metal-organic compounds
Poly[[triaqua(butane-1,2,3,4-tetracarboxylato)dimanganese(II)] monohydrate]
aJilin Agriculture Engineering Polytechnic College, Siping 136000, People's Republic of China
*Correspondence e-mail: jlliangshizhuangke@yahoo.com.cn
The II coordination polymer, {[Mn2(C8H6O8)(H2O)3]·H2O}n, contains two crystallographically independent MnII cations, two half butane-1,2,3,4-tetracarboxylato anions, each lying on a centre of inversion, and four water molecules. The MnII cation has a distorted octahedral coordination environment. One Mn centre is coordinated by four carboxylate O atoms from two different anions and two water O atoms. The other Mn centre is coordinated by five carboxylate O atoms from four different anions and one water O atom. One water molecule does not coordinate to a Mn centre. The crystal packing is stabilized by several O—H⋯O hydrogen bonds, forming a three-dimensional framework.
of the title MnRelated literature
For multicarboxylate ligands in the construction of coordination polymers, see: Yang et al. (2008). For butane-1,2,3,4-tetracarboxylic acid in coordination chemistry, see: Liu et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809042998/bt5105sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809042998/bt5105Isup2.hkl
A mixture of Mn(NO3)2.6H2O (0.10 mmol), H4L (0.05 mmol) and water (12 ml) was sealed in a Teflon reactor (15 ml), which was heated at 140 °C for 3 days and then gradually cooled to room temperature. Purple crystals of (I) were isolated (yield 64% based on Mn).
H atoms bonded to C atom were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85±0.01 Å and H···H = 1.35±0.01 Å; their temperature factors were tied to those of parent atoms by a factor of 1.5.
So far, the multicarboxylate ligands, such as 1,2,3-benzenedicarboxylic acid, 1,2,4-benzenedicarboxylic acid and 1,3,5-benzenedicarboxylic acid, are widely used to construct the coordination polymers with interesting properties (Yang et al. 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al. 2008). In this contribution, H4L was selected as a bridging ligand, and a new manganese coordination polymer, namely [Mn2(L)(H2O)3].H2O (I).
As shown in Fig. 1, the
of (I) contains two crystallographically MnII cation, two half L anions and four water molecules. The L ligand ligand is at an inversion center. Each MnII cation has a distorted octahedral coordination environment. Mn1 is coordinated by four carboxylate O atoms from two different L anions and two water O atoms. Mn2 is coordinated by five carboxylate O atoms from three different L anions and one water O atom. The L ligands bridging the neighboring MnII centers to form a complicated three-dimensional framework structure of (I) (Fig. 2). The hydrogen-bonding interactions between the water molecules and the carboxylate O atoms further stabilize the three-dimensional framework structure of (I).For multicarboxylate ligands in the construction of coordination polymers, see: Yang et al. (2008). For butane-1,2,3,4-tetracarboxylatic acid in coordination chemistry, see: Liu et al. (2008);
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the local coordination of the MnII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids at the 30% probability level (symmetry operations i: 2.5-x, y-0.5, 1.5-z; ii: x-0.5, 1.5-y, z-0.5; iii: 1.5-x, y+0.5, 1.5-z; iv: 2-x, 1-y, 2-z); v: 2-x, 2-y, 2-z). |
[Mn2(C8H6O8)(H2O)3]·H2O | F(000) = 832 |
Mr = 824.14 | Dx = 2.107 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3031 reflections |
a = 8.1962 (4) Å | θ = 3.0–29.1° |
b = 12.3291 (7) Å | µ = 2.01 mm−1 |
c = 12.9758 (6) Å | T = 293 K |
β = 97.760 (5)° | Block, colorless |
V = 1299.22 (11) Å3 | 0.33 × 0.21 × 0.17 mm |
Z = 2 |
Bruker APEX CCD area-detector diffractometer | 3031 independent reflections |
Radiation source: fine-focus sealed tube | 1990 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 29.1°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→7 |
Tmin = 0.764, Tmax = 0.852 | k = −12→15 |
7085 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0651P)2] where P = (Fo2 + 2Fc2)/3 |
3031 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.63 e Å−3 |
12 restraints | Δρmin = −0.83 e Å−3 |
[Mn2(C8H6O8)(H2O)3]·H2O | V = 1299.22 (11) Å3 |
Mr = 824.14 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.1962 (4) Å | µ = 2.01 mm−1 |
b = 12.3291 (7) Å | T = 293 K |
c = 12.9758 (6) Å | 0.33 × 0.21 × 0.17 mm |
β = 97.760 (5)° |
Bruker APEX CCD area-detector diffractometer | 3031 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1990 reflections with I > 2σ(I) |
Tmin = 0.764, Tmax = 0.852 | Rint = 0.040 |
7085 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 12 restraints |
wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.88 | Δρmax = 0.63 e Å−3 |
3031 reflections | Δρmin = −0.83 e Å−3 |
227 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1879 (4) | 0.8429 (3) | 0.8558 (3) | 0.0198 (8) | |
C2 | 1.0480 (4) | 0.8783 (3) | 0.9135 (3) | 0.0271 (9) | |
H2A | 1.0241 | 0.8197 | 0.9590 | 0.033* | |
H2B | 0.9507 | 0.8893 | 0.8630 | 0.033* | |
C3 | 1.0781 (4) | 0.9804 (3) | 0.9778 (3) | 0.0205 (7) | |
H3 | 1.1109 | 1.0378 | 0.9325 | 0.025* | |
C4 | 1.2178 (4) | 0.9664 (3) | 1.0691 (3) | 0.0193 (8) | |
C5 | 0.9481 (4) | 0.5441 (3) | 0.8594 (3) | 0.0193 (8) | |
C6 | 0.9556 (4) | 0.4695 (3) | 0.9522 (2) | 0.0220 (8) | |
H6 | 1.0203 | 0.4052 | 0.9395 | 0.026* | |
C7 | 0.7837 (5) | 0.4336 (3) | 0.9692 (3) | 0.0306 (9) | |
H7A | 0.7915 | 0.3939 | 1.0343 | 0.037* | |
H7B | 0.7172 | 0.4976 | 0.9760 | 0.037* | |
C8 | 0.6978 (5) | 0.3639 (3) | 0.8845 (3) | 0.0275 (9) | |
O1 | 1.0249 (3) | 0.5178 (2) | 0.78555 (18) | 0.0248 (6) | |
O2 | 0.8740 (3) | 0.6329 (2) | 0.85773 (19) | 0.0263 (6) | |
O1W | 1.0570 (4) | 0.2456 (3) | 0.8215 (3) | 0.0391 (8) | |
O3 | 1.1646 (3) | 0.7613 (2) | 0.7983 (2) | 0.0287 (6) | |
O2W | 0.9047 (4) | 0.2290 (3) | 0.5915 (3) | 0.0425 (8) | |
HW22 | 0.969 (4) | 0.181 (3) | 0.575 (4) | 0.064* | |
O4 | 1.3228 (3) | 0.8944 (2) | 0.87012 (19) | 0.0253 (6) | |
O3W | 1.1264 (4) | 0.6245 (3) | 0.6096 (2) | 0.0357 (7) | |
HW31 | 1.129 (6) | 0.5569 (10) | 0.597 (3) | 0.054* | |
O5 | 0.7513 (3) | 0.3496 (2) | 0.7980 (2) | 0.0317 (7) | |
O4W | 1.0955 (15) | 0.0359 (7) | 0.6785 (11) | 0.192 (4) | |
HW41 | 1.181 (13) | 0.011 (12) | 0.654 (14) | 0.288* | |
HW42 | 1.06 (2) | −0.021 (8) | 0.705 (14) | 0.288* | |
O6 | 0.5696 (4) | 0.3186 (3) | 0.9039 (3) | 0.0458 (9) | |
O7 | 1.2229 (3) | 0.8806 (2) | 1.12238 (19) | 0.0268 (6) | |
O8 | 1.3177 (3) | 1.0437 (2) | 1.08580 (19) | 0.0253 (6) | |
Mn1 | 0.96260 (7) | 0.36380 (5) | 0.70273 (4) | 0.02057 (16) | |
Mn2 | 0.95382 (6) | 0.68692 (4) | 0.70684 (4) | 0.01775 (15) | |
HW11 | 0.979 (4) | 0.205 (3) | 0.835 (4) | 0.064 (18)* | |
HW12 | 1.129 (4) | 0.203 (3) | 0.802 (4) | 0.065 (18)* | |
HW21 | 0.812 (2) | 0.198 (3) | 0.592 (4) | 0.041 (14)* | |
HW32 | 1.102 (6) | 0.654 (3) | 0.5505 (18) | 0.063 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0179 (17) | 0.025 (2) | 0.0152 (16) | 0.0031 (16) | −0.0039 (14) | 0.0026 (15) |
C2 | 0.0181 (18) | 0.032 (2) | 0.0288 (19) | 0.0020 (17) | −0.0043 (16) | −0.0103 (17) |
C3 | 0.0188 (17) | 0.0238 (19) | 0.0173 (16) | 0.0020 (16) | −0.0032 (14) | −0.0006 (15) |
C4 | 0.0162 (16) | 0.023 (2) | 0.0180 (16) | 0.0050 (16) | −0.0016 (14) | −0.0002 (16) |
C5 | 0.0191 (17) | 0.021 (2) | 0.0153 (16) | −0.0061 (16) | −0.0080 (14) | −0.0003 (14) |
C6 | 0.0279 (18) | 0.0190 (19) | 0.0169 (16) | −0.0047 (17) | −0.0054 (15) | −0.0017 (15) |
C7 | 0.035 (2) | 0.030 (2) | 0.0261 (19) | −0.010 (2) | −0.0026 (17) | 0.0011 (18) |
C8 | 0.026 (2) | 0.017 (2) | 0.036 (2) | 0.0032 (17) | −0.0059 (18) | −0.0048 (17) |
O1 | 0.0317 (14) | 0.0231 (14) | 0.0188 (12) | −0.0017 (12) | 0.0005 (11) | −0.0016 (11) |
O2 | 0.0284 (14) | 0.0264 (16) | 0.0232 (13) | 0.0014 (12) | 0.0005 (11) | 0.0024 (12) |
O1W | 0.0288 (16) | 0.0375 (19) | 0.0508 (19) | 0.0121 (16) | 0.0045 (15) | 0.0166 (16) |
O3 | 0.0197 (13) | 0.0327 (16) | 0.0328 (14) | −0.0037 (12) | 0.0006 (11) | −0.0140 (13) |
O2W | 0.0367 (17) | 0.0322 (18) | 0.061 (2) | −0.0119 (15) | 0.0148 (16) | −0.0229 (16) |
O4 | 0.0191 (12) | 0.0246 (15) | 0.0323 (14) | −0.0045 (11) | 0.0040 (11) | −0.0093 (12) |
O3W | 0.0359 (17) | 0.0418 (19) | 0.0312 (16) | −0.0032 (15) | 0.0116 (14) | −0.0101 (14) |
O5 | 0.0291 (15) | 0.0325 (17) | 0.0296 (15) | 0.0015 (13) | −0.0098 (12) | −0.0031 (13) |
O4W | 0.179 (9) | 0.162 (8) | 0.243 (11) | 0.014 (6) | 0.060 (8) | 0.014 (8) |
O6 | 0.0260 (15) | 0.047 (2) | 0.065 (2) | −0.0131 (15) | 0.0074 (15) | −0.0301 (17) |
O7 | 0.0205 (12) | 0.0259 (16) | 0.0313 (14) | 0.0006 (11) | −0.0070 (11) | 0.0080 (12) |
O8 | 0.0227 (13) | 0.0288 (16) | 0.0226 (12) | −0.0054 (12) | −0.0035 (10) | 0.0006 (11) |
Mn1 | 0.0198 (3) | 0.0200 (3) | 0.0207 (3) | −0.0005 (2) | −0.0016 (2) | 0.0007 (2) |
Mn2 | 0.0165 (3) | 0.0188 (3) | 0.0166 (3) | 0.0002 (2) | −0.0029 (2) | 0.0014 (2) |
C1—O3 | 1.252 (4) | O1—Mn2 | 2.360 (3) |
C1—O4 | 1.267 (4) | O2—Mn2 | 2.247 (2) |
C1—C2 | 1.515 (5) | O1W—Mn1 | 2.185 (3) |
C2—C3 | 1.512 (5) | O1W—HW11 | 0.850 (10) |
C2—H2A | 0.9700 | O1W—HW12 | 0.854 (10) |
C2—H2B | 0.9700 | O3—Mn2 | 2.163 (3) |
C3—C4 | 1.542 (5) | O2W—Mn1 | 2.211 (3) |
C3—C3i | 1.549 (7) | O2W—HW22 | 0.843 (10) |
C3—H3 | 0.9800 | O2W—HW21 | 0.845 (10) |
C4—O8 | 1.257 (4) | O4—Mn1iii | 2.140 (2) |
C4—O7 | 1.262 (4) | O3W—Mn2 | 2.160 (3) |
C5—O2 | 1.251 (4) | O3W—HW31 | 0.850 (10) |
C5—O1 | 1.258 (4) | O3W—HW32 | 0.849 (10) |
C5—C6 | 1.510 (5) | O5—Mn1 | 2.267 (3) |
C6—C7 | 1.521 (5) | O4W—HW41 | 0.86 (12) |
C6—C6ii | 1.546 (7) | O4W—HW42 | 0.85 (13) |
C6—H6 | 0.9800 | O6—Mn2iv | 2.160 (3) |
C7—C8 | 1.494 (6) | O7—Mn2v | 2.217 (3) |
C7—H7A | 0.9700 | O8—Mn1v | 2.127 (3) |
C7—H7B | 0.9700 | Mn1—O8vi | 2.127 (3) |
C8—O6 | 1.245 (5) | Mn1—O4vii | 2.140 (2) |
C8—O5 | 1.271 (5) | Mn2—O6viii | 2.160 (3) |
O1—Mn1 | 2.207 (3) | Mn2—O7vi | 2.217 (3) |
O3—C1—O4 | 123.3 (3) | C1—O3—Mn2 | 135.5 (2) |
O3—C1—C2 | 117.5 (3) | Mn1—O2W—HW22 | 128 (3) |
O4—C1—C2 | 119.2 (3) | Mn1—O2W—HW21 | 116 (3) |
C1—C2—C3 | 115.7 (3) | HW22—O2W—HW21 | 106.4 (17) |
C1—C2—H2A | 108.3 | C1—O4—Mn1iii | 126.9 (2) |
C3—C2—H2A | 108.3 | Mn2—O3W—HW31 | 120 (3) |
C1—C2—H2B | 108.3 | Mn2—O3W—HW32 | 106 (3) |
C3—C2—H2B | 108.3 | HW31—O3W—HW32 | 104.9 (16) |
H2A—C2—H2B | 107.4 | C8—O5—Mn1 | 148.3 (3) |
C2—C3—C4 | 112.3 (3) | HW41—O4W—HW42 | 101 (13) |
C2—C3—C3i | 112.5 (4) | C8—O6—Mn2iv | 101.8 (2) |
C4—C3—C3i | 108.3 (3) | C4—O7—Mn2v | 123.3 (2) |
C2—C3—H3 | 107.8 | C4—O8—Mn1v | 144.9 (2) |
C4—C3—H3 | 107.8 | O8vi—Mn1—O4vii | 90.20 (9) |
C3i—C3—H3 | 107.8 | O8vi—Mn1—O1W | 166.12 (11) |
O8—C4—O7 | 124.7 (3) | O4vii—Mn1—O1W | 101.26 (10) |
O8—C4—C3 | 116.5 (3) | O8vi—Mn1—O1 | 87.51 (10) |
O7—C4—C3 | 118.8 (3) | O4vii—Mn1—O1 | 85.02 (10) |
O2—C5—O1 | 120.3 (3) | O1W—Mn1—O1 | 101.15 (11) |
O2—C5—C6 | 120.9 (3) | O8vi—Mn1—O2W | 83.53 (12) |
O1—C5—C6 | 118.7 (3) | O4vii—Mn1—O2W | 87.77 (11) |
C5—C6—C7 | 110.8 (3) | O1W—Mn1—O2W | 89.06 (14) |
C5—C6—C6ii | 107.9 (4) | O1—Mn1—O2W | 168.48 (11) |
C7—C6—C6ii | 111.8 (4) | O8vi—Mn1—O5 | 92.08 (10) |
C5—C6—H6 | 108.8 | O4vii—Mn1—O5 | 171.42 (10) |
C7—C6—H6 | 108.8 | O1W—Mn1—O5 | 77.75 (11) |
C6ii—C6—H6 | 108.8 | O1—Mn1—O5 | 86.81 (9) |
C8—C7—C6 | 114.5 (3) | O2W—Mn1—O5 | 100.70 (11) |
C8—C7—H7A | 108.6 | O3W—Mn2—O6viii | 83.43 (13) |
C6—C7—H7A | 108.6 | O3W—Mn2—O3 | 86.20 (11) |
C8—C7—H7B | 108.6 | O6viii—Mn2—O3 | 92.23 (12) |
C6—C7—H7B | 108.6 | O3W—Mn2—O7vi | 99.22 (11) |
H7A—C7—H7B | 107.6 | O6viii—Mn2—O7vi | 87.70 (12) |
O6—C8—O5 | 121.2 (4) | O3—Mn2—O7vi | 174.53 (10) |
O6—C8—C7 | 115.8 (3) | O3W—Mn2—O2 | 133.95 (12) |
O5—C8—C7 | 123.0 (4) | O6viii—Mn2—O2 | 142.39 (11) |
C5—O1—Mn1 | 119.0 (2) | O3—Mn2—O2 | 87.30 (10) |
C5—O1—Mn2 | 89.0 (2) | O7vi—Mn2—O2 | 89.42 (10) |
Mn1—O1—Mn2 | 121.45 (11) | O3W—Mn2—O1 | 78.19 (11) |
C5—O2—Mn2 | 94.4 (2) | O6viii—Mn2—O1 | 161.24 (11) |
Mn1—O1W—HW11 | 110 (3) | O3—Mn2—O1 | 90.28 (10) |
Mn1—O1W—HW12 | 114 (4) | O7vi—Mn2—O1 | 91.54 (10) |
HW11—O1W—HW12 | 104.7 (16) | O2—Mn2—O1 | 56.30 (9) |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+2, −y+1, −z+2; (iii) −x+5/2, y+1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) x+1/2, −y+3/2, z+1/2; (vi) x−1/2, −y+3/2, z−1/2; (vii) −x+5/2, y−1/2, −z+3/2; (viii) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—HW22···O6ix | 0.84 (1) | 2.46 (5) | 2.998 (4) | 122 (4) |
O2W—HW22···O4W | 0.84 (1) | 2.39 (4) | 2.985 (10) | 128 (4) |
O3W—HW31···O4vii | 0.85 (1) | 2.08 (2) | 2.874 (4) | 156 (4) |
O4W—HW41···O1vii | 0.86 (12) | 2.43 (14) | 3.091 (12) | 133 (16) |
O4W—HW42···O6iv | 0.85 (13) | 2.58 (14) | 3.124 (11) | 123 (14) |
O1W—HW11···O7ii | 0.85 (1) | 2.10 (1) | 2.944 (4) | 173 (4) |
O1W—HW12···O3vii | 0.85 (1) | 2.39 (4) | 2.935 (4) | 123 (3) |
O2W—HW21···O2iv | 0.85 (1) | 1.92 (2) | 2.731 (4) | 161 (4) |
O3W—HW32···O2Wx | 0.85 (1) | 2.33 (2) | 3.155 (5) | 163 (5) |
Symmetry codes: (ii) −x+2, −y+1, −z+2; (iv) −x+3/2, y−1/2, −z+3/2; (vii) −x+5/2, y−1/2, −z+3/2; (ix) x+1/2, −y+1/2, z−1/2; (x) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn2(C8H6O8)(H2O)3]·H2O |
Mr | 824.14 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.1962 (4), 12.3291 (7), 12.9758 (6) |
β (°) | 97.760 (5) |
V (Å3) | 1299.22 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.01 |
Crystal size (mm) | 0.33 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.764, 0.852 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7085, 3031, 1990 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.684 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.106, 0.88 |
No. of reflections | 3031 |
No. of parameters | 227 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.63, −0.83 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—HW22···O6i | 0.843 (10) | 2.46 (5) | 2.998 (4) | 122 (4) |
O2W—HW22···O4W | 0.843 (10) | 2.39 (4) | 2.985 (10) | 128 (4) |
O3W—HW31···O4ii | 0.850 (10) | 2.075 (19) | 2.874 (4) | 156 (4) |
O4W—HW41···O1ii | 0.86 (12) | 2.43 (14) | 3.091 (12) | 133 (16) |
O4W—HW42···O6iii | 0.85 (13) | 2.58 (14) | 3.124 (11) | 123 (14) |
O1W—HW11···O7iv | 0.850 (10) | 2.098 (11) | 2.944 (4) | 173 (4) |
O1W—HW12···O3ii | 0.854 (10) | 2.39 (4) | 2.935 (4) | 123 (3) |
O2W—HW21···O2iii | 0.845 (10) | 1.919 (18) | 2.731 (4) | 161 (4) |
O3W—HW32···O2Wv | 0.849 (10) | 2.333 (17) | 3.155 (5) | 163 (5) |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+5/2, y−1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) −x+2, −y+1, −z+2; (v) −x+2, −y+1, −z+1. |
Acknowledgements
The author thanks Jilin Agriculture Engineering Polytechnic College for support.
References
Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894–904. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
So far, the multicarboxylate ligands, such as 1,2,3-benzenedicarboxylic acid, 1,2,4-benzenedicarboxylic acid and 1,3,5-benzenedicarboxylic acid, are widely used to construct the coordination polymers with interesting properties (Yang et al. 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al. 2008). In this contribution, H4L was selected as a bridging ligand, and a new manganese coordination polymer, namely [Mn2(L)(H2O)3].H2O (I).
As shown in Fig. 1, the asymmetric unit of (I) contains two crystallographically MnII cation, two half L anions and four water molecules. The L ligand ligand is at an inversion center. Each MnII cation has a distorted octahedral coordination environment. Mn1 is coordinated by four carboxylate O atoms from two different L anions and two water O atoms. Mn2 is coordinated by five carboxylate O atoms from three different L anions and one water O atom. The L ligands bridging the neighboring MnII centers to form a complicated three-dimensional framework structure of (I) (Fig. 2). The hydrogen-bonding interactions between the water molecules and the carboxylate O atoms further stabilize the three-dimensional framework structure of (I).