metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-6-hy­droxy­naphthalene-1-carboxyl­ato)bis­­[(6-hy­droxy­naphthalene-1-car­box­yl­ato)(1,10-phenanthroline)cadmium(II)] tetra­hydrate

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: chunsenliu@zzuli.edu.cn

(Received 20 October 2009; accepted 21 October 2009; online 28 October 2009)

The title complex, [Cd2(C11H7O3)4(C12H8N2)2]·4H2O, has a centrosymmetric binuclear structure in which two CdII atoms are both six-coordinated and bridged by 6-hydroxy­naphthalene-1-carboxyl­ate ligands, with a Cd⋯Cd separation of 3.671 (1) Å. The remaining coordination sites are occupied by two N atoms of a 1,10-phenanthroline ligand and two O atoms of a 6-hydroxy­naphthalene-1-carboxyl­ate ligand. The crystal packing is stabilized by O—H⋯O hydrogen-bonding inter­actions.

Related literature

For the preparation of functional coordination architectures, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Comba & Schiek (2003[Comba, P. & Schiek, W. (2003). Coord. Chem. Rev. 21, 238-239.]); Telfer & Kuroda (2003[Telfer, S. G. & Kuroda, R. (2003). Coord. Chem. Rev. 242, 33-46.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Tranchemontagne et al. (2009[Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257-1283.]). For complexes with carboxylic acid ligands, see: Bania et al. (2007[Bania, K., Barooah, N. & Baruah, J. B. (2007). Polyhedron, 26, 2612-2620.]); Liu et al. (2006[Liu, C.-S., Shi, X.-S., Li, J.-R., Wang, J.-J. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 656-663.]); Marsh (2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]); Paz & Klinowski (2004[Paz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem. 177, 3423-3432.]); Qin et al. (2008[Qin, C., Wang, X.-L. & Wang, E.-B. (2008). Acta Cryst. C64, m73-m75.]); Shi et al. (2005[Shi, X., Zhu, G., Wang, X., Li, G., Fang, Q., Zhao, X., Wu, G., Tian, G., Xue, M., Wang, R. & Qiu, S. (2005). Cryst. Growth Des. 5, 341-346.]); Wu et al. (2006[Wu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69-75.]); Xu et al. (2005[Xu, Y., Yuan, D., Wu, B., Jiang, F., Zhou, Y. & Hong, M. (2005). Inorg. Chem. Commun. 8, 651-655.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C11H7O3)4(C12H8N2)2]·4H2O

  • Mr = 1405.96

  • Monoclinic, P 21 /c

  • a = 11.7382 (11) Å

  • b = 15.1433 (14) Å

  • c = 18.2059 (13) Å

  • β = 116.430 (4)°

  • V = 2897.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 296 K

  • 0.28 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.804, Tmax = 0.868

  • 20423 measured reflections

  • 5096 independent reflections

  • 4064 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.063

  • S = 1.03

  • 5096 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O5i 0.85 2.15 2.934 (3) 154
O1W—H2⋯O1ii 0.85 2.03 2.872 (3) 170
O2W—H3⋯O1W 0.85 1.96 2.801 (4) 170
O2W—H4⋯O2 0.85 2.08 2.883 (3) 156
O5—H5B⋯O4iii 0.82 1.84 2.664 (3) 176
O6—H6B⋯O2Wiv 0.82 1.91 2.728 (4) 180
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metallosupramolecular species built from transition metal ions and organic bridging ligands have been rapidly developed in recent years because of their fascinating structural diversities and potential applications as functional materials (Barnett & Champness, 2003; Comba & Schiek, 2003; Telfer & Kuroda, 2003; Robin & Fromm, 2006; Tranchemontagne et al., 2009). The effective and facile approach for the synthesis of such complexes is still the appropriate choice of well designed organic ligands as bridges or terminal groups with metal ions as nodes. Among various ligands, the versatile carboxylic acid ligands, especially for the benzene- and naphthalene-based di- and multi-carboxylic acids, have been most widely employed in the preparation of various CdII–carboxylate complexes (Marsh, 2004; Paz & Klinowski, 2004; Qin et al., 2008; Shi et al., 2005; Wu et al., 2006; Xu et al., 2005). In contrast, the skillful use of monocarboxylic acid ligands with the naphthalene skeleton to construct functional CdII–carboxylate compounds has been less investigated to date (Bania et al., 2007; Liu et al., 2006). In addition, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules, such as 1,10-phenanthroline or 2,2'-bipyridine, as an auxiliary co-ligand into the reaction systems involving carboxylic acids usually leads to new products and commonly reduces dimensionality of the networks formed (Ye et al., 2005). We report here the crystal structure of a CdII complex with mixed 2-naphthol-5-carboxylic acid and 1,10-phenanthroline as ligands.

The structure of the title complex consists of a centrosymmetric dinuclear unit and four lattice water molecules. The CdII center is six-coordinated in an distorted octahedral geometry, by two nitrogen donors atoms from one phenanthroline ligand and four O-atoms from three 2-naphthol-5-carboxylate ligands. For 2-naphthol-5-carboxylate, there exist two different kinds of coordination modes with the CdII center, namely µ1-η1:η1-chelating and µ2-η2:η0-bridging modes. In this manner two CdIIcenter are connected to form a four-membered ring [Cd(1)–O(3)–Cd(1 A)–O(3 A)] with the Cd(1)···Cd(1 A) separation of 3.671 (1) Å (symmetry operation (A) = 1 - x, 1 - y, 1 - z).

Related literature top

For the preparation of functional coordination architectures, see: Barnett & Champness (2003); Comba & Schiek (2003); Telfer & Kuroda (2003); Robin & Fromm (2006); Tranchemontagne et al.(2009). For complexes with carboxylic acid ligands, see: Bania et al. (2007); Liu et al. (2006); Marsh (2004); Paz & Klinowski (2004); Qin et al. (2008); Shi et al. (2005); Wu et al. (2006); Xu et al. (2005); Ye et al. (2005).

Experimental top

A mixed solution of 2-naphthol-5-carboxylic acid (0.05 mmol) and 1,10-phenanthroline (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value to basic condition) was carefully layered on top of a H2O solution (15 ml) of Cd(ClO4)2 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis of the title complex (I) appeared at the tube wall after ca three weeks at room temperature. Yield: ~30% based on 2-naphthol-5-carboxylic acid. Elemental analysis calculated for C68H52Cd2N4O16: C 58.09, H 3.73, N 3.98%; found: C 59.16, H 3.65, N 3.85%. IR (KBr pellet, cm-1): 3403 s (br), 2977m, 2931m, 2770w, 2559w, 1597m, 1554m, 1521 s, 1468w, 1422m, 1377 s, 1302m, 1243m, 1148m, 1100w, 1049w, 953m, 847m, 791m, 767m, 725m, 663m, 604w.

Refinement top

All H-atoms were refined as riding with O—H = 0.85Å and C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (C,O).

Structure description top

Metallosupramolecular species built from transition metal ions and organic bridging ligands have been rapidly developed in recent years because of their fascinating structural diversities and potential applications as functional materials (Barnett & Champness, 2003; Comba & Schiek, 2003; Telfer & Kuroda, 2003; Robin & Fromm, 2006; Tranchemontagne et al., 2009). The effective and facile approach for the synthesis of such complexes is still the appropriate choice of well designed organic ligands as bridges or terminal groups with metal ions as nodes. Among various ligands, the versatile carboxylic acid ligands, especially for the benzene- and naphthalene-based di- and multi-carboxylic acids, have been most widely employed in the preparation of various CdII–carboxylate complexes (Marsh, 2004; Paz & Klinowski, 2004; Qin et al., 2008; Shi et al., 2005; Wu et al., 2006; Xu et al., 2005). In contrast, the skillful use of monocarboxylic acid ligands with the naphthalene skeleton to construct functional CdII–carboxylate compounds has been less investigated to date (Bania et al., 2007; Liu et al., 2006). In addition, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules, such as 1,10-phenanthroline or 2,2'-bipyridine, as an auxiliary co-ligand into the reaction systems involving carboxylic acids usually leads to new products and commonly reduces dimensionality of the networks formed (Ye et al., 2005). We report here the crystal structure of a CdII complex with mixed 2-naphthol-5-carboxylic acid and 1,10-phenanthroline as ligands.

The structure of the title complex consists of a centrosymmetric dinuclear unit and four lattice water molecules. The CdII center is six-coordinated in an distorted octahedral geometry, by two nitrogen donors atoms from one phenanthroline ligand and four O-atoms from three 2-naphthol-5-carboxylate ligands. For 2-naphthol-5-carboxylate, there exist two different kinds of coordination modes with the CdII center, namely µ1-η1:η1-chelating and µ2-η2:η0-bridging modes. In this manner two CdIIcenter are connected to form a four-membered ring [Cd(1)–O(3)–Cd(1 A)–O(3 A)] with the Cd(1)···Cd(1 A) separation of 3.671 (1) Å (symmetry operation (A) = 1 - x, 1 - y, 1 - z).

For the preparation of functional coordination architectures, see: Barnett & Champness (2003); Comba & Schiek (2003); Telfer & Kuroda (2003); Robin & Fromm (2006); Tranchemontagne et al.(2009). For complexes with carboxylic acid ligands, see: Bania et al. (2007); Liu et al. (2006); Marsh (2004); Paz & Klinowski (2004); Qin et al. (2008); Shi et al. (2005); Wu et al. (2006); Xu et al. (2005); Ye et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (1 – x, 1 – y, 1 – z). Four free water molecules are omitted for clarity.
Bis(µ-6-hydroxynaphthalene-1-carboxylato)bis[(6-hydroxynaphthalene- 1-carboxylato)(1,10-phenanthroline)cadmium(II)] tetrahydrate top
Crystal data top
[Cd2(C11H7O3)4(C12H8N2)2]·4H2OF(000) = 1424
Mr = 1405.96Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7382 (11) ÅCell parameters from 5160 reflections
b = 15.1433 (14) Åθ = 2.4–23.9°
c = 18.2059 (13) ŵ = 0.81 mm1
β = 116.430 (4)°T = 296 K
V = 2897.9 (4) Å3Block, yellow
Z = 20.28 × 0.21 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5096 independent reflections
Radiation source: fine-focus sealed tube4064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.804, Tmax = 0.868k = 1818
20423 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.022P)2 + 1.6679P]
where P = (Fo2 + 2Fc2)/3
5096 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cd2(C11H7O3)4(C12H8N2)2]·4H2OV = 2897.9 (4) Å3
Mr = 1405.96Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.7382 (11) ŵ = 0.81 mm1
b = 15.1433 (14) ÅT = 296 K
c = 18.2059 (13) Å0.28 × 0.21 × 0.18 mm
β = 116.430 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4064 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.868Rint = 0.037
20423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
5096 reflectionsΔρmin = 0.41 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.648118 (18)0.537570 (13)0.499232 (12)0.03367 (7)
O10.64852 (18)0.68046 (12)0.45742 (12)0.0398 (5)
O20.65340 (19)0.67592 (12)0.57928 (12)0.0462 (5)
O30.56800 (17)0.45469 (13)0.57326 (11)0.0410 (5)
O40.51162 (19)0.46283 (14)0.67285 (12)0.0490 (5)
O50.5108 (2)1.04569 (13)0.70518 (13)0.0550 (6)
H5B0.50481.01820.74210.082*
O61.0184 (2)0.17488 (14)0.63847 (15)0.0648 (7)
H6B1.09400.17800.67110.097*
N10.7308 (2)0.42210 (15)0.45474 (14)0.0359 (5)
N20.8635 (2)0.52345 (14)0.59125 (13)0.0332 (5)
C10.6666 (3)0.3693 (2)0.39153 (19)0.0494 (8)
H1A0.57930.37780.36190.059*
C20.7228 (3)0.3020 (2)0.3672 (2)0.0591 (9)
H2A0.67360.26550.32340.071*
C30.8509 (3)0.2903 (2)0.4086 (2)0.0570 (9)
H3A0.89060.24690.39200.068*
C40.9226 (3)0.34400 (19)0.47602 (18)0.0410 (7)
C51.0570 (3)0.3349 (2)0.5234 (2)0.0498 (8)
H5A1.10020.29350.50750.060*
C61.1222 (3)0.3842 (2)0.5897 (2)0.0486 (8)
H6A1.20970.37670.61910.058*
C71.0592 (2)0.44858 (19)0.61633 (17)0.0380 (7)
C81.1219 (3)0.4995 (2)0.6869 (2)0.0549 (9)
H8A1.20890.49250.71900.066*
C91.0569 (3)0.5592 (2)0.7088 (2)0.0566 (9)
H9A1.09810.59260.75630.068*
C100.9269 (3)0.5697 (2)0.65892 (18)0.0433 (7)
H10A0.88280.61130.67400.052*
C110.9278 (2)0.46242 (17)0.56963 (16)0.0307 (6)
C120.8583 (3)0.40913 (17)0.49782 (16)0.0323 (6)
C130.6536 (2)0.71904 (18)0.52027 (18)0.0363 (7)
C140.6668 (2)0.81874 (18)0.52391 (16)0.0347 (6)
C150.7268 (3)0.85596 (19)0.48148 (17)0.0386 (7)
H15A0.75170.82000.44980.046*
C160.7511 (3)0.94664 (19)0.48501 (18)0.0427 (7)
H16A0.79180.97040.45590.051*
C170.7152 (3)1.0001 (2)0.53121 (17)0.0423 (7)
H17A0.73401.06010.53470.051*
C180.6500 (2)0.96592 (18)0.57379 (16)0.0340 (6)
C190.6096 (3)1.02198 (19)0.61936 (17)0.0404 (7)
H19A0.62621.08220.62130.048*
C200.5467 (3)0.98935 (19)0.66048 (17)0.0398 (7)
C210.5185 (3)0.89926 (19)0.65634 (18)0.0442 (7)
H21A0.47430.87740.68400.053*
C220.5550 (3)0.84284 (19)0.61223 (18)0.0410 (7)
H22A0.53390.78330.60950.049*
C230.6245 (2)0.87360 (17)0.57055 (16)0.0335 (6)
C240.5938 (3)0.44834 (18)0.64928 (17)0.0367 (7)
C250.7267 (3)0.42322 (18)0.70921 (16)0.0347 (6)
C260.7973 (3)0.35801 (17)0.69061 (16)0.0338 (6)
C270.7474 (3)0.30337 (18)0.61980 (18)0.0424 (7)
H27A0.66190.30820.58270.051*
C280.8219 (3)0.24406 (19)0.60497 (19)0.0480 (8)
H28A0.78650.20930.55800.058*
C290.9512 (3)0.23452 (19)0.6594 (2)0.0472 (8)
C301.0025 (3)0.28396 (19)0.72909 (18)0.0435 (7)
H30A1.08800.27710.76550.052*
C310.9281 (3)0.34535 (18)0.74713 (17)0.0365 (7)
C320.9808 (3)0.3957 (2)0.81986 (17)0.0436 (7)
H32A1.06590.38790.85670.052*
C330.9095 (3)0.4554 (2)0.83720 (17)0.0464 (8)
H33A0.94550.48720.88590.056*
C340.7818 (3)0.4687 (2)0.78147 (17)0.0426 (7)
H34A0.73350.50930.79390.051*
O1W0.5418 (2)0.73556 (15)0.79947 (13)0.0609 (6)
H10.54210.68250.81490.073*
H20.56600.75800.84690.073*
O2W0.7302 (2)0.68503 (16)0.75316 (14)0.0703 (7)
H30.68020.70350.77210.084*
H40.70560.69870.70310.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02669 (11)0.03283 (12)0.04132 (13)0.00375 (9)0.01496 (9)0.00190 (10)
O10.0447 (12)0.0340 (11)0.0414 (12)0.0026 (9)0.0198 (10)0.0031 (9)
O20.0598 (14)0.0343 (11)0.0479 (13)0.0056 (10)0.0270 (11)0.0014 (10)
O30.0316 (10)0.0542 (13)0.0301 (11)0.0029 (9)0.0075 (9)0.0117 (9)
O40.0383 (12)0.0630 (14)0.0435 (12)0.0081 (11)0.0163 (10)0.0038 (11)
O50.0792 (16)0.0432 (13)0.0489 (13)0.0118 (12)0.0342 (12)0.0012 (10)
O60.0744 (16)0.0466 (14)0.0730 (17)0.0131 (12)0.0324 (14)0.0038 (12)
N10.0318 (13)0.0312 (13)0.0397 (14)0.0015 (10)0.0115 (11)0.0006 (11)
N20.0292 (12)0.0337 (13)0.0361 (13)0.0014 (10)0.0139 (10)0.0006 (10)
C10.0446 (18)0.0463 (19)0.0471 (19)0.0024 (15)0.0114 (16)0.0044 (16)
C20.067 (2)0.046 (2)0.056 (2)0.0020 (18)0.0203 (19)0.0174 (17)
C30.069 (2)0.0444 (19)0.061 (2)0.0089 (18)0.033 (2)0.0127 (17)
C40.0452 (18)0.0364 (16)0.0466 (18)0.0077 (14)0.0252 (15)0.0014 (14)
C50.050 (2)0.0442 (19)0.066 (2)0.0179 (16)0.0366 (18)0.0073 (17)
C60.0339 (17)0.057 (2)0.058 (2)0.0144 (15)0.0232 (16)0.0130 (17)
C70.0286 (15)0.0434 (17)0.0413 (17)0.0048 (13)0.0150 (13)0.0091 (14)
C80.0307 (16)0.073 (2)0.048 (2)0.0028 (16)0.0065 (15)0.0003 (18)
C90.0446 (19)0.070 (2)0.0421 (19)0.0030 (17)0.0071 (16)0.0167 (17)
C100.0415 (18)0.0455 (17)0.0406 (18)0.0021 (14)0.0163 (15)0.0077 (14)
C110.0273 (14)0.0303 (14)0.0359 (15)0.0041 (12)0.0153 (12)0.0036 (13)
C120.0336 (15)0.0288 (14)0.0366 (15)0.0026 (12)0.0175 (13)0.0048 (13)
C130.0286 (15)0.0334 (16)0.0427 (18)0.0056 (12)0.0121 (14)0.0006 (14)
C140.0280 (14)0.0348 (15)0.0349 (16)0.0049 (12)0.0083 (13)0.0021 (12)
C150.0352 (16)0.0419 (17)0.0360 (16)0.0018 (13)0.0134 (13)0.0005 (13)
C160.0426 (17)0.0462 (19)0.0410 (17)0.0068 (14)0.0202 (15)0.0031 (14)
C170.0462 (18)0.0326 (15)0.0426 (18)0.0050 (14)0.0148 (15)0.0028 (14)
C180.0309 (14)0.0323 (15)0.0297 (14)0.0017 (13)0.0053 (12)0.0023 (13)
C190.0437 (17)0.0351 (17)0.0333 (16)0.0014 (14)0.0091 (14)0.0011 (13)
C200.0432 (17)0.0392 (17)0.0327 (16)0.0085 (14)0.0130 (14)0.0006 (13)
C210.0475 (18)0.0427 (18)0.0476 (18)0.0024 (15)0.0259 (15)0.0053 (15)
C220.0408 (17)0.0339 (16)0.0490 (18)0.0008 (13)0.0206 (15)0.0017 (14)
C230.0309 (15)0.0321 (15)0.0309 (15)0.0026 (12)0.0078 (12)0.0038 (12)
C240.0340 (16)0.0339 (16)0.0351 (16)0.0029 (13)0.0091 (13)0.0011 (13)
C250.0339 (15)0.0378 (15)0.0297 (15)0.0010 (13)0.0118 (13)0.0065 (13)
C260.0359 (15)0.0317 (15)0.0300 (15)0.0030 (12)0.0111 (13)0.0048 (12)
C270.0440 (17)0.0339 (16)0.0391 (17)0.0035 (14)0.0095 (14)0.0031 (14)
C280.062 (2)0.0311 (16)0.0436 (18)0.0045 (15)0.0170 (17)0.0027 (14)
C290.062 (2)0.0304 (16)0.055 (2)0.0074 (15)0.0315 (18)0.0066 (15)
C300.0400 (17)0.0386 (17)0.0448 (19)0.0066 (14)0.0124 (15)0.0089 (15)
C310.0370 (16)0.0338 (16)0.0342 (16)0.0014 (13)0.0119 (13)0.0077 (13)
C320.0370 (16)0.0505 (19)0.0340 (16)0.0031 (15)0.0076 (14)0.0050 (14)
C330.0462 (18)0.055 (2)0.0288 (15)0.0015 (16)0.0087 (14)0.0054 (15)
C340.0422 (17)0.0482 (18)0.0359 (16)0.0041 (15)0.0161 (14)0.0001 (15)
O1W0.0763 (16)0.0583 (15)0.0430 (13)0.0083 (13)0.0220 (12)0.0003 (11)
O2W0.0676 (16)0.0829 (18)0.0647 (16)0.0084 (14)0.0332 (13)0.0077 (14)
Geometric parameters (Å, º) top
Cd1—O3i2.2827 (18)C11—C121.441 (4)
Cd1—O12.2945 (18)C13—C141.516 (4)
Cd1—N12.314 (2)C14—C151.377 (4)
Cd1—O32.3247 (18)C14—C231.426 (4)
Cd1—N22.339 (2)C15—C161.398 (4)
Cd1—O22.5370 (19)C15—H15A0.9300
Cd1—C132.771 (3)C16—C171.363 (4)
Cd1—O4i2.846 (2)C16—H16A0.9300
Cd1—Cd1i3.6706 (5)C17—C181.408 (4)
O1—C131.262 (3)C17—H17A0.9300
O2—C131.258 (3)C18—C191.409 (4)
O3—C241.282 (3)C18—C231.425 (4)
O3—Cd1i2.2827 (18)C19—C201.357 (4)
O4—C241.238 (3)C19—H19A0.9300
O4—Cd1i2.846 (2)C20—C211.398 (4)
O5—C201.369 (3)C21—C221.366 (4)
O5—H5B0.8200C21—H21A0.9300
O6—C291.360 (3)C22—C231.418 (4)
O6—H6B0.8200C22—H22A0.9300
N1—C11.326 (4)C24—C251.501 (4)
N1—C121.360 (3)C25—C341.366 (4)
N2—C101.322 (3)C25—C261.424 (4)
N2—C111.358 (3)C26—C271.420 (4)
C1—C21.389 (4)C26—C311.431 (4)
C1—H1A0.9300C27—C281.362 (4)
C2—C31.361 (4)C27—H27A0.9300
C2—H2A0.9300C28—C291.403 (4)
C3—C41.399 (4)C28—H28A0.9300
C3—H3A0.9300C29—C301.362 (4)
C4—C121.402 (4)C30—C311.411 (4)
C4—C51.428 (4)C30—H30A0.9300
C5—C61.334 (4)C31—C321.410 (4)
C5—H5A0.9300C32—C331.360 (4)
C6—C71.432 (4)C32—H32A0.9300
C6—H6A0.9300C33—C341.402 (4)
C7—C81.394 (4)C33—H33A0.9300
C7—C111.406 (4)C34—H34A0.9300
C8—C91.353 (4)O1W—H10.8500
C8—H8A0.9300O1W—H20.8500
C9—C101.395 (4)O2W—H30.8499
C9—H9A0.9300O2W—H40.8502
C10—H10A0.9300
O3i—Cd1—O185.73 (7)C9—C10—H10A118.5
O3i—Cd1—N1111.57 (8)N2—C11—C7121.9 (2)
O1—Cd1—N1122.24 (7)N2—C11—C12118.7 (2)
O3i—Cd1—O374.38 (7)C7—C11—C12119.4 (2)
O1—Cd1—O3139.69 (7)N1—C12—C4122.1 (3)
N1—Cd1—O397.80 (8)N1—C12—C11118.4 (2)
O3i—Cd1—N2170.86 (7)C4—C12—C11119.5 (2)
O1—Cd1—N299.36 (7)O2—C13—O1121.1 (3)
N1—Cd1—N272.17 (8)O2—C13—C14121.2 (3)
O3—Cd1—N297.04 (7)O1—C13—C14117.6 (3)
O3i—Cd1—O291.52 (7)O2—C13—Cd166.08 (15)
O1—Cd1—O253.75 (7)O1—C13—Cd155.04 (14)
N1—Cd1—O2156.67 (7)C14—C13—Cd1171.5 (2)
O3—Cd1—O291.47 (7)C15—C14—C23119.8 (3)
N2—Cd1—O285.51 (7)C15—C14—C13116.8 (3)
O3i—Cd1—C1388.87 (7)C23—C14—C13123.4 (3)
O1—Cd1—C1326.80 (7)C14—C15—C16121.4 (3)
N1—Cd1—C13144.11 (8)C14—C15—H15A119.3
O3—Cd1—C13116.46 (8)C16—C15—H15A119.3
N2—Cd1—C1392.32 (8)C17—C16—C15119.9 (3)
O2—Cd1—C1326.95 (7)C17—C16—H16A120.0
O3i—Cd1—O4i49.13 (6)C15—C16—H16A120.0
O1—Cd1—O4i74.60 (6)C16—C17—C18121.0 (3)
N1—Cd1—O4i77.68 (7)C16—C17—H17A119.5
O3—Cd1—O4i113.50 (6)C18—C17—H17A119.5
N2—Cd1—O4i139.51 (7)C17—C18—C19120.7 (3)
O2—Cd1—O4i118.02 (6)C17—C18—C23119.6 (3)
C13—Cd1—O4i96.75 (7)C19—C18—C23119.7 (3)
O3i—Cd1—Cd1i37.58 (5)C20—C19—C18120.9 (3)
O1—Cd1—Cd1i115.89 (5)C20—C19—H19A119.5
N1—Cd1—Cd1i108.34 (6)C18—C19—H19A119.5
O3—Cd1—Cd1i36.79 (4)C19—C20—O5119.2 (3)
N2—Cd1—Cd1i133.75 (5)C19—C20—C21120.0 (3)
O2—Cd1—Cd1i91.87 (5)O5—C20—C21120.8 (3)
C13—Cd1—Cd1i105.66 (6)C22—C21—C20120.9 (3)
O4i—Cd1—Cd1i81.11 (4)C22—C21—H21A119.5
C13—O1—Cd198.15 (17)C20—C21—H21A119.5
C13—O2—Cd186.96 (16)C21—C22—C23121.0 (3)
C24—O3—Cd1i107.21 (16)C21—C22—H22A119.5
C24—O3—Cd1134.76 (17)C23—C22—H22A119.5
Cd1i—O3—Cd1105.62 (7)C22—C23—C18117.4 (3)
C24—O4—Cd1i81.45 (16)C22—C23—C14124.3 (3)
C20—O5—H5B109.5C18—C23—C14118.3 (3)
C29—O6—H6B109.5O4—C24—O3121.0 (3)
C1—N1—C12117.9 (2)O4—C24—C25120.7 (3)
C1—N1—Cd1126.5 (2)O3—C24—C25118.3 (2)
C12—N1—Cd1115.64 (17)C34—C25—C26120.2 (3)
C10—N2—C11118.4 (2)C34—C25—C24117.8 (3)
C10—N2—Cd1126.87 (19)C26—C25—C24122.0 (2)
C11—N2—Cd1114.69 (16)C27—C26—C25124.9 (3)
N1—C1—C2123.5 (3)C27—C26—C31116.8 (3)
N1—C1—H1A118.3C25—C26—C31118.3 (2)
C2—C1—H1A118.3C28—C27—C26121.5 (3)
C3—C2—C1119.0 (3)C28—C27—H27A119.2
C3—C2—H2A120.5C26—C27—H27A119.2
C1—C2—H2A120.5C27—C28—C29121.1 (3)
C2—C3—C4119.6 (3)C27—C28—H28A119.4
C2—C3—H3A120.2C29—C28—H28A119.4
C4—C3—H3A120.2O6—C29—C30123.7 (3)
C3—C4—C12117.9 (3)O6—C29—C28116.8 (3)
C3—C4—C5123.0 (3)C30—C29—C28119.5 (3)
C12—C4—C5119.1 (3)C29—C30—C31121.1 (3)
C6—C5—C4121.9 (3)C29—C30—H30A119.4
C6—C5—H5A119.1C31—C30—H30A119.4
C4—C5—H5A119.1C32—C31—C30121.1 (3)
C5—C6—C7120.8 (3)C32—C31—C26119.0 (3)
C5—C6—H6A119.6C30—C31—C26119.9 (3)
C7—C6—H6A119.6C33—C32—C31121.3 (3)
C8—C7—C11117.5 (3)C33—C32—H32A119.4
C8—C7—C6123.2 (3)C31—C32—H32A119.4
C11—C7—C6119.3 (3)C32—C33—C34119.9 (3)
C9—C8—C7120.4 (3)C32—C33—H33A120.1
C9—C8—H8A119.8C34—C33—H33A120.1
C7—C8—H8A119.8C25—C34—C33121.3 (3)
C8—C9—C10118.8 (3)C25—C34—H34A119.3
C8—C9—H9A120.6C33—C34—H34A119.3
C10—C9—H9A120.6H1—O1W—H295.3
N2—C10—C9123.1 (3)H3—O2W—H4112.8
N2—C10—H10A118.5
O3i—Cd1—O1—C1395.96 (16)C3—C4—C12—N11.3 (4)
N1—Cd1—O1—C13151.16 (15)C5—C4—C12—N1179.1 (3)
O3—Cd1—O1—C1336.3 (2)C3—C4—C12—C11176.6 (3)
N2—Cd1—O1—C1376.40 (17)C5—C4—C12—C113.0 (4)
O2—Cd1—O1—C130.94 (15)N2—C11—C12—N10.2 (4)
O4i—Cd1—O1—C13144.66 (17)C7—C11—C12—N1178.4 (2)
Cd1i—Cd1—O1—C1372.82 (16)N2—C11—C12—C4178.1 (2)
O3i—Cd1—O2—C1384.52 (16)C7—C11—C12—C40.4 (4)
O1—Cd1—O2—C130.94 (15)Cd1—O2—C13—O11.6 (3)
N1—Cd1—O2—C1387.3 (2)Cd1—O2—C13—C14175.2 (2)
O3—Cd1—O2—C13158.93 (16)Cd1—O1—C13—O21.8 (3)
N2—Cd1—O2—C13104.13 (16)Cd1—O1—C13—C14175.09 (19)
O4i—Cd1—O2—C1341.20 (17)O3i—Cd1—C13—O295.57 (16)
Cd1i—Cd1—O2—C13122.12 (15)O1—Cd1—C13—O2178.3 (3)
O3i—Cd1—O3—C24135.2 (3)N1—Cd1—C13—O2137.55 (16)
O1—Cd1—O3—C2471.9 (3)O3—Cd1—C13—O223.67 (17)
N1—Cd1—O3—C24114.5 (3)N2—Cd1—C13—O275.37 (16)
N2—Cd1—O3—C2441.6 (3)O4i—Cd1—C13—O2144.16 (15)
O2—Cd1—O3—C2444.1 (3)Cd1i—Cd1—C13—O261.53 (16)
C13—Cd1—O3—C2454.6 (3)O3i—Cd1—C13—O182.76 (16)
O4i—Cd1—O3—C24165.6 (2)N1—Cd1—C13—O144.1 (2)
Cd1i—Cd1—O3—C24135.2 (3)O3—Cd1—C13—O1154.66 (15)
O3i—Cd1—O3—Cd1i0.0N2—Cd1—C13—O1106.30 (16)
O1—Cd1—O3—Cd1i63.32 (13)O2—Cd1—C13—O1178.3 (3)
N1—Cd1—O3—Cd1i110.30 (9)O4i—Cd1—C13—O134.17 (16)
N2—Cd1—O3—Cd1i176.82 (8)Cd1i—Cd1—C13—O1116.79 (15)
O2—Cd1—O3—Cd1i91.16 (8)O2—C13—C14—C15148.9 (3)
C13—Cd1—O3—Cd1i80.68 (9)O1—C13—C14—C1528.0 (4)
O4i—Cd1—O3—Cd1i30.40 (10)O2—C13—C14—C2328.9 (4)
O3i—Cd1—N1—C14.9 (3)O1—C13—C14—C23154.2 (3)
O1—Cd1—N1—C194.0 (2)C23—C14—C15—C162.0 (4)
O3—Cd1—N1—C181.1 (2)C13—C14—C15—C16175.9 (3)
N2—Cd1—N1—C1176.0 (3)C14—C15—C16—C170.0 (4)
O2—Cd1—N1—C1166.4 (2)C15—C16—C17—C182.0 (4)
C13—Cd1—N1—C1115.8 (2)C16—C17—C18—C19178.0 (3)
O4i—Cd1—N1—C131.4 (2)C16—C17—C18—C231.9 (4)
Cd1i—Cd1—N1—C144.8 (2)C17—C18—C19—C20180.0 (3)
O3i—Cd1—N1—C12176.18 (17)C23—C18—C19—C200.1 (4)
O1—Cd1—N1—C1284.91 (19)C18—C19—C20—O5178.9 (2)
O3—Cd1—N1—C1299.96 (18)C18—C19—C20—C211.6 (4)
N2—Cd1—N1—C125.04 (18)C19—C20—C21—C220.9 (4)
O2—Cd1—N1—C1212.6 (3)O5—C20—C21—C22179.6 (3)
C13—Cd1—N1—C1263.1 (2)C20—C21—C22—C231.2 (4)
O4i—Cd1—N1—C12147.59 (19)C21—C22—C23—C182.5 (4)
Cd1i—Cd1—N1—C12136.24 (17)C21—C22—C23—C14179.5 (3)
O1—Cd1—N2—C1061.9 (2)C17—C18—C23—C22178.0 (3)
N1—Cd1—N2—C10177.1 (2)C19—C18—C23—C221.9 (4)
O2—Cd1—N2—C109.8 (2)C17—C18—C23—C140.2 (4)
C13—Cd1—N2—C1035.9 (2)C19—C18—C23—C14180.0 (2)
O4i—Cd1—N2—C10139.1 (2)C15—C14—C23—C22176.0 (3)
Cd1i—Cd1—N2—C1078.5 (2)C13—C14—C23—C226.3 (4)
O1—Cd1—N2—C11116.08 (18)C15—C14—C23—C182.1 (4)
N1—Cd1—N2—C114.91 (17)C13—C14—C23—C18175.7 (2)
O2—Cd1—N2—C11168.20 (18)Cd1i—O4—C24—O39.9 (2)
C13—Cd1—N2—C11142.10 (18)Cd1i—O4—C24—C25170.3 (3)
O4i—Cd1—N2—C1138.9 (2)Cd1i—O3—C24—O412.9 (3)
Cd1i—Cd1—N2—C11103.51 (17)Cd1—O3—C24—O4121.9 (3)
C12—N1—C1—C20.1 (4)Cd1i—O3—C24—C25167.38 (19)
Cd1—N1—C1—C2178.8 (2)Cd1—O3—C24—C2557.8 (4)
N1—C1—C2—C31.8 (5)O4—C24—C25—C3443.3 (4)
C1—C2—C3—C42.1 (5)O3—C24—C25—C34136.4 (3)
C2—C3—C4—C120.7 (5)O4—C24—C25—C26140.3 (3)
C2—C3—C4—C5178.9 (3)O3—C24—C25—C2640.0 (4)
C3—C4—C5—C6176.8 (3)C34—C25—C26—C27176.1 (3)
C12—C4—C5—C62.8 (5)C24—C25—C26—C277.6 (4)
C4—C5—C6—C70.2 (5)C34—C25—C26—C313.4 (4)
C5—C6—C7—C8177.5 (3)C24—C25—C26—C31172.8 (2)
C5—C6—C7—C112.8 (4)C25—C26—C27—C28178.1 (3)
C11—C7—C8—C90.5 (5)C31—C26—C27—C282.4 (4)
C6—C7—C8—C9179.9 (3)C26—C27—C28—C290.1 (4)
C7—C8—C9—C101.1 (5)C27—C28—C29—O6178.7 (3)
C11—N2—C10—C90.4 (4)C27—C28—C29—C301.5 (5)
Cd1—N2—C10—C9177.5 (2)O6—C29—C30—C31179.5 (3)
C8—C9—C10—N20.7 (5)C28—C29—C30—C310.7 (4)
C10—N2—C11—C71.0 (4)C29—C30—C31—C32179.1 (3)
Cd1—N2—C11—C7177.1 (2)C29—C30—C31—C261.6 (4)
C10—N2—C11—C12177.4 (2)C27—C26—C31—C32177.7 (2)
Cd1—N2—C11—C124.4 (3)C25—C26—C31—C321.9 (4)
C8—C7—C11—N20.6 (4)C27—C26—C31—C303.1 (4)
C6—C7—C11—N2179.0 (3)C25—C26—C31—C30177.3 (2)
C8—C7—C11—C12177.9 (3)C30—C31—C32—C33179.6 (3)
C6—C7—C11—C122.5 (4)C26—C31—C32—C330.3 (4)
C1—N1—C12—C41.7 (4)C31—C32—C33—C341.1 (5)
Cd1—N1—C12—C4177.4 (2)C26—C25—C34—C332.7 (4)
C1—N1—C12—C11176.2 (2)C24—C25—C34—C33173.7 (3)
Cd1—N1—C12—C114.7 (3)C32—C33—C34—C250.4 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O5ii0.852.152.934 (3)154
O1W—H2···O1iii0.852.032.872 (3)170
O2W—H3···O1W0.851.962.801 (4)170
O2W—H4···O20.852.082.883 (3)156
O5—H5B···O4iv0.821.842.664 (3)176
O6—H6B···O2Wv0.821.912.728 (4)180
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd2(C11H7O3)4(C12H8N2)2]·4H2O
Mr1405.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7382 (11), 15.1433 (14), 18.2059 (13)
β (°) 116.430 (4)
V3)2897.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.28 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.804, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
20423, 5096, 4064
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.063, 1.03
No. of reflections5096
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O5i0.85002.15002.934 (3)154.00
O1W—H2···O1ii0.85002.03002.872 (3)170.00
O2W—H3···O1W0.85001.96002.801 (4)170.00
O2W—H4···O20.85002.08002.883 (3)156.00
O5—H5B···O4iii0.82001.84002.664 (3)176.00
O6—H6B···O2Wiv0.82001.91002.728 (4)180.00
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the start-up fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (Nos. 2007BSJJ001 and 20801049).

References

First citationBania, K., Barooah, N. & Baruah, J. B. (2007). Polyhedron, 26, 2612–2620.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComba, P. & Schiek, W. (2003). Coord. Chem. Rev. 21, 238–239.  Google Scholar
First citationLiu, C.-S., Shi, X.-S., Li, J.-R., Wang, J.-J. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 656–663.  Web of Science CSD CrossRef Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2004). J. Solid State Chem. 177, 3423–3432.  CAS Google Scholar
First citationQin, C., Wang, X.-L. & Wang, E.-B. (2008). Acta Cryst. C64, m73–m75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Zhu, G., Wang, X., Li, G., Fang, Q., Zhao, X., Wu, G., Tian, G., Xue, M., Wang, R. & Qiu, S. (2005). Cryst. Growth Des. 5, 341–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelfer, S. G. & Kuroda, R. (2003). Coord. Chem. Rev. 242, 33–46.  Web of Science CrossRef CAS Google Scholar
First citationTranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257–1283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Y., Yuan, D., Wu, B., Jiang, F., Zhou, Y. & Hong, M. (2005). Inorg. Chem. Commun. 8, 651–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds