 (5)0.3639 (3)0.8845 (3)0.0275 (9)
O11.0249 (3)0.5178 (2)0.78555 (18)0.0248 (6)
O20.8740 (3)0.6329 (2)0.85773 (19)0.0263 (6)
O1W1.0570 (4)0.2456 (3)0.8215 (3)0.0391 (8)
O31.1646 (3)0.7613 (2)0.7983 (2)0.0287 (6)
O2W0.9047 (4)0.2290 (3)0.5915 (3)0.0425 (8)
HW220.969 (4)0.181 (3)0.575 (4)0.064*
O41.3228 (3)0.8944 (2)0.87012 (19)0.0253 (6)
O3W1.1264 (4)0.6245 (3)0.6096 (2)0.0357 (7)
HW311.129 (6)0.5569 (10)0.597 (3)0.054*
O50.7513 (3)0.3496 (2)0.7980 (2)0.0317 (7)
O4W1.0955 (15)0.0359 (7)0.6785 (11)0.192 (4)
HW411.181 (13)0.011 (12)0.654 (14)0.288*
HW421.06 (2)0.021 (8)0.705 (14)0.288*
O60.5696 (4)0.3186 (3)0.9039 (3)0.0458 (9)
O71.2229 (3)0.8806 (2)1.12238 (19)0.0268 (6)
O81.3177 (3)1.0437 (2)1.08580 (19)0.0253 (6)
Mn10.96260 (7)0.36380 (5)0.70273 (4)0.02057 (16)
Mn20.95382 (6)0.68692 (4)0.70684 (4)0.01775 (15)
HW110.979 (4)0.205 (3)0.835 (4)0.064 (18)*
HW121.129 (4)0.203 (3)0.802 (4)0.065 (18)*
HW210.812 (2)0.198 (3)0.592 (4)0.041 (14)*
HW321.102 (6)0.654 (3)0.5505 (18)0.063 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (17)0.025 (2)0.0152 (16)0.0031 (16)0.0039 (14)0.0026 (15)
C20.0181 (18)0.032 (2)0.0288 (19)0.0020 (17)0.0043 (16)0.0103 (17)
C30.0188 (17)0.0238 (19)0.0173 (16)0.0020 (16)0.0032 (14)0.0006 (15)
C40.0162 (16)0.023 (2)0.0180 (16)0.0050 (16)0.0016 (14)0.0002 (16)
C50.0191 (17)0.021 (2)0.0153 (16)0.0061 (16)0.0080 (14)0.0003 (14)
C60.0279 (18)0.0190 (19)0.0169 (16)0.0047 (17)0.0054 (15)0.0017 (15)
C70.035 (2)0.030 (2)0.0261 (19)0.010 (2)0.0026 (17)0.0011 (18)
C80.026 (2)0.017 (2)0.036 (2)0.0032 (17)0.0059 (18)0.0048 (17)
O10.0317 (14)0.0231 (14)0.0188 (12)0.0017 (12)0.0005 (11)0.0016 (11)
O20.0284 (14)0.0264 (16)0.0232 (13)0.0014 (12)0.0005 (11)0.0024 (12)
O1W0.0288 (16)0.0375 (19)0.0508 (19)0.0121 (16)0.0045 (15)0.0166 (16)
O30.0197 (13)0.0327 (16)0.0328 (14)0.0037 (12)0.0006 (11)0.0140 (13)
O2W0.0367 (17)0.0322 (18)0.061 (2)0.0119 (15)0.0148 (16)0.0229 (16)
O40.0191 (12)0.0246 (15)0.0323 (14)0.0045 (11)0.0040 (11)0.0093 (12)
O3W0.0359 (17)0.0418 (19)0.0312 (16)0.0032 (15)0.0116 (14)0.0101 (14)
O50.0291 (15)0.0325 (17)0.0296 (15)0.0015 (13)0.0098 (12)0.0031 (13)
O4W0.179 (9)0.162 (8)0.243 (11)0.014 (6)0.060 (8)0.014 (8)
O60.0260 (15)0.047 (2)0.065 (2)0.0131 (15)0.0074 (15)0.0301 (17)
O70.0205 (12)0.0259 (16)0.0313 (14)0.0006 (11)0.0070 (11)0.0080 (12)
O80.0227 (13)0.0288 (16)0.0226 (12)0.0054 (12)0.0035 (10)0.0006 (11)
Mn10.0198 (3)0.0200 (3)0.0207 (3)0.0005 (2)0.0016 (2)0.0007 (2)
Mn20.0165 (3)0.0188 (3)0.0166 (3)0.0002 (2)0.0029 (2)0.0014 (2)
Geometric parameters (Å, º) top
C1—O31.252 (4)O1—Mn22.360 (3)
C1—O41.267 (4)O2—Mn22.247 (2)
C1—C21.515 (5)O1W—Mn12.185 (3)
C2—C31.512 (5)O1W—HW110.850 (10)
C2—H2A0.9700O1W—HW120.854 (10)
C2—H2B0.9700O3—Mn22.163 (3)
C3—C41.542 (5)O2W—Mn12.211 (3)
C3—C3i1.549 (7)O2W—HW220.843 (10)
C3—H30.9800O2W—HW210.845 (10)
C4—O81.257 (4)O4—Mn1iii2.140 (2)
C4—O71.262 (4)O3W—Mn22.160 (3)
C5—O21.251 (4)O3W—HW310.850 (10)
C5—O11.258 (4)O3W—HW320.849 (10)
C5—C61.510 (5)O5—Mn12.267 (3)
C6—C71.521 (5)O4W—HW410.86 (12)
C6—C6ii1.546 (7)O4W—HW420.85 (13)
C6—H60.9800O6—Mn2iv2.160 (3)
C7—C81.494 (6)O7—Mn2v2.217 (3)
C7—H7A0.9700O8—Mn1v2.127 (3)
C7—H7B0.9700Mn1—O8vi2.127 (3)
C8—O61.245 (5)Mn1—O4vii2.140 (2)
C8—O51.271 (5)Mn2—O6viii2.160 (3)
O1—Mn12.207 (3)Mn2—O7vi2.217 (3)
O3—C1—O4123.3 (3)C1—O3—Mn2135.5 (2)
O3—C1—C2117.5 (3)Mn1—O2W—HW22128 (3)
O4—C1—C2119.2 (3)Mn1—O2W—HW21116 (3)
C1—C2—C3115.7 (3)HW22—O2W—HW21106.4 (17)
C1—C2—H2A108.3C1—O4—Mn1iii126.9 (2)
C3—C2—H2A108.3Mn2—O3W—HW31120 (3)
C1—C2—H2B108.3Mn2—O3W—HW32106 (3)
C3—C2—H2B108.3HW31—O3W—HW32104.9 (16)
H2A—C2—H2B107.4C8—O5—Mn1148.3 (3)
C2—C3—C4112.3 (3)HW41—O4W—HW42101 (13)
C2—C3—C3i112.5 (4)C8—O6—Mn2iv101.8 (2)
C4—C3—C3i108.3 (3)C4—O7—Mn2v123.3 (2)
C2—C3—H3107.8C4—O8—Mn1v144.9 (2)
C4—C3—H3107.8O8vi—Mn1—O4vii90.20 (9)
C3i—C3—H3107.8O8vi—Mn1—O1W166.12 (11)
O8—C4—O7124.7 (3)O4vii—Mn1—O1W101.26 (10)
O8—C4—C3116.5 (3)O8vi—Mn1—O187.51 (10)
O7—C4—C3118.8 (3)O4vii—Mn1—O185.02 (10)
O2—C5—O1120.3 (3)O1W—Mn1—O1101.15 (11)
O2—C5—C6120.9 (3)O8vi—Mn1—O2W83.53 (12)
O1—C5—C6118.7 (3)O4vii—Mn1—O2W87.77 (11)
C5—C6—C7110.8 (3)O1W—Mn1—O2W89.06 (14)
C5—C6—C6ii107.9 (4)O1—Mn1—O2W168.48 (11)
C7—C6—C6ii111.8 (4)O8vi—Mn1—O592.08 (10)
C5—C6—H6108.8O4vii—Mn1—O5171.42 (10)
C7—C6—H6108.8O1W—Mn1—O577.75 (11)
C6ii—C6—H6108.8O1—Mn1—O586.81 (9)
C8—C7—C6114.5 (3)O2W—Mn1—O5100.70 (11)
C8—C7—H7A108.6O3W—Mn2—O6viii83.43 (13)
C6—C7—H7A108.6O3W—Mn2—O386.20 (11)
C8—C7—H7B108.6O6viii—Mn2—O392.23 (12)
C6—C7—H7B108.6O3W—Mn2—O7vi99.22 (11)
H7A—C7—H7B107.6O6viii—Mn2—O7vi87.70 (12)
O6—C8—O5121.2 (4)O3—Mn2—O7vi174.53 (10)
O6—C8—C7115.8 (3)O3W—Mn2—O2133.95 (12)
O5—C8—C7123.0 (4)O6viii—Mn2—O2142.39 (11)
C5—O1—Mn1119.0 (2)O3—Mn2—O287.30 (10)
C5—O1—Mn289.0 (2)O7vi—Mn2—O289.42 (10)
Mn1—O1—Mn2121.45 (11)O3W—Mn2—O178.19 (11)
C5—O2—Mn294.4 (2)O6viii—Mn2—O1161.24 (11)
Mn1—O1W—HW11110 (3)O3—Mn2—O190.28 (10)
Mn1—O1W—HW12114 (4)O7vi—Mn2—O191.54 (10)
HW11—O1W—HW12104.7 (16)O2—Mn2—O156.30 (9)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+1, z+2; (iii) x+5/2, y+1/2, z+3/2; (iv) x+3/2, y1/2, z+3/2; (v) x+1/2, y+3/2, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x+5/2, y1/2, z+3/2; (viii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—HW22···O6ix0.84 (1)2.46 (5)2.998 (4)122 (4)
O2W—HW22···O4W0.84 (1)2.39 (4)2.985 (10)128 (4)
O3W—HW31···O4vii0.85 (1)2.08 (2)2.874 (4)156 (4)
O4W—HW41···O1vii0.86 (12)2.43 (14)3.091 (12)133 (16)
O4W—HW42···O6iv0.85 (13)2.58 (14)3.124 (11)123 (14)
O1W—HW11···O7ii0.85 (1)2.10 (1)2.944 (4)173 (4)
O1W—HW12···O3vii0.85 (1)2.39 (4)2.935 (4)123 (3)
O2W—HW21···O2iv0.85 (1)1.92 (2)2.731 (4)161 (4)
O3W—HW32···O2Wx0.85 (1)2.33 (2)3.155 (5)163 (5)
Symmetry codes: (ii) x+2, y+1, z+2; (iv) x+3/2, y1/2, z+3/2; (vii) x+5/2, y1/2, z+3/2; (ix) x+1/2, y+1/2, z1/2; (x) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C8H6O8)(H2O)3]·H2O
Mr824.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.1962 (4), 12.3291 (7), 12.9758 (6)
β (°) 97.760 (5)
V3)1299.22 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.33 × 0.21 × 0.17
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.764, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
7085, 3031, 1990
Rint0.040
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 0.88
No. of reflections3031
No. of parameters227
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.83

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—HW22···O6i0.843 (10)2.46 (5)2.998 (4)122 (4)
O2W—HW22···O4W0.843 (10)2.39 (4)2.985 (10)128 (4)
O3W—HW31···O4ii0.850 (10)2.075 (19)2.874 (4)156 (4)
O4W—HW41···O1ii0.86 (12)2.43 (14)3.091 (12)133 (16)
O4W—HW42···O6iii0.85 (13)2.58 (14)3.124 (11)123 (14)
O1W—HW11···O7iv0.850 (10)2.098 (11)2.944 (4)173 (4)
O1W—HW12···O3ii0.854 (10)2.39 (4)2.935 (4)123 (3)
O2W—HW21···O2iii0.845 (10)1.919 (18)2.731 (4)161 (4)
O3W—HW32···O2Wv0.849 (10)2.333 (17)3.155 (5)163 (5)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+5/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x+2, y+1, z+1.
 

Acknowledgements

The author thanks Jilin Agriculture Engineering Polytechnic College for support.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894–904.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds