organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4-Di­methyl-2-tosyl-1,2,3,3a,4,11b-hexa­hydro-11H-pyrrolo[3,4-c]pyrano[5,6-c]chromen-11-one 0.125-hydrate

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 26 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, C23H23NO5S·0.125H2O, the pyrrolidine ring has a twist conformation and the dihydro­pyran ring adopts a half-chair conformation; the two rings are cis-fused. The mol­ecule adopts a folded conformation. The sulfonyl-bound phenyl ring and the pyran ring of the coumarin ring system are stacked over one another, with a centroid–centroid distance of 3.7470 (7) Å; the dihedral angle between the two rings is 18.93 (2)°. An intra­molecular C—H⋯O hydrogen bond is observed. The solvent water mol­ecule, lying on a twofold rotation axis, is only partially occupied with an occupancy of 0.125 (relative occupancy with respect to the main molecule) and is involved in O—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For the biological activity of pyran­ocoumarin compounds, see: Kawaii et al. (2001[Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905-1911.]); Hossain et al. (1996[Hossain, C. F., Okuyama, E. & Yamazaki, M. (1996). Chem. Pharm. Bull. (Tokyo), 44, 1535-1539.]); Goel et al. (1997[Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080-1083.]); Su et al. (2009[Su, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem. 17, 6137-6143.]); Xu et al. (2006[Xu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610-4626.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23NO5S·0.125H2O

  • Mr = 427.74

  • Tetragonal, P 42 /n

  • a = 15.1932 (2) Å

  • c = 17.7180 (3) Å

  • V = 4089.91 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.50 × 0.44 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.976

  • 97892 measured reflections

  • 6004 independent reflections

  • 5114 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.05

  • 6004 reflections

  • 282 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O5 0.97 2.47 3.0588 (15) 119
O1W—H1W1⋯O2 0.83 (2) 2.05 (8) 2.837 (2) 161 (8)
C16—H16B⋯O1Wi 0.96 2.43 3.345 (5) 160
C16—H16B⋯O1Wii 0.96 2.43 3.345 (5) 160
C14—H14B⋯O1Wiii 0.96 2.44 3.282 (2) 147
C14—H14B⋯O1Wiv 0.96 2.44 3.282 (2) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iii) [y, -x+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) [-y+{\script{3\over 2}}, x, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyranocoumarins show strong activity against cancer cell lines (Kawaii et al., 2001) and exhibit monoamine oxidase inhibitory activity (Hossain et al., 1996). Antiulcer activity of some naturally occurring pyrano-coumarin has been reported (Goel et al., 1997). They also show anti-hepatitis B virus and cytotoxic activities (Su et al., 2009) and anti-TB activity (Xu et al., 2006). We report here the crystal structure of the title pyranocoumarin derivative.

In the title molecule (Fig.1), the coumarin ring system is planar with an r.m.s. deviation of 0.036 Å. The pyrrolidine ring has a twist conformation, with asymmetry parameter (Duax et al., 1976) ΔC2[N1] = ΔC2[C2—C3] = 1.7 (1)°. The tosyl group is equatorially attached to the pyrrolidine ring. The dihydropyran ring adopts a half-chair conformation, with the asymmetry parameter ΔC2[C2—C5] = 7.4 (1)°. The pyrrolidine ring is cis-fused to the dihydropyran ring. The sulfonyl group has a distorted tetrahedral geometry [O1—S1—O2 = 119.79 (6)°]. The molecule adopts a folded conformation, with the sulfonyl-bound phenyl ring and the pyran ring of the coumarin ring system being stacked over one another. The dihedral angle between the above two rings is 18.93 (2)° and their centroid-to-centroid separation is 3.7470 (7) Å. An intramolecular C4—H4A···O5 hydrogen bond is observed.

In the crystal structure, the water molecule with a fractional occupancy of 0.125 is involved in O—H···O and C—H···O hydrogen bonding with the coumarin derivative leading to the formation of a three-dimensional network (Fig.2).

Related literature top

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Hossain et al. (1996); Goel et al. (1997); Su et al. (2009); Xu et al. (2006). For asymmetry parameters, see: Duax et al. (1976).

Experimental top

To a solution of 4-hydroxycoumarin (1 mmol) in toluene (20 ml), the corresponding 2-(N-prenyl-N-tosylamino)acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA, 1 mmol) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The water H atom was located in a difference map and its positional parameters were refined with a O—H distance restraint of 0.84 (2) Å. The water molecule has a fractional occupancy of 1/8, which was initially refined and later fixed. The Uiso values were set equal to 1.5Ueq of the carrier atom for methyl and water H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Pyranocoumarins show strong activity against cancer cell lines (Kawaii et al., 2001) and exhibit monoamine oxidase inhibitory activity (Hossain et al., 1996). Antiulcer activity of some naturally occurring pyrano-coumarin has been reported (Goel et al., 1997). They also show anti-hepatitis B virus and cytotoxic activities (Su et al., 2009) and anti-TB activity (Xu et al., 2006). We report here the crystal structure of the title pyranocoumarin derivative.

In the title molecule (Fig.1), the coumarin ring system is planar with an r.m.s. deviation of 0.036 Å. The pyrrolidine ring has a twist conformation, with asymmetry parameter (Duax et al., 1976) ΔC2[N1] = ΔC2[C2—C3] = 1.7 (1)°. The tosyl group is equatorially attached to the pyrrolidine ring. The dihydropyran ring adopts a half-chair conformation, with the asymmetry parameter ΔC2[C2—C5] = 7.4 (1)°. The pyrrolidine ring is cis-fused to the dihydropyran ring. The sulfonyl group has a distorted tetrahedral geometry [O1—S1—O2 = 119.79 (6)°]. The molecule adopts a folded conformation, with the sulfonyl-bound phenyl ring and the pyran ring of the coumarin ring system being stacked over one another. The dihedral angle between the above two rings is 18.93 (2)° and their centroid-to-centroid separation is 3.7470 (7) Å. An intramolecular C4—H4A···O5 hydrogen bond is observed.

In the crystal structure, the water molecule with a fractional occupancy of 0.125 is involved in O—H···O and C—H···O hydrogen bonding with the coumarin derivative leading to the formation of a three-dimensional network (Fig.2).

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Hossain et al. (1996); Goel et al. (1997); Su et al. (2009); Xu et al. (2006). For asymmetry parameters, see: Duax et al. (1976).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The water molecule has a fractional occupancy of 0.125. One of the water H atoms is generated by the symmetry operation (3/2 - x, 3/2 - y, z). Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the c axis. The water molecule has a fractional occupancy of 0.125. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
4,4-Dimethyl-2-tosyl-1,2,3,3a,4,11b-hexahydro-11H- pyrrolo[3,4-c]pyrano[5,6-c]chromen-11-one 0.125-hydrate top
Crystal data top
C23H23NO5S·0.125H2ODx = 1.389 Mg m3
Mr = 427.74Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 9971 reflections
Hall symbol: -P 4bcθ = 2.2–29.7°
a = 15.1932 (2) ŵ = 0.20 mm1
c = 17.7180 (3) ÅT = 100 K
V = 4089.91 (10) Å3Block, colourless
Z = 80.50 × 0.44 × 0.13 mm
F(000) = 1802
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6004 independent reflections
Radiation source: fine-focus sealed tube5114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1921
Tmin = 0.845, Tmax = 0.976k = 1921
97892 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0592P)2 + 1.3394P]
where P = (Fo2 + 2Fc2)/3
6004 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C23H23NO5S·0.125H2OZ = 8
Mr = 427.74Mo Kα radiation
Tetragonal, P42/nµ = 0.20 mm1
a = 15.1932 (2) ÅT = 100 K
c = 17.7180 (3) Å0.50 × 0.44 × 0.13 mm
V = 4089.91 (10) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5114 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.976Rint = 0.058
97892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.44 e Å3
6004 reflectionsΔρmin = 0.36 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.581635 (19)0.56278 (2)0.395952 (15)0.02140 (8)
O10.62409 (6)0.47960 (7)0.40829 (5)0.0292 (2)
O20.61326 (6)0.63995 (7)0.43408 (5)0.0313 (2)
O30.30418 (6)0.47680 (5)0.26574 (4)0.01818 (16)
O40.35320 (6)0.73448 (6)0.20657 (5)0.02448 (19)
O50.35668 (6)0.77642 (6)0.32563 (5)0.02305 (18)
N10.47990 (6)0.55091 (7)0.42058 (5)0.01870 (19)
C10.43048 (8)0.47357 (8)0.39346 (6)0.0190 (2)
H1A0.44160.42260.42500.023*
H1B0.44600.45950.34180.023*
C20.33383 (7)0.50282 (7)0.39921 (6)0.0168 (2)
H20.31250.49050.45030.020*
C30.33722 (7)0.60314 (7)0.38784 (6)0.0165 (2)
H30.28650.63120.41200.020*
C40.42234 (8)0.62880 (8)0.42864 (6)0.0191 (2)
H4A0.44890.68010.40540.023*
H4B0.41110.64140.48140.023*
C50.27372 (8)0.45698 (7)0.34279 (6)0.0180 (2)
C60.32304 (7)0.56163 (7)0.25100 (6)0.0161 (2)
C70.33841 (7)0.62372 (7)0.30463 (6)0.0163 (2)
C80.58331 (7)0.58347 (8)0.29825 (6)0.0191 (2)
C90.56995 (11)0.66848 (9)0.27189 (7)0.0313 (3)
H90.56340.71500.30560.038*
C100.56654 (12)0.68315 (9)0.19508 (8)0.0387 (4)
H100.55640.73990.17750.046*
C110.57777 (10)0.61547 (9)0.14336 (7)0.0284 (3)
C120.59130 (8)0.53099 (8)0.17059 (7)0.0211 (2)
H120.59890.48480.13670.025*
C130.59373 (8)0.51415 (8)0.24766 (6)0.0195 (2)
H130.60220.45710.26530.023*
C140.57659 (14)0.63433 (12)0.05996 (8)0.0496 (5)
H14A0.55110.58530.03370.074*
H14B0.63570.64350.04250.074*
H14C0.54220.68620.05050.074*
C150.17906 (8)0.48882 (8)0.34908 (7)0.0229 (2)
H15A0.14320.45820.31300.034*
H15B0.17680.55090.33910.034*
H15C0.15750.47750.39910.034*
C160.27884 (9)0.35747 (8)0.34841 (7)0.0244 (2)
H16A0.24000.33150.31190.037*
H16B0.26170.33930.39820.037*
H16C0.33810.33860.33870.037*
C170.32585 (7)0.58344 (8)0.17165 (6)0.0180 (2)
C180.31166 (8)0.52190 (8)0.11395 (6)0.0211 (2)
H180.30070.46330.12580.025*
C190.31403 (9)0.54850 (9)0.03950 (7)0.0252 (3)
H190.30410.50780.00130.030*
C200.33121 (10)0.63606 (10)0.02134 (7)0.0307 (3)
H200.33270.65320.02900.037*
C210.34609 (10)0.69774 (9)0.07730 (7)0.0307 (3)
H210.35840.75600.06510.037*
C220.34229 (8)0.67083 (8)0.15238 (6)0.0223 (2)
C230.35020 (8)0.71478 (8)0.28241 (6)0.0190 (2)
O1W0.75000.75000.4887 (3)0.0379 (14)0.25
H1W10.714 (5)0.723 (5)0.463 (4)0.057*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01678 (14)0.03109 (17)0.01633 (13)0.00006 (10)0.00130 (9)0.00123 (10)
O10.0219 (4)0.0431 (6)0.0225 (4)0.0104 (4)0.0003 (3)0.0089 (4)
O20.0238 (5)0.0462 (6)0.0241 (4)0.0101 (4)0.0015 (3)0.0076 (4)
O30.0253 (4)0.0136 (4)0.0156 (3)0.0018 (3)0.0003 (3)0.0007 (3)
O40.0349 (5)0.0179 (4)0.0207 (4)0.0063 (3)0.0050 (3)0.0041 (3)
O50.0261 (4)0.0163 (4)0.0267 (4)0.0019 (3)0.0023 (3)0.0015 (3)
N10.0163 (4)0.0216 (5)0.0182 (4)0.0010 (4)0.0001 (3)0.0003 (3)
C10.0199 (5)0.0190 (5)0.0181 (5)0.0011 (4)0.0008 (4)0.0009 (4)
C20.0188 (5)0.0164 (5)0.0152 (4)0.0000 (4)0.0006 (4)0.0013 (4)
C30.0178 (5)0.0157 (5)0.0161 (4)0.0005 (4)0.0008 (4)0.0007 (4)
C40.0208 (5)0.0195 (5)0.0169 (5)0.0003 (4)0.0013 (4)0.0022 (4)
C50.0214 (5)0.0162 (5)0.0164 (5)0.0020 (4)0.0005 (4)0.0027 (4)
C60.0161 (5)0.0148 (5)0.0173 (5)0.0006 (4)0.0008 (4)0.0018 (4)
C70.0167 (5)0.0152 (5)0.0171 (5)0.0003 (4)0.0011 (4)0.0013 (4)
C80.0175 (5)0.0223 (5)0.0175 (5)0.0005 (4)0.0009 (4)0.0016 (4)
C90.0501 (9)0.0184 (6)0.0253 (6)0.0008 (5)0.0106 (6)0.0021 (5)
C100.0695 (11)0.0195 (6)0.0272 (6)0.0099 (6)0.0134 (7)0.0065 (5)
C110.0404 (8)0.0249 (6)0.0200 (5)0.0089 (5)0.0051 (5)0.0053 (5)
C120.0240 (6)0.0204 (5)0.0190 (5)0.0016 (4)0.0005 (4)0.0004 (4)
C130.0201 (5)0.0183 (5)0.0201 (5)0.0014 (4)0.0004 (4)0.0027 (4)
C140.0861 (14)0.0409 (9)0.0217 (6)0.0300 (9)0.0102 (7)0.0097 (6)
C150.0194 (5)0.0235 (6)0.0256 (6)0.0029 (4)0.0004 (4)0.0019 (4)
C160.0322 (7)0.0161 (5)0.0250 (6)0.0025 (4)0.0019 (5)0.0029 (4)
C170.0184 (5)0.0194 (5)0.0162 (5)0.0007 (4)0.0012 (4)0.0021 (4)
C180.0237 (6)0.0209 (5)0.0188 (5)0.0017 (4)0.0024 (4)0.0008 (4)
C190.0290 (6)0.0290 (6)0.0177 (5)0.0018 (5)0.0036 (4)0.0004 (4)
C200.0389 (8)0.0351 (7)0.0180 (5)0.0040 (6)0.0036 (5)0.0072 (5)
C210.0424 (8)0.0273 (7)0.0225 (6)0.0088 (5)0.0046 (5)0.0090 (5)
C220.0266 (6)0.0207 (6)0.0195 (5)0.0039 (4)0.0039 (4)0.0030 (4)
C230.0188 (5)0.0173 (5)0.0208 (5)0.0010 (4)0.0023 (4)0.0027 (4)
O1W0.055 (4)0.037 (3)0.022 (2)0.029 (3)0.0000.000
Geometric parameters (Å, º) top
S1—O11.4355 (10)C9—C101.3799 (19)
S1—O21.4359 (10)C9—H90.93
S1—N11.6161 (10)C10—C111.3878 (19)
S1—C81.7597 (12)C10—H100.93
O3—C61.3459 (13)C11—C121.3865 (17)
O3—C51.4727 (13)C11—C141.5054 (18)
O4—C221.3728 (14)C12—C131.3897 (15)
O4—C231.3774 (14)C12—H120.93
O5—C231.2137 (14)C13—H130.93
N1—C11.4749 (15)C14—H14A0.96
N1—C41.4784 (15)C14—H14B0.96
C1—C21.5376 (16)C14—H14C0.96
C1—H1A0.97C15—H15A0.96
C1—H1B0.97C15—H15B0.96
C2—C51.5225 (15)C15—H15C0.96
C2—C31.5382 (15)C16—H16A0.96
C2—H20.98C16—H16B0.96
C3—C71.5072 (14)C16—H16C0.96
C3—C41.5320 (16)C17—C221.3935 (16)
C3—H30.98C17—C181.4021 (16)
C4—H4A0.97C18—C191.3800 (16)
C4—H4B0.97C18—H180.93
C5—C161.5172 (16)C19—C201.3934 (19)
C5—C151.5215 (17)C19—H190.93
C6—C71.3592 (15)C20—C211.383 (2)
C6—C171.4449 (14)C20—H200.93
C7—C231.4497 (15)C21—C221.3929 (16)
C8—C91.3883 (17)C21—H210.93
C8—C131.3920 (16)O1W—H1W10.83 (2)
O1—S1—O2119.79 (6)C8—C9—H9120.4
O1—S1—N1106.89 (6)C9—C10—C11121.80 (12)
O2—S1—N1106.50 (6)C9—C10—H10119.1
O1—S1—C8107.49 (6)C11—C10—H10119.1
O2—S1—C8108.18 (6)C12—C11—C10118.31 (12)
N1—S1—C8107.42 (5)C12—C11—C14121.30 (12)
C6—O3—C5116.27 (8)C10—C11—C14120.38 (12)
C22—O4—C23121.68 (9)C11—C12—C13121.08 (11)
C1—N1—C4111.59 (9)C11—C12—H12119.5
C1—N1—S1119.20 (8)C13—C12—H12119.5
C4—N1—S1120.17 (8)C12—C13—C8119.36 (11)
N1—C1—C2103.55 (9)C12—C13—H13120.3
N1—C1—H1A111.1C8—C13—H13120.3
C2—C1—H1A111.1C11—C14—H14A109.5
N1—C1—H1B111.1C11—C14—H14B109.5
C2—C1—H1B111.1H14A—C14—H14B109.5
H1A—C1—H1B109.0C11—C14—H14C109.5
C5—C2—C1113.40 (9)H14A—C14—H14C109.5
C5—C2—C3112.79 (9)H14B—C14—H14C109.5
C1—C2—C3104.22 (9)C5—C15—H15A109.5
C5—C2—H2108.7C5—C15—H15B109.5
C1—C2—H2108.7H15A—C15—H15B109.5
C3—C2—H2108.7C5—C15—H15C109.5
C7—C3—C4113.50 (9)H15A—C15—H15C109.5
C7—C3—C2109.51 (9)H15B—C15—H15C109.5
C4—C3—C2102.63 (9)C5—C16—H16A109.5
C7—C3—H3110.3C5—C16—H16B109.5
C4—C3—H3110.3H16A—C16—H16B109.5
C2—C3—H3110.3C5—C16—H16C109.5
N1—C4—C3104.48 (9)H16A—C16—H16C109.5
N1—C4—H4A110.9H16B—C16—H16C109.5
C3—C4—H4A110.9C22—C17—C18118.96 (10)
N1—C4—H4B110.9C22—C17—C6117.53 (10)
C3—C4—H4B110.9C18—C17—C6123.50 (10)
H4A—C4—H4B108.9C19—C18—C17119.85 (11)
O3—C5—C16104.38 (9)C19—C18—H18120.1
O3—C5—C15107.45 (9)C17—C18—H18120.1
C16—C5—C15111.13 (10)C18—C19—C20120.34 (12)
O3—C5—C2109.06 (9)C18—C19—H19119.8
C16—C5—C2112.46 (9)C20—C19—H19119.8
C15—C5—C2111.93 (9)C21—C20—C19120.80 (11)
O3—C6—C7124.44 (10)C21—C20—H20119.6
O3—C6—C17114.50 (9)C19—C20—H20119.6
C7—C6—C17121.06 (10)C20—C21—C22118.62 (12)
C6—C7—C23119.59 (10)C20—C21—H21120.7
C6—C7—C3122.54 (10)C22—C21—H21120.7
C23—C7—C3117.72 (9)O4—C22—C21117.14 (11)
C9—C8—C13120.26 (11)O4—C22—C17121.43 (10)
C9—C8—S1119.68 (9)C21—C22—C17121.41 (11)
C13—C8—S1119.99 (9)O5—C23—O4116.44 (10)
C10—C9—C8119.17 (12)O5—C23—C7125.11 (11)
C10—C9—H9120.4O4—C23—C7118.45 (10)
O1—S1—N1—C147.47 (10)O2—S1—C8—C931.08 (12)
O2—S1—N1—C1176.63 (8)N1—S1—C8—C983.53 (12)
C8—S1—N1—C167.65 (10)O1—S1—C8—C1321.34 (11)
O1—S1—N1—C4168.19 (8)O2—S1—C8—C13152.02 (10)
O2—S1—N1—C439.03 (10)N1—S1—C8—C1393.37 (10)
C8—S1—N1—C476.69 (9)C13—C8—C9—C100.5 (2)
C4—N1—C1—C210.44 (11)S1—C8—C9—C10176.44 (12)
S1—N1—C1—C2157.62 (7)C8—C9—C10—C111.3 (3)
N1—C1—C2—C5152.39 (9)C9—C10—C11—C121.1 (3)
N1—C1—C2—C329.36 (10)C9—C10—C11—C14178.00 (17)
C5—C2—C3—C739.60 (12)C10—C11—C12—C130.1 (2)
C1—C2—C3—C783.82 (10)C14—C11—C12—C13178.96 (14)
C5—C2—C3—C4160.46 (9)C11—C12—C13—C80.66 (19)
C1—C2—C3—C437.03 (10)C9—C8—C13—C120.48 (18)
C1—N1—C4—C312.70 (12)S1—C8—C13—C12177.37 (9)
S1—N1—C4—C3134.11 (8)O3—C6—C17—C22178.02 (10)
C7—C3—C4—N187.73 (11)C7—C6—C17—C221.85 (16)
C2—C3—C4—N130.35 (10)O3—C6—C17—C180.97 (16)
C6—O3—C5—C16166.93 (9)C7—C6—C17—C18179.16 (11)
C6—O3—C5—C1574.98 (11)C22—C17—C18—C190.09 (18)
C6—O3—C5—C246.55 (12)C6—C17—C18—C19178.89 (11)
C1—C2—C5—O360.12 (12)C17—C18—C19—C200.55 (19)
C3—C2—C5—O358.06 (12)C18—C19—C20—C210.0 (2)
C1—C2—C5—C1655.17 (12)C19—C20—C21—C220.9 (2)
C3—C2—C5—C16173.35 (9)C23—O4—C22—C21179.72 (12)
C1—C2—C5—C15178.89 (9)C23—O4—C22—C171.34 (18)
C3—C2—C5—C1560.71 (12)C20—C21—C22—O4176.96 (13)
C5—O3—C6—C718.19 (15)C20—C21—C22—C171.4 (2)
C5—O3—C6—C17161.67 (9)C18—C17—C22—O4177.39 (11)
O3—C6—C7—C23174.40 (10)C6—C17—C22—O41.65 (17)
C17—C6—C7—C235.45 (16)C18—C17—C22—C210.91 (19)
O3—C6—C7—C30.98 (17)C6—C17—C22—C21179.95 (12)
C17—C6—C7—C3179.17 (10)C22—O4—C23—O5176.80 (11)
C4—C3—C7—C6124.43 (11)C22—O4—C23—C72.28 (16)
C2—C3—C7—C610.40 (15)C6—C7—C23—O5173.33 (11)
C4—C3—C7—C2360.11 (13)C3—C7—C23—O52.27 (17)
C2—C3—C7—C23174.13 (10)C6—C7—C23—O45.67 (16)
O1—S1—C8—C9161.76 (11)C3—C7—C23—O4178.73 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O50.972.473.0588 (15)119
O1W—H1W1···O20.83 (2)2.05 (8)2.837 (2)161 (8)
C16—H16B···O1Wi0.962.433.345 (5)160
C16—H16B···O1Wii0.962.433.345 (5)160
C14—H14B···O1Wiii0.962.443.282 (2)147
C14—H14B···O1Wiv0.962.443.282 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y1/2, z+1; (iii) y, x+3/2, z+1/2; (iv) y+3/2, x, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H23NO5S·0.125H2O
Mr427.74
Crystal system, space groupTetragonal, P42/n
Temperature (K)100
a, c (Å)15.1932 (2), 17.7180 (3)
V3)4089.91 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.44 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.845, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
97892, 6004, 5114
Rint0.058
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.05
No. of reflections6004
No. of parameters282
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O50.972.473.0588 (15)119
O1W—H1W1···O20.83 (2)2.05 (8)2.837 (2)161 (8)
C16—H16B···O1Wi0.962.433.345 (5)160
C16—H16B···O1Wii0.962.433.345 (5)160
C14—H14B···O1Wiii0.962.443.282 (2)147
C14—H14B···O1Wiv0.962.443.282 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y1/2, z+1; (iii) y, x+3/2, z+1/2; (iv) y+3/2, x, z+1/2.
 

Footnotes

Working at: Department of Physics, R. M. K. Engineering Collge, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationGoel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080–1083.  CAS PubMed Google Scholar
First citationHossain, C. F., Okuyama, E. & Yamazaki, M. (1996). Chem. Pharm. Bull. (Tokyo), 44, 1535–1539.  CrossRef CAS PubMed Google Scholar
First citationKawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905–1911.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem. 17, 6137–6143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610–4626.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds