organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 October 2009; accepted 22 October 2009; online 28 October 2009)

The title compound, C12H13NO3, crystallizes with four independent mol­ecules in the asymmetric unit. The N—H bond and the C=O bond in the amide segment are anti to each other. The C=C double bond is cis configured and an intra­molecular O—H⋯O hydrogen bond is formed in each molecule. The mean planes through the aromatic ring and the amide group –NHCO– are inclined at angles of 17.4 (3), 20.8 (2), 16.2 (2) and 11.2 (3)° in the four mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into ribbons along the b axis.

Related literature

For our study on the effect of ring and side-chain substitutions on the crystal structures of biologically important amides, see: Gowda, Foro, Saraswathi & Fuess (2009[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o2056.]); Gowda, Foro, Saraswathi, Terao & Fuess (2009[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.]); Gowda, Tokarčík et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2807.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891-o892.]). For modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). For a related structure, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3

  • Mr = 219.23

  • Monoclinic, P c

  • a = 11.9003 (2) Å

  • b = 12.9991 (2) Å

  • c = 15.2641 (3) Å

  • β = 110.207 (2)°

  • V = 2215.92 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.48 × 0.32 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.958, Tmax = 0.965

  • 67608 measured reflections

  • 5279 independent reflections

  • 4100 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.03

  • 5279 reflections

  • 577 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O63i 0.86 2.00 2.851 (3) 168
N2—H2N⋯O43 0.86 2.03 2.865 (3) 163
N3—H3N⋯O23i 0.86 2.07 2.916 (3) 167
N4—H4N⋯O3 0.86 2.08 2.930 (3) 169
O2—H2A⋯O1 0.88 1.62 2.481 (3) 165
O22—H22A⋯O21 0.88 1.59 2.471 (3) 176
O42—H42A⋯O41 0.88 1.61 2.487 (3) 175
O62—H62A⋯O61 0.88 1.6 2.480 (3) 176
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically important amides (Gowda, Foro, Saraswathi & Fuess, 2009; Gowda, Foro, Saraswathi, Terao & Fuess, 2009; Gowda, Tokarčík et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,4-dimethylphenyl)-maleamic acid (I) has been determined. The asymmetric unit of the cell contains four independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure of (I), the rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-(2,6-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group in N- (2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

In the maleamic moiety the C8—C9, C28—C29, C48—C49 and C68—C69 bond lengths of 1.322 (5), 1.343 (4), 1.320 (4) and 1.321 (4) Å clearly indicate the double bond character. Each maleamic moiety features one intramolecular hydrogen O–H···O bond (Table 1). The mean planes through the phenyl ring and the amido group –NHCO– are inclined at the angles of 17.4 (3), 20.8 (2), 16.2 (2) and 11.2 (3)° in the first, second, third and fourth molecules, respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into ribbons parallel to the ab-plane of the cell (Fig. 2).

Related literature top

For our study on the effect of ring and side-chain substitutions on the crystal structures of biologically important amides, see: Gowda, Foro, Saraswathi & Fuess (2009); Gowda, Foro, Saraswathi, Terao & Fuess (2009); Gowda, Tokarčík et al. (2009); Prasad et al. (2002). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For a related structure, see: Lo & Ng (2009);

Experimental top

To a solution of maleic anhydride (0.025 mol) in toluene (25 ml) was added dropwise a solution of 3,4-dimethylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dimethylaniline. The resultant solid N-(3,4-dimethylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

All H atoms bonded to C and N atoms were positioned with idealized geometry (C—H = 0.93 or 0.96 Å, N—H = 0.86 Å) and refined using a riding model. H atoms of the carboxyl groups were located in a difference map and finally refined with O—H distance fixed at 0.88 Å. The Uiso(H) values were set at 1.2Ueq(Caromatic, N, O) and 1.5Ueq(Cmethyl). Two methyl groups (C12 and C72) exhibit orientational disorder in hydrogen atoms positions. In both groups two sets of H atoms were refined with equal occupancies of 0.50. The U values of the fragment C62, C63, C64, C65, C66 and C72 and of the atom pairs C42—C43 and N2—C21 were subject to a restraint (DELU instruction), i.e. the components of the displacement parameters in the direction of the bond were restrained to be equal within an effective standard deviation 0.005. Because of low anomalous scattering power the absolute structure cannot be determined reliably and therefore 5143 Friedel pairs were merged.

Structure description top

As a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically important amides (Gowda, Foro, Saraswathi & Fuess, 2009; Gowda, Foro, Saraswathi, Terao & Fuess, 2009; Gowda, Tokarčík et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,4-dimethylphenyl)-maleamic acid (I) has been determined. The asymmetric unit of the cell contains four independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure of (I), the rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-(2,6-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group in N- (2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

In the maleamic moiety the C8—C9, C28—C29, C48—C49 and C68—C69 bond lengths of 1.322 (5), 1.343 (4), 1.320 (4) and 1.321 (4) Å clearly indicate the double bond character. Each maleamic moiety features one intramolecular hydrogen O–H···O bond (Table 1). The mean planes through the phenyl ring and the amido group –NHCO– are inclined at the angles of 17.4 (3), 20.8 (2), 16.2 (2) and 11.2 (3)° in the first, second, third and fourth molecules, respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into ribbons parallel to the ab-plane of the cell (Fig. 2).

For our study on the effect of ring and side-chain substitutions on the crystal structures of biologically important amides, see: Gowda, Foro, Saraswathi & Fuess (2009); Gowda, Foro, Saraswathi, Terao & Fuess (2009); Gowda, Tokarčík et al. (2009); Prasad et al. (2002). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For a related structure, see: Lo & Ng (2009);

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of the title compound with N—H···O hydrogen bonds represented by dashed lines. Symmetry code (i): x,y - 1,z. H atoms not involved in intermolecular hydrogen bonding have been omitted.
N-(3,4-Dimethylphenyl)maleamic acid top
Crystal data top
C12H13NO3F(000) = 928
Mr = 219.23Dx = 1.314 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 31828 reflections
a = 11.9003 (2) Åθ = 1.9–27.8°
b = 12.9991 (2) ŵ = 0.10 mm1
c = 15.2641 (3) ÅT = 295 K
β = 110.207 (2)°Truncated square pyramid, colourless
V = 2215.92 (7) Å30.48 × 0.32 × 0.31 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5279 independent reflections
Graphite monochromator4100 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.028
ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1515
Tmin = 0.958, Tmax = 0.965k = 1717
67608 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0958P)2 + 0.0272P]
where P = (Fo2 + 2Fc2)/3
5279 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 0.29 e Å3
10 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H13NO3V = 2215.92 (7) Å3
Mr = 219.23Z = 8
Monoclinic, PcMo Kα radiation
a = 11.9003 (2) ŵ = 0.10 mm1
b = 12.9991 (2) ÅT = 295 K
c = 15.2641 (3) Å0.48 × 0.32 × 0.31 mm
β = 110.207 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5279 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4100 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.965Rint = 0.028
67608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04410 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
5279 reflectionsΔρmin = 0.16 e Å3
577 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5468 (2)0.4000 (2)0.1080 (2)0.0430 (6)
C20.6117 (3)0.4743 (2)0.0804 (2)0.0450 (6)
H20.57580.53650.0560.054*
C30.7309 (3)0.4559 (2)0.0893 (2)0.0462 (7)
C40.7851 (3)0.3631 (2)0.1243 (2)0.0474 (7)
C50.7189 (3)0.2888 (2)0.1513 (2)0.0493 (7)
H50.75440.22640.17550.059*
C60.6006 (3)0.3075 (2)0.1423 (2)0.0484 (7)
H60.55710.25690.15960.058*
C70.3634 (3)0.4981 (2)0.0983 (2)0.0468 (6)
C80.2429 (3)0.4810 (3)0.1042 (3)0.0564 (8)
H80.21640.41320.09760.068*
C90.1684 (3)0.5495 (2)0.1176 (3)0.0585 (8)
H90.09830.52130.12120.07*
C100.1759 (3)0.6647 (2)0.1281 (2)0.0524 (7)
C110.7982 (3)0.5385 (2)0.0590 (3)0.0589 (8)
H11A0.86460.56130.11180.088*
H11B0.74570.59550.03360.088*
H11C0.82720.51150.01230.088*
C120.9124 (3)0.3412 (3)0.1342 (3)0.0626 (9)
H12A0.93380.27340.15940.094*0.5
H12B0.96390.39090.17540.094*0.5
H12C0.92110.34530.0740.094*0.5
H12D0.94550.39960.11310.094*0.5
H12E0.91530.28220.09720.094*0.5
H12F0.95810.32780.19850.094*0.5
N10.4259 (2)0.41119 (17)0.10310 (19)0.0495 (6)
H10.38790.35490.10320.059*
O10.40148 (19)0.58444 (16)0.08902 (19)0.0609 (6)
O20.2602 (2)0.71471 (17)0.1095 (2)0.0745 (7)
H2A0.30480.6710.0920.089*
O30.1018 (2)0.70943 (18)0.1511 (2)0.0708 (7)
C210.0264 (2)0.63766 (18)0.36357 (17)0.0369 (5)
C220.0921 (3)0.7141 (2)0.38831 (19)0.0388 (6)
H220.05620.77680.41120.047*
C230.2114 (2)0.69692 (19)0.37893 (18)0.0382 (6)
C240.2663 (2)0.6027 (2)0.34333 (18)0.0405 (6)
C250.1979 (3)0.5278 (2)0.3203 (2)0.0480 (7)
H250.23280.46470.29780.058*
C260.0802 (3)0.5444 (2)0.3298 (2)0.0471 (7)
H260.03660.49310.31350.056*
C270.1559 (3)0.7351 (2)0.3711 (2)0.0429 (6)
C280.2785 (3)0.7178 (2)0.3698 (2)0.0505 (7)
H280.30610.65030.37850.061*
C290.3543 (3)0.7882 (2)0.3577 (3)0.0552 (8)
H290.42740.76090.35970.066*
C300.3450 (3)0.8997 (2)0.3418 (2)0.0511 (7)
C310.2811 (3)0.7797 (2)0.4058 (2)0.0525 (7)
H31A0.22890.83630.43320.079*
H31B0.31420.75290.45030.079*
H31C0.34470.80290.35130.079*
C320.3959 (3)0.5826 (3)0.3293 (2)0.0548 (7)
H32A0.4150.51240.31070.082*
H32B0.44550.62750.28160.082*
H32C0.410.59520.38660.082*
N20.09531 (19)0.64905 (16)0.37116 (16)0.0417 (5)
H2N0.13520.59280.37650.05*
O210.11403 (19)0.82277 (15)0.37276 (19)0.0594 (6)
O220.2552 (2)0.95070 (16)0.3502 (2)0.0701 (8)
H22A0.20370.90740.35970.084*
O230.4227 (2)0.94389 (17)0.3212 (2)0.0689 (7)
C410.6529 (2)0.13584 (19)0.35178 (18)0.0367 (5)
C420.7424 (3)0.2090 (2)0.3831 (2)0.0413 (6)
H420.72610.27140.4060.05*
C430.8552 (2)0.1909 (2)0.38079 (19)0.0400 (5)
C440.8820 (2)0.0970 (2)0.3492 (2)0.0408 (6)
C450.7941 (3)0.0228 (2)0.3204 (2)0.0488 (7)
H450.81210.04070.30040.059*
C460.6794 (2)0.04100 (19)0.3205 (2)0.0441 (6)
H460.62060.00940.30.053*
C470.4769 (2)0.23407 (19)0.3576 (2)0.0428 (6)
C480.3514 (3)0.2177 (2)0.3524 (3)0.0518 (7)
H480.32620.14960.34810.062*
C490.2708 (3)0.2873 (2)0.3530 (3)0.0578 (8)
H490.19770.25960.35050.069*
C500.2750 (3)0.4020 (2)0.3570 (2)0.0538 (7)
C510.9488 (3)0.2750 (2)0.4126 (3)0.0619 (9)
H51A0.91880.32990.44050.093*
H51B0.96640.30090.35990.093*
H51C1.02040.24750.45760.093*
C521.0043 (3)0.0740 (3)0.3436 (3)0.0600 (8)
H52A1.00970.00210.33130.09*
H52B1.06520.09170.40170.09*
H52C1.01540.11370.29410.09*
N30.53418 (19)0.14672 (16)0.35181 (16)0.0420 (5)
H3N0.49420.09070.34760.05*
O410.52359 (19)0.31979 (15)0.3658 (2)0.0668 (7)
O420.3700 (2)0.45152 (16)0.3612 (2)0.0663 (7)
H42A0.42740.40760.36390.08*
O430.1861 (2)0.44801 (18)0.3567 (2)0.0835 (9)
C610.1341 (3)0.8982 (2)0.11567 (19)0.0422 (6)
C620.2221 (3)0.9730 (2)0.0861 (2)0.0452 (6)
H620.20431.03660.06610.054*
C630.3375 (3)0.9533 (2)0.0862 (2)0.0468 (6)
C640.3650 (3)0.8579 (2)0.1163 (2)0.0489 (7)
C650.2730 (3)0.7836 (2)0.1469 (2)0.0507 (7)
H650.28940.71980.16730.061*
C660.1596 (3)0.8041 (2)0.1469 (2)0.0502 (7)
H660.09980.75460.16790.06*
C670.0405 (3)0.9968 (2)0.1050 (2)0.0466 (7)
C680.1659 (3)0.9812 (2)0.1108 (2)0.0523 (8)
H680.19150.91320.1150.063*
C690.2463 (3)1.0512 (2)0.1108 (3)0.0615 (8)
H690.31961.02350.11370.074*
C700.2430 (3)1.1660 (2)0.1070 (3)0.0554 (8)
C710.4309 (3)1.0354 (3)0.0559 (3)0.0679 (9)
H71A0.49871.01020.00550.102*
H71B0.39851.09460.03540.102*
H71C0.45551.05420.10740.102*
C720.4875 (3)0.8336 (3)0.1182 (3)0.0653 (9)
H72A0.48840.76480.14070.098*0.5
H72B0.54520.83940.05620.098*0.5
H72C0.50740.88120.15870.098*0.5
H72D0.53890.89210.09640.098*0.5
H72E0.48210.81750.18090.098*0.5
H72F0.51990.77570.07840.098*0.5
N40.0147 (2)0.91139 (17)0.11665 (17)0.0450 (5)
H4N0.02780.85630.12610.054*
O610.0095 (2)1.08224 (16)0.0903 (2)0.0649 (6)
O620.1442 (2)1.21427 (16)0.09843 (19)0.0637 (6)
H62A0.08821.16940.09690.076*
O630.3342 (2)1.21084 (19)0.1144 (3)0.0878 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (14)0.0391 (13)0.0533 (15)0.0002 (11)0.0177 (12)0.0032 (11)
C20.0439 (16)0.0392 (14)0.0527 (16)0.0027 (12)0.0178 (13)0.0025 (12)
C30.0528 (18)0.0398 (14)0.0507 (17)0.0023 (12)0.0238 (14)0.0044 (11)
C40.0418 (16)0.0443 (15)0.0589 (17)0.0038 (12)0.0209 (14)0.0069 (12)
C50.0468 (16)0.0394 (14)0.0616 (18)0.0040 (12)0.0187 (15)0.0006 (13)
C60.0461 (17)0.0347 (13)0.0676 (19)0.0014 (12)0.0240 (14)0.0011 (12)
C70.0356 (14)0.0372 (14)0.0689 (18)0.0015 (11)0.0196 (13)0.0007 (12)
C80.0403 (16)0.0445 (16)0.085 (2)0.0039 (13)0.0220 (16)0.0029 (15)
C90.0415 (16)0.0452 (16)0.093 (2)0.0009 (13)0.0282 (16)0.0067 (15)
C100.0465 (16)0.0411 (15)0.0701 (19)0.0039 (13)0.0209 (14)0.0039 (13)
C110.0536 (18)0.0518 (17)0.082 (2)0.0080 (14)0.0370 (17)0.0011 (15)
C120.0453 (18)0.065 (2)0.080 (2)0.0038 (15)0.0249 (17)0.0128 (16)
N10.0429 (13)0.0365 (12)0.0731 (16)0.0020 (10)0.0253 (12)0.0008 (11)
O10.0457 (11)0.0383 (10)0.1082 (18)0.0021 (9)0.0386 (12)0.0003 (11)
O20.0640 (16)0.0378 (12)0.137 (2)0.0040 (10)0.0545 (16)0.0031 (12)
O30.0603 (14)0.0574 (14)0.1057 (18)0.0152 (11)0.0428 (14)0.0056 (12)
C210.0358 (13)0.0307 (12)0.0480 (15)0.0021 (10)0.0194 (11)0.0004 (10)
C220.0402 (14)0.0299 (12)0.0512 (15)0.0014 (10)0.0220 (12)0.0030 (10)
C230.0389 (14)0.0327 (12)0.0469 (15)0.0058 (10)0.0197 (12)0.0027 (10)
C240.0396 (14)0.0398 (14)0.0453 (14)0.0043 (11)0.0187 (12)0.0004 (11)
C250.0519 (18)0.0355 (13)0.0623 (19)0.0108 (12)0.0270 (15)0.0101 (12)
C260.0515 (17)0.0333 (13)0.0658 (18)0.0012 (11)0.0323 (14)0.0067 (11)
C270.0430 (15)0.0326 (13)0.0592 (17)0.0004 (11)0.0256 (13)0.0017 (11)
C280.0410 (15)0.0294 (12)0.087 (2)0.0030 (11)0.0293 (15)0.0044 (13)
C290.0320 (14)0.0447 (16)0.095 (2)0.0003 (12)0.0291 (15)0.0055 (15)
C300.0359 (15)0.0408 (15)0.078 (2)0.0089 (12)0.0219 (14)0.0089 (13)
C310.0512 (17)0.0390 (14)0.076 (2)0.0089 (12)0.0335 (16)0.0027 (13)
C320.0438 (16)0.0537 (17)0.0700 (19)0.0067 (14)0.0238 (15)0.0015 (14)
N20.0338 (11)0.0292 (10)0.0679 (15)0.0024 (8)0.0249 (11)0.0017 (9)
O210.0489 (11)0.0289 (9)0.1141 (18)0.0038 (8)0.0455 (12)0.0007 (10)
O220.0547 (15)0.0347 (11)0.137 (2)0.0010 (9)0.0542 (16)0.0025 (12)
O230.0545 (13)0.0493 (12)0.1149 (19)0.0133 (11)0.0444 (13)0.0027 (12)
C410.0361 (14)0.0295 (11)0.0482 (15)0.0044 (10)0.0190 (11)0.0018 (10)
C420.0459 (15)0.0303 (12)0.0509 (15)0.0042 (10)0.0207 (12)0.0038 (10)
C430.0354 (13)0.0326 (12)0.0511 (15)0.0018 (10)0.0140 (12)0.0004 (11)
C440.0352 (14)0.0378 (13)0.0527 (15)0.0093 (10)0.0191 (12)0.0015 (11)
C450.0478 (16)0.0313 (12)0.072 (2)0.0049 (11)0.0273 (15)0.0074 (12)
C460.0387 (14)0.0286 (12)0.0659 (18)0.0019 (10)0.0191 (13)0.0042 (11)
C470.0380 (14)0.0272 (12)0.0672 (18)0.0044 (10)0.0231 (13)0.0005 (11)
C480.0461 (16)0.0309 (13)0.088 (2)0.0034 (12)0.0348 (16)0.0037 (13)
C490.0366 (15)0.0439 (16)0.102 (2)0.0010 (13)0.0352 (16)0.0026 (16)
C500.0421 (16)0.0385 (15)0.086 (2)0.0077 (12)0.0284 (15)0.0023 (13)
C510.0411 (16)0.0489 (17)0.094 (3)0.0070 (12)0.0208 (17)0.0182 (16)
C520.0401 (17)0.0526 (17)0.095 (2)0.0091 (13)0.0330 (16)0.0054 (16)
N30.0379 (12)0.0271 (10)0.0672 (15)0.0036 (9)0.0263 (11)0.0011 (9)
O410.0426 (11)0.0301 (10)0.138 (2)0.0009 (9)0.0438 (13)0.0023 (11)
O420.0481 (13)0.0353 (11)0.124 (2)0.0050 (9)0.0399 (14)0.0040 (11)
O430.0504 (14)0.0443 (12)0.166 (3)0.0117 (10)0.0500 (17)0.0096 (14)
C610.0403 (15)0.0354 (13)0.0528 (16)0.0049 (11)0.0187 (13)0.0022 (11)
C620.0409 (14)0.0365 (13)0.0579 (17)0.0006 (11)0.0167 (13)0.0060 (12)
C630.0440 (15)0.0406 (14)0.0541 (16)0.0000 (12)0.0148 (13)0.0023 (12)
C640.0454 (15)0.0376 (14)0.0648 (18)0.0070 (11)0.0206 (14)0.0049 (12)
C650.0520 (16)0.0375 (14)0.067 (2)0.0064 (12)0.0262 (16)0.0011 (13)
C660.0562 (17)0.0351 (14)0.0647 (18)0.0001 (12)0.0279 (15)0.0029 (12)
C670.0427 (16)0.0385 (14)0.0654 (18)0.0033 (11)0.0273 (14)0.0005 (12)
C680.0423 (16)0.0370 (14)0.085 (2)0.0015 (12)0.0310 (15)0.0033 (14)
C690.0459 (17)0.0450 (17)0.101 (3)0.0004 (14)0.0351 (17)0.0058 (17)
C700.0466 (17)0.0437 (16)0.078 (2)0.0024 (14)0.0241 (15)0.0061 (14)
C710.0435 (17)0.0501 (17)0.108 (3)0.0048 (13)0.0232 (18)0.0119 (17)
C720.0508 (18)0.0541 (19)0.091 (3)0.0094 (15)0.0245 (18)0.0014 (17)
N40.0408 (12)0.0311 (11)0.0658 (15)0.0031 (9)0.0220 (12)0.0025 (9)
O610.0446 (11)0.0361 (10)0.1192 (19)0.0011 (9)0.0348 (12)0.0126 (11)
O620.0484 (13)0.0386 (11)0.1059 (18)0.0005 (9)0.0288 (13)0.0048 (11)
O630.0550 (15)0.0537 (14)0.164 (3)0.0110 (11)0.0502 (17)0.0081 (16)
Geometric parameters (Å, º) top
C1—C61.378 (4)C41—C421.384 (4)
C1—C21.390 (4)C41—C461.397 (4)
C1—N11.423 (4)C41—N31.420 (3)
C2—C31.399 (5)C42—C431.374 (4)
C2—H20.93C42—H420.93
C3—C41.385 (4)C43—C441.389 (4)
C3—C111.505 (4)C43—C511.516 (4)
C4—C51.395 (4)C44—C451.379 (4)
C4—C121.498 (4)C44—C521.518 (4)
C5—C61.388 (4)C45—C461.386 (4)
C5—H50.93C45—H450.93
C6—H60.93C46—H460.93
C7—O11.237 (3)C47—O411.232 (3)
C7—N11.341 (4)C47—N31.343 (3)
C7—C81.483 (4)C47—C481.483 (4)
C8—C91.322 (5)C48—C491.320 (4)
C8—H80.93C48—H480.93
C9—C101.505 (4)C49—C501.493 (4)
C9—H90.93C49—H490.93
C10—O31.206 (4)C50—O431.214 (3)
C10—O21.306 (4)C50—O421.283 (4)
C11—H11A0.96C51—H51A0.96
C11—H11B0.96C51—H51B0.96
C11—H11C0.96C51—H51C0.96
C12—H12A0.96C52—H52A0.96
C12—H12B0.96C52—H52B0.96
C12—H12C0.96C52—H52C0.96
C12—H12D0.96N3—H3N0.86
C12—H12E0.96O42—H42A0.88
C12—H12F0.96C61—C661.384 (4)
N1—H10.86C61—C621.385 (4)
O2—H2A0.88C61—N41.426 (4)
C21—C261.384 (4)C62—C631.398 (4)
C21—C221.395 (3)C62—H620.93
C21—N21.420 (3)C63—C641.400 (4)
C22—C231.394 (4)C63—C711.494 (4)
C22—H220.93C64—C651.413 (4)
C23—C241.406 (4)C64—C721.502 (4)
C23—C311.500 (4)C65—C661.377 (5)
C24—C251.390 (4)C65—H650.93
C24—C321.505 (4)C66—H660.93
C25—C261.375 (4)C67—O611.243 (3)
C25—H250.93C67—N41.333 (3)
C26—H260.93C67—C681.479 (4)
C27—O211.247 (3)C68—C691.321 (4)
C27—N21.332 (3)C68—H680.93
C27—C281.483 (4)C69—C701.493 (4)
C28—C291.343 (4)C69—H690.93
C28—H280.93C70—O631.203 (4)
C29—C301.467 (4)C70—O621.299 (4)
C29—H290.93C71—H71A0.96
C30—O231.218 (4)C71—H71B0.96
C30—O221.301 (4)C71—H71C0.96
C31—H31A0.96C72—H72A0.96
C31—H31B0.96C72—H72B0.96
C31—H31C0.96C72—H72C0.96
C32—H32A0.96C72—H72D0.96
C32—H32B0.96C72—H72E0.96
C32—H32C0.96C72—H72F0.96
N2—H2N0.86N4—H4N0.86
O22—H22A0.88O62—H62A0.88
C6—C1—C2119.2 (3)C42—C41—C46119.2 (2)
C6—C1—N1116.0 (3)C42—C41—N3125.4 (2)
C2—C1—N1124.8 (3)C46—C41—N3115.4 (2)
C1—C2—C3120.2 (3)C43—C42—C41121.0 (2)
C1—C2—H2119.9C43—C42—H42119.5
C3—C2—H2119.9C41—C42—H42119.5
C4—C3—C2120.5 (3)C42—C43—C44120.2 (2)
C4—C3—C11121.0 (3)C42—C43—C51119.0 (2)
C2—C3—C11118.5 (3)C44—C43—C51120.9 (2)
C3—C4—C5118.9 (3)C45—C44—C43119.1 (2)
C3—C4—C12121.6 (3)C45—C44—C52118.7 (2)
C5—C4—C12119.5 (3)C43—C44—C52122.2 (3)
C6—C5—C4120.4 (3)C44—C45—C46121.3 (2)
C6—C5—H5119.8C44—C45—H45119.4
C4—C5—H5119.8C46—C45—H45119.4
C1—C6—C5120.8 (3)C45—C46—C41119.3 (2)
C1—C6—H6119.6C45—C46—H46120.3
C5—C6—H6119.6C41—C46—H46120.3
O1—C7—N1123.5 (3)O41—C47—N3123.3 (3)
O1—C7—C8122.9 (3)O41—C47—C48123.1 (2)
N1—C7—C8113.6 (2)N3—C47—C48113.6 (2)
C9—C8—C7128.5 (3)C49—C48—C47128.5 (3)
C9—C8—H8115.8C49—C48—H48115.8
C7—C8—H8115.8C47—C48—H48115.8
C8—C9—C10131.9 (3)C48—C49—C50132.1 (3)
C8—C9—H9114C48—C49—H49114
C10—C9—H9114C50—C49—H49114
O3—C10—O2121.1 (3)O43—C50—O42120.4 (3)
O3—C10—C9119.2 (3)O43—C50—C49118.3 (3)
O2—C10—C9119.6 (3)O42—C50—C49121.3 (3)
C3—C11—H11A109.5C43—C51—H51A109.5
C3—C11—H11B109.5C43—C51—H51B109.5
H11A—C11—H11B109.5H51A—C51—H51B109.5
C3—C11—H11C109.5C43—C51—H51C109.5
H11A—C11—H11C109.5H51A—C51—H51C109.5
H11B—C11—H11C109.5H51B—C51—H51C109.5
C4—C12—H12A109.5C44—C52—H52A109.5
C4—C12—H12B109.5C44—C52—H52B109.5
H12A—C12—H12B109.5H52A—C52—H52B109.5
C4—C12—H12C109.5C44—C52—H52C109.5
H12A—C12—H12C109.5H52A—C52—H52C109.5
H12B—C12—H12C109.5H52B—C52—H52C109.5
C4—C12—H12D109.5C47—N3—C41127.8 (2)
H12A—C12—H12D141.1C47—N3—H3N116.1
H12B—C12—H12D56.3C41—N3—H3N116.1
H12C—C12—H12D56.3C50—O42—H42A109.5
C4—C12—H12E109.5C66—C61—C62120.1 (3)
H12A—C12—H12E56.3C66—C61—N4116.0 (3)
H12B—C12—H12E141.1C62—C61—N4123.9 (2)
H12C—C12—H12E56.3C61—C62—C63120.2 (3)
H12D—C12—H12E109.5C61—C62—H62119.9
C4—C12—H12F109.5C63—C62—H62119.9
H12A—C12—H12F56.3C62—C63—C64120.2 (3)
H12B—C12—H12F56.3C62—C63—C71119.7 (3)
H12C—C12—H12F141.1C64—C63—C71120.1 (3)
H12D—C12—H12F109.5C63—C64—C65118.2 (3)
H12E—C12—H12F109.5C63—C64—C72122.0 (3)
C7—N1—C1128.4 (2)C65—C64—C72119.8 (3)
C7—N1—H1115.8C66—C65—C64121.0 (3)
C1—N1—H1115.8C66—C65—H65119.5
C10—O2—H2A109.5C64—C65—H65119.5
C26—C21—C22119.6 (2)C65—C66—C61120.2 (3)
C26—C21—N2116.7 (2)C65—C66—H66119.9
C22—C21—N2123.7 (2)C61—C66—H66119.9
C23—C22—C21120.3 (2)O61—C67—N4122.8 (3)
C23—C22—H22119.9O61—C67—C68123.0 (2)
C21—C22—H22119.9N4—C67—C68114.3 (2)
C22—C23—C24120.0 (2)C69—C68—C67128.4 (3)
C22—C23—C31119.8 (2)C69—C68—H68115.8
C24—C23—C31120.2 (2)C67—C68—H68115.8
C25—C24—C23118.2 (2)C68—C69—C70132.8 (3)
C25—C24—C32120.2 (3)C68—C69—H69113.6
C23—C24—C32121.5 (2)C70—C69—H69113.6
C26—C25—C24121.8 (3)O63—C70—O62122.1 (3)
C26—C25—H25119.1O63—C70—C69118.0 (3)
C24—C25—H25119.1O62—C70—C69119.9 (3)
C25—C26—C21120.0 (2)C63—C71—H71A109.5
C25—C26—H26120C63—C71—H71B109.5
C21—C26—H26120H71A—C71—H71B109.5
O21—C27—N2123.2 (3)C63—C71—H71C109.5
O21—C27—C28122.7 (2)H71A—C71—H71C109.5
N2—C27—C28114.1 (2)H71B—C71—H71C109.5
C29—C28—C27127.6 (3)C64—C72—H72A109.5
C29—C28—H28116.2C64—C72—H72B109.5
C27—C28—H28116.2H72A—C72—H72B109.5
C28—C29—C30132.9 (3)C64—C72—H72C109.5
C28—C29—H29113.6H72A—C72—H72C109.5
C30—C29—H29113.6H72B—C72—H72C109.5
O23—C30—O22120.5 (3)C64—C72—H72D109.5
O23—C30—C29119.1 (3)H72A—C72—H72D141.1
O22—C30—C29120.3 (3)H72B—C72—H72D56.3
C23—C31—H31A109.5H72C—C72—H72D56.3
C23—C31—H31B109.5C64—C72—H72E109.5
H31A—C31—H31B109.5H72A—C72—H72E56.3
C23—C31—H31C109.5H72B—C72—H72E141.1
H31A—C31—H31C109.5H72C—C72—H72E56.3
H31B—C31—H31C109.5H72D—C72—H72E109.5
C24—C32—H32A109.5C64—C72—H72F109.5
C24—C32—H32B109.5H72A—C72—H72F56.3
H32A—C32—H32B109.5H72B—C72—H72F56.3
C24—C32—H32C109.5H72C—C72—H72F141.1
H32A—C32—H32C109.5H72D—C72—H72F109.5
H32B—C32—H32C109.5H72E—C72—H72F109.5
C27—N2—C21128.7 (2)C67—N4—C61129.3 (2)
C27—N2—H2N115.7C67—N4—H4N115.4
C21—N2—H2N115.7C61—N4—H4N115.4
C30—O22—H22A109.5C70—O62—H62A109.5
C6—C1—C2—C31.3 (4)C46—C41—C42—C432.2 (4)
N1—C1—C2—C3179.2 (3)N3—C41—C42—C43179.5 (3)
C1—C2—C3—C40.9 (4)C41—C42—C43—C441.8 (4)
C1—C2—C3—C11179.8 (3)C41—C42—C43—C51177.8 (3)
C2—C3—C4—C50.6 (4)C42—C43—C44—C450.0 (4)
C11—C3—C4—C5179.9 (3)C51—C43—C44—C45179.6 (3)
C2—C3—C4—C12179.8 (3)C42—C43—C44—C52178.8 (3)
C11—C3—C4—C120.4 (4)C51—C43—C44—C520.8 (4)
C3—C4—C5—C60.6 (5)C43—C44—C45—C461.4 (5)
C12—C4—C5—C6179.7 (3)C52—C44—C45—C46177.4 (3)
C2—C1—C6—C51.4 (4)C44—C45—C46—C411.0 (5)
N1—C1—C6—C5179.1 (3)C42—C41—C46—C450.8 (4)
C4—C5—C6—C11.1 (5)N3—C41—C46—C45178.4 (3)
O1—C7—C8—C913.3 (6)O41—C47—C48—C491.8 (6)
N1—C7—C8—C9167.3 (4)N3—C47—C48—C49177.6 (4)
C7—C8—C9—C102.3 (8)C47—C48—C49—C501.4 (7)
C8—C9—C10—O3171.1 (4)C48—C49—C50—O43179.9 (4)
C8—C9—C10—O210.9 (7)C48—C49—C50—O420.4 (7)
O1—C7—N1—C16.8 (5)O41—C47—N3—C411.5 (5)
C8—C7—N1—C1173.9 (3)C48—C47—N3—C41178.0 (3)
C6—C1—N1—C7159.6 (3)C42—C41—N3—C4718.9 (4)
C2—C1—N1—C720.9 (5)C46—C41—N3—C47163.7 (3)
C26—C21—C22—C230.1 (4)C66—C61—C62—C631.0 (5)
N2—C21—C22—C23179.9 (2)N4—C61—C62—C63179.1 (3)
C21—C22—C23—C240.8 (4)C61—C62—C63—C640.1 (5)
C21—C22—C23—C31180.0 (3)C61—C62—C63—C71178.8 (3)
C22—C23—C24—C251.4 (4)C62—C63—C64—C650.5 (5)
C31—C23—C24—C25179.3 (3)C71—C63—C64—C65178.2 (3)
C22—C23—C24—C32178.0 (3)C62—C63—C64—C72179.6 (3)
C31—C23—C24—C321.3 (4)C71—C63—C64—C721.0 (5)
C23—C24—C25—C261.2 (5)C63—C64—C65—C660.2 (5)
C32—C24—C25—C26178.2 (3)C72—C64—C65—C66179.3 (3)
C24—C25—C26—C210.3 (5)C64—C65—C66—C610.7 (5)
C22—C21—C26—C250.4 (4)C62—C61—C66—C651.3 (5)
N2—C21—C26—C25179.9 (3)N4—C61—C66—C65178.8 (3)
O21—C27—C28—C299.7 (6)O61—C67—C68—C697.0 (6)
N2—C27—C28—C29170.8 (4)N4—C67—C68—C69173.2 (4)
C27—C28—C29—C300.3 (7)C67—C68—C69—C701.3 (8)
C28—C29—C30—O23170.8 (4)C68—C69—C70—O63175.1 (5)
C28—C29—C30—O229.5 (7)C68—C69—C70—O623.2 (7)
O21—C27—N2—C217.0 (5)O61—C67—N4—C610.3 (5)
C28—C27—N2—C21173.6 (3)C68—C67—N4—C61179.8 (3)
C26—C21—N2—C27155.7 (3)C66—C61—N4—C67168.4 (3)
C22—C21—N2—C2724.5 (4)C62—C61—N4—C6711.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O63i0.862.002.851 (3)168
N2—H2N···O430.862.032.865 (3)163
N3—H3N···O23i0.862.072.916 (3)167
N4—H4N···O30.862.082.930 (3)169
O2—H2A···O10.881.622.481 (3)165
O22—H22A···O210.881.592.471 (3)176
O42—H42A···O410.881.612.487 (3)175
O62—H62A···O610.881.62.480 (3)176
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H13NO3
Mr219.23
Crystal system, space groupMonoclinic, Pc
Temperature (K)295
a, b, c (Å)11.9003 (2), 12.9991 (2), 15.2641 (3)
β (°) 110.207 (2)
V3)2215.92 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.32 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.958, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
67608, 5279, 4100
Rint0.028
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.03
No. of reflections5279
No. of parameters577
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O63i0.862.002.851 (3)168
N2—H2N···O430.862.032.865 (3)163
N3—H3N···O23i0.862.072.916 (3)167
N4—H4N···O30.862.082.930 (3)169
O2—H2A···O10.881.622.481 (3)165
O22—H22A···O210.881.592.471 (3)176
O42—H42A···O410.881.612.487 (3)175
O62—H62A···O610.881.62.480 (3)176
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o2056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2807.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds