organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4,6-Tri­methyl­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 October 2009; accepted 27 October 2009; online 31 October 2009)

The mol­ecular structure of the title compound, C13H15NO3, is stabilized by a short intra­molecular O—H⋯O hydrogen bond within the maleamic unit. In the crystal, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into zigzag chains propagating in [010].

Related literature

For our sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o2056.]); Gowda, Tokarčík et al. (2009a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]). For hydrogen bonds in carboxylic acids, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO3

  • Mr = 233.26

  • Monoclinic, C 2/c

  • a = 10.8789 (3) Å

  • b = 11.9095 (2) Å

  • c = 20.1004 (5) Å

  • β = 103.014 (2)°

  • V = 2537.36 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.56 × 0.48 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.933, Tmax = 0.965

  • 26868 measured reflections

  • 2386 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.04

  • 2386 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.90 1.61 2.5037 (13) 174
N1—H1N⋯O3i 0.86 2.12 2.9587 (15) 165
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the crystal structures of amide derivatives (Gowda, Foro et al., 2009; Gowda, Tokarčík et al., 2009a,b), the crystal structure of N-(2,4,6-trimethylphenyl)-maleamic acid (I) has been determined. The conformations of the N–H and C=O bonds in the amide segment of the structure are anti to each other. Further, the conformation of the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). The rare anti conformation of the C=O and O–H bonds of the acid group has been observed, similar to that obsrved in N-(2,6-dimethylphenyl)-maleamic acid (Gowda, Tokarčík et al., 2009a) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O–H bonds of the acid group in N-(2,4,6-trimethylphenyl)succinamic acid (Gowda, Foro et al., 2009). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

The maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The C2–C3 bond length of 1.325 (2) Å clearly indicates the double bond character. The dihedral angle between the phenyl ring and the amido group –NHCO– is 58.3 (2)°. The mean plane through all the atoms of the maleamic moiety (N1, C1, C2, C3, C4, O1, O2 and O3) has a r.m.s. value of 0.06 Å, with the most deviating atom N1. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into zigzag ribbons propagated in the [0 1 0] direction (Fig. 2).

Related literature top

For our sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009); Gowda, Tokarčík et al. (2009a,b); Lo & Ng (2009). For hydrogen bonds in carboxylic acids, see: Leiserowitz (1976).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2,4,6-trimethylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,6-trimethylaniline. The resultant solid N-(2,4,6-trimethylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions (C–H = 0.93 or 0.96 Å, N–H = 0.86 Å, O–H = 0.90 Å) and refined using a riding model. The Uiso(H) values were set at 1.2Ueq(Caromatic, N, O) or 1.5Ueq(Cmethyl). The C12 methyl group exhibits orientational disorder of the hydrogen atoms. Two sets of H atoms were refined with occupancies of 0.56 (3) and 0.44 (3).

Structure description top

As a part of studying the effect of ring and side chain substitutions on the crystal structures of amide derivatives (Gowda, Foro et al., 2009; Gowda, Tokarčík et al., 2009a,b), the crystal structure of N-(2,4,6-trimethylphenyl)-maleamic acid (I) has been determined. The conformations of the N–H and C=O bonds in the amide segment of the structure are anti to each other. Further, the conformation of the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). The rare anti conformation of the C=O and O–H bonds of the acid group has been observed, similar to that obsrved in N-(2,6-dimethylphenyl)-maleamic acid (Gowda, Tokarčík et al., 2009a) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O–H bonds of the acid group in N-(2,4,6-trimethylphenyl)succinamic acid (Gowda, Foro et al., 2009). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

The maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The C2–C3 bond length of 1.325 (2) Å clearly indicates the double bond character. The dihedral angle between the phenyl ring and the amido group –NHCO– is 58.3 (2)°. The mean plane through all the atoms of the maleamic moiety (N1, C1, C2, C3, C4, O1, O2 and O3) has a r.m.s. value of 0.06 Å, with the most deviating atom N1. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into zigzag ribbons propagated in the [0 1 0] direction (Fig. 2).

For our sudies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda, Foro et al. (2009); Gowda, Tokarčík et al. (2009a,b); Lo & Ng (2009). For hydrogen bonds in carboxylic acids, see: Leiserowitz (1976).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) with two-dimensional framework generated by N—H···O hydrogen bonds, shown as dashed lines. Symmetry code (i): -x + 1/2, y + 1/2, -z + 1/2.
N-(2,4,6-Trimethylphenyl)maleamic acid top
Crystal data top
C13H15NO3F(000) = 992
Mr = 233.26Dx = 1.221 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 17006 reflections
a = 10.8789 (3) Åθ = 1.9–29.4°
b = 11.9095 (2) ŵ = 0.09 mm1
c = 20.1004 (5) ÅT = 295 K
β = 103.014 (2)°Block, colourless
V = 2537.36 (10) Å30.56 × 0.48 × 0.35 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2386 independent reflections
Graphite monochromator2029 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.023
ω scansθmax = 25.6°, θmin = 2.1°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.933, Tmax = 0.965k = 1414
26868 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0469P)2 + 1.3266P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2386 reflectionsΔρmax = 0.17 e Å3
159 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0142 (9)
Crystal data top
C13H15NO3V = 2537.36 (10) Å3
Mr = 233.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.8789 (3) ŵ = 0.09 mm1
b = 11.9095 (2) ÅT = 295 K
c = 20.1004 (5) Å0.56 × 0.48 × 0.35 mm
β = 103.014 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2386 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2029 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.965Rint = 0.023
26868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2386 reflectionsΔρmin = 0.12 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.35967 (13)0.14861 (11)0.17051 (7)0.0419 (3)
C20.28501 (17)0.17469 (12)0.22158 (8)0.0576 (4)
H20.25470.24780.22060.069*
C30.25517 (19)0.10848 (13)0.26854 (8)0.0634 (5)
H30.21080.14450.29680.076*
C40.27916 (15)0.01212 (12)0.28450 (7)0.0486 (4)
C50.42558 (11)0.23129 (11)0.07158 (6)0.0379 (3)
C60.51419 (13)0.31543 (12)0.06931 (7)0.0456 (3)
C70.56646 (14)0.31987 (13)0.01267 (8)0.0542 (4)
H70.62480.3760.01040.065*
C80.53555 (14)0.24425 (13)0.04058 (8)0.0523 (4)
C90.44899 (14)0.16118 (12)0.03596 (7)0.0490 (4)
H90.42880.10840.07080.059*
C100.39115 (12)0.15365 (11)0.01878 (7)0.0402 (3)
C110.55135 (18)0.39999 (15)0.12605 (9)0.0693 (5)
H11A0.62180.44320.1190.104*
H11B0.57440.36150.1690.104*
H11C0.48150.44910.12630.104*
C120.5918 (2)0.25320 (19)0.10259 (10)0.0801 (6)
H12A0.56060.19310.13360.12*0.56 (3)
H12B0.68210.24830.08870.12*0.56 (3)
H12C0.56860.32390.12480.12*0.56 (3)
H12D0.64690.31710.09780.12*0.44 (3)
H12E0.52550.26190.14280.12*0.44 (3)
H12F0.63890.18630.10660.12*0.44 (3)
C130.29160 (14)0.06565 (12)0.01791 (8)0.0519 (4)
H13A0.26150.03870.02790.078*
H13B0.22270.09770.0340.078*
H13C0.3270.00440.0470.078*
N10.36385 (11)0.23264 (9)0.12731 (6)0.0424 (3)
H1N0.32570.29370.13350.051*
O10.41359 (10)0.05741 (8)0.16796 (5)0.0508 (3)
O20.34725 (10)0.07126 (8)0.25195 (5)0.0521 (3)
H2A0.37630.02670.22270.062*
O30.23146 (13)0.05442 (9)0.32755 (6)0.0693 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0520 (8)0.0339 (7)0.0424 (7)0.0010 (6)0.0165 (6)0.0039 (5)
C20.0900 (12)0.0343 (7)0.0601 (9)0.0118 (7)0.0415 (9)0.0074 (6)
C30.1035 (13)0.0422 (8)0.0594 (10)0.0066 (8)0.0497 (10)0.0029 (7)
C40.0692 (9)0.0397 (7)0.0379 (7)0.0098 (7)0.0143 (7)0.0026 (6)
C50.0387 (7)0.0361 (7)0.0401 (7)0.0004 (5)0.0114 (5)0.0075 (5)
C60.0452 (8)0.0414 (7)0.0498 (8)0.0081 (6)0.0098 (6)0.0039 (6)
C70.0474 (8)0.0531 (9)0.0658 (10)0.0150 (7)0.0209 (7)0.0091 (7)
C80.0515 (8)0.0575 (9)0.0531 (9)0.0009 (7)0.0225 (7)0.0095 (7)
C90.0556 (9)0.0491 (8)0.0440 (8)0.0036 (7)0.0149 (6)0.0009 (6)
C100.0402 (7)0.0364 (7)0.0441 (7)0.0030 (5)0.0099 (6)0.0052 (5)
C110.0781 (12)0.0590 (10)0.0706 (11)0.0267 (9)0.0163 (9)0.0111 (8)
C120.0877 (13)0.0929 (15)0.0740 (12)0.0034 (11)0.0480 (11)0.0131 (10)
C130.0547 (9)0.0453 (8)0.0546 (9)0.0148 (7)0.0101 (7)0.0023 (6)
N10.0534 (7)0.0323 (6)0.0459 (6)0.0032 (5)0.0204 (5)0.0065 (5)
O10.0653 (6)0.0409 (5)0.0518 (6)0.0141 (5)0.0252 (5)0.0110 (4)
O20.0692 (7)0.0352 (5)0.0546 (6)0.0021 (5)0.0197 (5)0.0072 (4)
O30.1074 (10)0.0511 (7)0.0589 (7)0.0122 (6)0.0390 (7)0.0112 (5)
Geometric parameters (Å, º) top
C1—O11.2409 (16)C9—C101.3880 (19)
C1—N11.3325 (16)C9—H90.93
C1—C21.4784 (19)C10—C131.5044 (18)
C2—C31.325 (2)C11—H11A0.96
C2—H20.93C11—H11B0.96
C3—C41.482 (2)C11—H11C0.96
C3—H30.93C12—H12A0.96
C4—O31.2140 (17)C12—H12B0.96
C4—O21.3004 (18)C12—H12C0.96
C5—C101.3937 (19)C12—H12D0.96
C5—C61.3983 (18)C12—H12E0.96
C5—N11.4300 (16)C12—H12F0.96
C6—C71.383 (2)C13—H13A0.96
C6—C111.507 (2)C13—H13B0.96
C7—C81.381 (2)C13—H13C0.96
C7—H70.93N1—H1N0.86
C8—C91.383 (2)O2—H2A0.9
C8—C121.511 (2)
O1—C1—N1123.00 (12)C9—C10—C13119.30 (13)
O1—C1—C2123.46 (12)C5—C10—C13122.71 (12)
N1—C1—C2113.55 (12)C6—C11—H11A109.5
C3—C2—C1129.10 (14)C6—C11—H11B109.5
C3—C2—H2115.5H11A—C11—H11B109.5
C1—C2—H2115.5C6—C11—H11C109.5
C2—C3—C4132.18 (14)H11A—C11—H11C109.5
C2—C3—H3113.9H11B—C11—H11C109.5
C4—C3—H3113.9C8—C12—H12A109.5
O3—C4—O2121.14 (14)C8—C12—H12B109.5
O3—C4—C3118.28 (14)C8—C12—H12C109.5
O2—C4—C3120.56 (12)C8—C12—H12D109.5
C10—C5—C6121.31 (12)C8—C12—H12E109.5
C10—C5—N1120.72 (11)H12D—C12—H12E109.5
C6—C5—N1117.79 (12)C8—C12—H12F109.5
C7—C6—C5117.93 (13)H12D—C12—H12F109.5
C7—C6—C11120.49 (13)H12E—C12—H12F109.5
C5—C6—C11121.58 (13)C10—C13—H13A109.5
C8—C7—C6122.64 (13)C10—C13—H13B109.5
C8—C7—H7118.7H13A—C13—H13B109.5
C6—C7—H7118.7C10—C13—H13C109.5
C7—C8—C9117.71 (13)H13A—C13—H13C109.5
C7—C8—C12121.33 (15)H13B—C13—H13C109.5
C9—C8—C12120.95 (15)C1—N1—C5126.37 (11)
C8—C9—C10122.43 (14)C1—N1—H1N116.8
C8—C9—H9118.8C5—N1—H1N116.8
C10—C9—H9118.8C4—O2—H2A109.5
C9—C10—C5117.95 (12)
O1—C1—C2—C34.9 (3)C7—C8—C9—C101.6 (2)
N1—C1—C2—C3175.19 (19)C12—C8—C9—C10176.99 (15)
C1—C2—C3—C43.2 (4)C8—C9—C10—C52.0 (2)
C2—C3—C4—O3174.0 (2)C8—C9—C10—C13175.94 (14)
C2—C3—C4—O24.5 (3)C6—C5—C10—C90.9 (2)
C10—C5—C6—C70.4 (2)N1—C5—C10—C9176.00 (12)
N1—C5—C6—C7174.81 (12)C6—C5—C10—C13176.92 (13)
C10—C5—C6—C11179.69 (14)N1—C5—C10—C131.86 (19)
N1—C5—C6—C114.5 (2)O1—C1—N1—C51.9 (2)
C5—C6—C7—C80.8 (2)C2—C1—N1—C5178.23 (13)
C11—C6—C7—C8179.93 (16)C10—C5—N1—C159.84 (18)
C6—C7—C8—C90.2 (2)C6—C5—N1—C1124.94 (15)
C6—C7—C8—C12178.41 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.901.612.5037 (13)174
N1—H1N···O3i0.862.122.9587 (15)165
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15NO3
Mr233.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)10.8789 (3), 11.9095 (2), 20.1004 (5)
β (°) 103.014 (2)
V3)2537.36 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.48 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.933, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
26868, 2386, 2029
Rint0.023
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.04
No. of reflections2386
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.12

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.901.612.5037 (13)174
N1—H1N···O3i0.862.122.9587 (15)165
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o2056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds