organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-6-[2-(tri­fluoro­meth­yl)phenyl­imino­meth­yl]phenol

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey
*Correspondence e-mail: htanak@omu.edu.tr

(Received 24 October 2009; accepted 26 October 2009; online 31 October 2009)

The title compound, C15H12F3NO, is a Schiff base which adopts the phenol–imine tautomeric form in the solid state. The dihedral angle between the aromatic rings is 38.79 (5)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring. In addition, there is an intra­molecular short C—H⋯F contact.

Related literature

For the biological properties of Schiff bases, see: Barton et al. (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]) Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]); Aydoğan et al. (2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]). Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Moustakali-Mavridis et al. (1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]). For the graph-set description of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]. For a related structure, see: Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o374-o376.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12F3NO

  • Mr = 279.26

  • Orthorhombic, P 21 21 21

  • a = 8.1634 (3) Å

  • b = 11.8810 (6) Å

  • c = 13.4469 (7) Å

  • V = 1304.21 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.73 × 0.51 × 0.37 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.943, Tmax = 0.970

  • 14752 measured reflections

  • 1565 independent reflections

  • 1396 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.07

  • 1565 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.93 (3) 1.77 (3) 2.619 (2) 151 (3)
C13—H13⋯F3 0.93 2.36 2.694 (3) 101

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases, i.e., compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001). There are two characteristic properties of Schiff bases, viz. Photochromism and thermochromism (Cohen et al., 1964). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine and N—H···O in keto-amine tautomers.

In the title compound (Fig. 1), the molecular structure is not planar. The dihedral angle between the aromatic ring systems [C1/C6 and C9/C14] is 38.79 (5)°. It is also known that Schiff bases may exhibit thermochromism depending on the planarity or non-planarity, respectively (Moustakali-Mavridis et al., 1978).The O—H and C=N bond lengths confirm the phenol-imine form of the title compound. These distances agree with the corresponding distances in (E)-3-[2-(Trifluoromethyl)phenyliminomethyl]-benzene-1,2-diol (Temel et al., 2007), which is related structure. The imine group is coplanar with the C1—C6 aromatic ring system as it can be shown by the C2—C1—C8—N1 torsion angle is 1.67 (19)°.

The molecular structure is stabilized by intramolecular hydrogen bonds. An intramolecular O1—H1···N1 hydrogen bond (Fig. 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995), resulting in approximate planarity of the molecular skeleton [O···N= 2.6187 (16) Å]. The crystal structure is further stabilized by intramolecular C—H···F hydrogen bond, namely C13—H13···F3. And also details of the hydrogen bond is shown in Table 1.

Related literature top

For the biological properties of Schiff bases, see: Barton et al. (1979); Layer (1963); Ingold (1969) Taggi et al. (2002); Aydoğan et al. (2001). Schiff base compounds can be classified by their photochromicand thermochromic characteristics, see: Cohen et al. (1964); Moustakali-Mavridis et al. (1978). For the graph-set description of hydrogen bonds, see: Bernstein et al. (1995. For a related structure, see: Temel et al. (2007).

Experimental top

A solution of 3-methylsalicylaldehyde (0.0233 g, 0.1711 mmol) in ethanol (10 ml) was added to a solution of 2-Triflouromethylaniline (0.0275 g, 0.1711 mmol) in ethanol (20 ml). The reaction mixture was stirred for 2 h underreflux. Single crystals suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield 69%; m.p.408–410 K).

Refinement top

C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2–1.5Ueq(C). The position of the H1 atom was obtained from a difference map and this atom was refined freely. Friedel pairs were merged in the final refinement because the value of the absolute structure parameter (Flack, 1983) is meaningless.

Structure description top

Schiff bases, i.e., compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001). There are two characteristic properties of Schiff bases, viz. Photochromism and thermochromism (Cohen et al., 1964). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine and N—H···O in keto-amine tautomers.

In the title compound (Fig. 1), the molecular structure is not planar. The dihedral angle between the aromatic ring systems [C1/C6 and C9/C14] is 38.79 (5)°. It is also known that Schiff bases may exhibit thermochromism depending on the planarity or non-planarity, respectively (Moustakali-Mavridis et al., 1978).The O—H and C=N bond lengths confirm the phenol-imine form of the title compound. These distances agree with the corresponding distances in (E)-3-[2-(Trifluoromethyl)phenyliminomethyl]-benzene-1,2-diol (Temel et al., 2007), which is related structure. The imine group is coplanar with the C1—C6 aromatic ring system as it can be shown by the C2—C1—C8—N1 torsion angle is 1.67 (19)°.

The molecular structure is stabilized by intramolecular hydrogen bonds. An intramolecular O1—H1···N1 hydrogen bond (Fig. 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995), resulting in approximate planarity of the molecular skeleton [O···N= 2.6187 (16) Å]. The crystal structure is further stabilized by intramolecular C—H···F hydrogen bond, namely C13—H13···F3. And also details of the hydrogen bond is shown in Table 1.

For the biological properties of Schiff bases, see: Barton et al. (1979); Layer (1963); Ingold (1969) Taggi et al. (2002); Aydoğan et al. (2001). Schiff base compounds can be classified by their photochromicand thermochromic characteristics, see: Cohen et al. (1964); Moustakali-Mavridis et al. (1978). For the graph-set description of hydrogen bonds, see: Bernstein et al. (1995. For a related structure, see: Temel et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability diplacement ellipsoids.
2-Methyl-6-[2-(trifluoromethyl)phenyliminomethyl]phenol top
Crystal data top
C15H12F3NOF(000) = 576
Mr = 279.26Dx = 1.422 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19471 reflections
a = 8.1634 (3) Åθ = 1.5–28.0°
b = 11.8810 (6) ŵ = 0.12 mm1
c = 13.4469 (7) ÅT = 293 K
V = 1304.21 (11) Å3Prism, light yellow
Z = 40.73 × 0.51 × 0.37 mm
Data collection top
Stoe IPDS II
diffractometer
1565 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.3°
rotation method scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.943, Tmax = 0.970l = 1616
14752 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0179P]
where P = (Fo2 + 2Fc2)/3
1565 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H12F3NOV = 1304.21 (11) Å3
Mr = 279.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1634 (3) ŵ = 0.12 mm1
b = 11.8810 (6) ÅT = 293 K
c = 13.4469 (7) Å0.73 × 0.51 × 0.37 mm
Data collection top
Stoe IPDS II
diffractometer
1565 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1396 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.970Rint = 0.030
14752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.09 e Å3
1565 reflectionsΔρmin = 0.15 e Å3
187 parameters
Special details top

Experimental. 270 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5950 (2)0.12366 (13)0.48589 (13)0.0521 (4)
C20.7604 (2)0.09829 (14)0.46506 (13)0.0521 (4)
C30.8634 (3)0.05379 (15)0.53818 (15)0.0589 (5)
C40.7966 (3)0.03487 (16)0.63136 (16)0.0669 (5)
H40.86260.00390.68060.080*
C50.6363 (3)0.06007 (18)0.65389 (16)0.0725 (6)
H50.59600.04710.71760.087*
C60.5366 (3)0.10426 (16)0.58227 (15)0.0653 (5)
H60.42850.12170.59770.078*
C71.0381 (3)0.0287 (2)0.51468 (19)0.0804 (6)
H7A1.09720.09790.50640.121*
H7B1.04400.01440.45440.121*
H7C1.08570.01370.56820.121*
C80.4855 (2)0.16517 (13)0.41041 (14)0.0536 (4)
H80.37830.18260.42800.064*
C90.4144 (2)0.21161 (13)0.24725 (14)0.0525 (4)
C100.2558 (3)0.16864 (15)0.24564 (17)0.0638 (5)
H100.22270.11810.29450.077*
C110.1481 (3)0.20022 (18)0.1726 (2)0.0757 (6)
H110.04270.17050.17200.091*
C120.1946 (3)0.27551 (18)0.10000 (19)0.0747 (6)
H120.12020.29760.05140.090*
C130.3510 (3)0.31792 (17)0.09962 (16)0.0661 (5)
H130.38270.36810.05020.079*
C140.4618 (2)0.28640 (13)0.17241 (14)0.0541 (4)
C150.6310 (3)0.33225 (16)0.17122 (15)0.0625 (5)
N10.53021 (19)0.17904 (11)0.31975 (11)0.0530 (3)
O10.82427 (18)0.11539 (13)0.37360 (11)0.0671 (4)
F10.67184 (18)0.38548 (12)0.25515 (11)0.0888 (4)
F20.74444 (17)0.25364 (12)0.15746 (12)0.0872 (4)
F30.65390 (18)0.40802 (13)0.09842 (12)0.0930 (5)
H10.738 (4)0.141 (2)0.335 (2)0.097 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0552 (10)0.0460 (7)0.0550 (9)0.0031 (7)0.0000 (8)0.0035 (7)
C20.0568 (10)0.0468 (7)0.0528 (9)0.0038 (7)0.0010 (8)0.0033 (7)
C30.0606 (11)0.0518 (8)0.0644 (11)0.0035 (8)0.0118 (9)0.0052 (8)
C40.0800 (15)0.0577 (9)0.0631 (11)0.0075 (9)0.0180 (11)0.0033 (8)
C50.0891 (16)0.0757 (11)0.0528 (11)0.0107 (11)0.0015 (11)0.0036 (9)
C60.0685 (12)0.0689 (10)0.0584 (10)0.0042 (10)0.0059 (10)0.0013 (9)
C70.0621 (13)0.0903 (14)0.0889 (16)0.0081 (11)0.0139 (13)0.0037 (13)
C80.0492 (10)0.0487 (7)0.0630 (10)0.0005 (7)0.0041 (8)0.0018 (7)
C90.0490 (9)0.0471 (7)0.0613 (10)0.0058 (7)0.0018 (8)0.0009 (7)
C100.0527 (11)0.0570 (9)0.0816 (13)0.0005 (8)0.0025 (10)0.0039 (10)
C110.0528 (11)0.0695 (11)0.1048 (17)0.0025 (9)0.0140 (12)0.0067 (12)
C120.0711 (14)0.0692 (11)0.0837 (14)0.0144 (11)0.0227 (12)0.0005 (11)
C130.0706 (13)0.0599 (10)0.0678 (12)0.0109 (9)0.0078 (10)0.0059 (9)
C140.0559 (10)0.0478 (7)0.0586 (10)0.0070 (7)0.0011 (8)0.0010 (7)
C150.0604 (11)0.0620 (10)0.0652 (11)0.0010 (8)0.0044 (9)0.0072 (9)
N10.0483 (8)0.0525 (7)0.0583 (8)0.0029 (6)0.0018 (7)0.0025 (6)
O10.0530 (8)0.0886 (9)0.0596 (8)0.0050 (7)0.0044 (7)0.0051 (7)
F10.0835 (10)0.0967 (9)0.0861 (9)0.0323 (8)0.0002 (8)0.0127 (7)
F20.0565 (7)0.0926 (8)0.1124 (11)0.0123 (7)0.0131 (7)0.0079 (8)
F30.0857 (9)0.0928 (8)0.1004 (10)0.0116 (8)0.0083 (8)0.0376 (8)
Geometric parameters (Å, º) top
C1—C61.400 (3)C9—C101.392 (3)
C1—C21.411 (3)C9—C141.397 (2)
C1—C81.440 (3)C9—N11.412 (2)
C2—O11.351 (2)C10—C111.371 (3)
C2—C31.398 (3)C10—H100.9300
C3—C41.385 (3)C11—C121.377 (3)
C3—C71.491 (3)C11—H110.9300
C4—C51.376 (3)C12—C131.373 (3)
C4—H40.9300C12—H120.9300
C5—C61.366 (3)C13—C141.385 (3)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—C151.484 (3)
C7—H7A0.9600C15—F21.328 (2)
C7—H7B0.9600C15—F11.336 (2)
C7—H7C0.9600C15—F31.343 (2)
C8—N11.283 (2)O1—H10.93 (3)
C8—H80.9300
C6—C1—C2118.34 (18)C10—C9—C14118.66 (18)
C6—C1—C8119.82 (18)C10—C9—N1122.19 (17)
C2—C1—C8121.82 (16)C14—C9—N1119.10 (17)
O1—C2—C3117.71 (18)C11—C10—C9120.5 (2)
O1—C2—C1121.19 (17)C11—C10—H10119.8
C3—C2—C1121.10 (18)C9—C10—H10119.8
C4—C3—C2117.4 (2)C10—C11—C12120.6 (2)
C4—C3—C7122.4 (2)C10—C11—H11119.7
C2—C3—C7120.1 (2)C12—C11—H11119.7
C5—C4—C3122.6 (2)C13—C12—C11119.8 (2)
C5—C4—H4118.7C13—C12—H12120.1
C3—C4—H4118.7C11—C12—H12120.1
C6—C5—C4119.7 (2)C12—C13—C14120.4 (2)
C6—C5—H5120.2C12—C13—H13119.8
C4—C5—H5120.2C14—C13—H13119.8
C5—C6—C1120.9 (2)C13—C14—C9120.02 (19)
C5—C6—H6119.6C13—C14—C15120.06 (17)
C1—C6—H6119.6C9—C14—C15119.91 (16)
C3—C7—H7A109.5F2—C15—F1106.04 (18)
C3—C7—H7B109.5F2—C15—F3105.81 (17)
H7A—C7—H7B109.5F1—C15—F3105.28 (16)
C3—C7—H7C109.5F2—C15—C14113.09 (15)
H7A—C7—H7C109.5F1—C15—C14113.39 (17)
H7B—C7—H7C109.5F3—C15—C14112.55 (17)
N1—C8—C1122.48 (18)C8—N1—C9120.06 (16)
N1—C8—H8118.8C2—O1—H1105.5 (18)
C1—C8—H8118.8
C6—C1—C2—O1179.82 (16)C9—C10—C11—C120.5 (3)
C8—C1—C2—O12.1 (2)C10—C11—C12—C131.2 (3)
C6—C1—C2—C30.7 (2)C11—C12—C13—C140.7 (3)
C8—C1—C2—C3177.39 (15)C12—C13—C14—C90.4 (3)
O1—C2—C3—C4179.06 (16)C12—C13—C14—C15179.73 (18)
C1—C2—C3—C40.5 (2)C10—C9—C14—C131.1 (2)
O1—C2—C3—C71.1 (3)N1—C9—C14—C13178.90 (16)
C1—C2—C3—C7179.41 (17)C10—C9—C14—C15179.04 (17)
C2—C3—C4—C51.2 (3)N1—C9—C14—C151.3 (2)
C7—C3—C4—C5178.6 (2)C13—C14—C15—F2116.15 (19)
C3—C4—C5—C60.8 (3)C9—C14—C15—F264.0 (2)
C4—C5—C6—C10.4 (3)C13—C14—C15—F1123.08 (19)
C2—C1—C6—C51.1 (3)C9—C14—C15—F156.8 (2)
C8—C1—C6—C5176.98 (17)C13—C14—C15—F33.7 (3)
C6—C1—C8—N1176.38 (16)C9—C14—C15—F3176.13 (16)
C2—C1—C8—N11.6 (3)C1—C8—N1—C9175.06 (14)
C14—C9—C10—C110.7 (3)C10—C9—N1—C839.7 (2)
N1—C9—C10—C11178.38 (17)C14—C9—N1—C8142.65 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.93 (3)1.77 (3)2.619 (2)151 (3)
C13—H13···F30.932.362.694 (3)101

Experimental details

Crystal data
Chemical formulaC15H12F3NO
Mr279.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.1634 (3), 11.8810 (6), 13.4469 (7)
V3)1304.21 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.73 × 0.51 × 0.37
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.943, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
14752, 1565, 1396
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.07
No. of reflections1565
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.09, 0.15

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.93 (3)1.77 (3)2.619 (2)151 (3)
C13—H13···F30.932.362.694 (3)101.2
 

Acknowledgements

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-476). The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.  Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds