organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hydr­­oxy-3-(3-methyl­but-2-en­yl­oxy)xanthone

aInstituto de Biologia Molecular e Celular, & Instituto de Ciências Biomédicas Abel Salazar, Portugal, and bCentro de Química Medicinal da Universidade do Porto (CEQUIMED–UP), e Serviço de Química Orgânica, Faculdade de Farmácia, Universidade do Porto, Portugal
*Correspondence e-mail: amdamas@ibmc.up.pt

(Received 24 July 2009; accepted 1 October 2009; online 13 October 2009)

In the title compound, C18H16O4, a monoprenylated xanthone, the xanthone skeleton exhibits an essentially planar conformation (r.m.s. deviation 0.0072 Å) and the isoprenyl side chain remains approximately in the mean plane of the xanthone unit, making a dihedral angle of 4.5 (2)°. The hydroxyl group forms an intra­molecular O—H⋯O hydrogen bond. Moreover, there is a weak inter­molecular C—H⋯O inter­action between a ring C atom and the xanthene O atom. In the crystal structure, there are no inter­molecular hydrogen bonds and the crystallographic packing is governed by van der Waals forces, leading to an arrangement in which the mol­ecules assemble with their planes parallel to each other, having a separation of 3.6 (3) Å.

Related literature

For a review of the biological activity of prenylated xanthones, see: Pinto et al. (2005[Pinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517-2538.]). For background literature and synthesis of prenylated xanthones, see: Pinto et al. (2005[Pinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517-2538.]); Epifano et al. (2007[Epifano, F., Genovese, S., Menghini, L. & Curini, M. (2007). Phytochemistry, 68, 939-953.]); Castanheiro et al. (2007[Castanheiro, R. A. P., Pinto, M. M. M., Silva, A. M. S., Cravo, S. M. M., Gales, L., Damas, A. M., Pedro, M. M., Nazareth, N., Nascimento, M. S. J. & Eaton, G. (2007). Bioorg. Med. Chem. 15, 6080-6088.]). For the synthesis of the title compound using microwave radiation, see: Castanheiro et al. (2009[Castanheiro, R. A. P., Pinto, M. M. M., Cravo, S. M. M., Pinto, D. C. G. A., Silva, A. M. S. & Kijjoa, A. (2009). Tetrahedron, 65, 3848-3857.]). For analysis of related structures of xanthone derivatives, see: Gales et al. (2001[Gales, L., Sousa, M. E. de, Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2001). Acta Cryst. C57, 1319-1323.], 2005[Gales, L., de Sousa, M. E., Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2005). Acta Cryst. E61, o2213-o2215.]a,b); Castanheiro et al. (2007[Castanheiro, R. A. P., Pinto, M. M. M., Silva, A. M. S., Cravo, S. M. M., Gales, L., Damas, A. M., Pedro, M. M., Nazareth, N., Nascimento, M. S. J. & Eaton, G. (2007). Bioorg. Med. Chem. 15, 6080-6088.]). For the interaction with biological membranes and target proteins, see: Maia et al. (2005[Maia, F., ALmeida, M. R., Gales, L., Kijjoa, A., Pinto, M. M., Saraiva, M. J. & Damas, A. M. (2005). Biochem. Pharmacol. 70, 1861-1869.]); Epifano et al. (2007[Epifano, F., Genovese, S., Menghini, L. & Curini, M. (2007). Phytochemistry, 68, 939-953.]). For a review of prenylated xanthone crystal structures, see: Gales & Damas, 2005[Gales, L. & Damas, A. M. (2005). Curr. Med. Chem. 12, 2499-2515.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O4

  • Mr = 296.31

  • Triclinic, [P \overline 1]

  • a = 4.8199 (3) Å

  • b = 11.7014 (8) Å

  • c = 13.6176 (10) Å

  • α = 77.329 (6)°

  • β = 88.582 (6)°

  • γ = 79.039 (6)°

  • V = 735.54 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Gemini PX Ultra CCD area-detector diffractometer

  • Absorption correction: none

  • 8520 measured reflections

  • 2981 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.07

  • 2981 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O11 0.82 1.85 2.5846 (17) 148
C5—H5A⋯O2i 0.93 2.60 3.514 (2) 168
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Johnson & Burnett, 1996[Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Prenylated xanthones have been reported to mediate a number of important biological activities, concerning a large variety of targets with therapeutic value. The presence of the prenyl side chains seems to enhance the interaction with biological membranes and with target proteins (Maia et al., 2005 and Epifano et al., 2007) and we plan to further study these kind of interactions.

However, the synthesis of prenylated xanthones usually involves toxic reagents and is considered not only very demanding but also environmentally unfriendly (Castanheiro et al., 2007). We have looked for an alternative method to obtain prenylated xanthones. The title compound was the first example of a prenylated xanthone synthesized by the microwave irradiation method (Castanheiro et al., 2009). In fact, microwave-assisted heating under controlled conditions is an invaluable technology for medicinal chemistry because it often dramatically reduces reaction times.

In the crystal, the title compound molecules are essentially planar (Fig. 1). The isoprenyl side chain adopts a nearly coplanar conformation relatively to the xanthone skeleton (corresponding dihedral angle 4.5 (2)°). This is an exception because in the crystal structures of other prenylated xanthones, the isoprenyl side chain is usually out of the plane of the xanthones moiety (for a review of prenylated xanthone crystal structures see: Gales & Damas, 2005). Moreover, the hydroxyl substituent bound to C1 forms a strong intramolecular hydrogen bond to O11 [O1—H1A···O11 = 2.5845 (17) Å].

In the crystal structure, the title compound forms stacking planes (Fig. 2) with intermolecular separation of 3.6 Å. The packing of the molecules is governed by van der Waals forces and there are no intermolecular hydrogen bonds.

Related literature top

For a review of the biological activity of prenylated xanthones, see: Pinto et al. (2005). For background literature and synthesis of prenylated xanthones, see: Pinto et al. (2005); Epifano et al. (2007); Castanheiro et al. (2007). For the synthesis of the title compound using microwave radiation, see: Castanheiro et al. (2009). For analysis of related structures of xanthone derivatives, see: Gales et al. (2001, 2005a,b); Castanheiro et al. (2007). For the interaction with biological membranes and target proteins, see: Maia et al. (2005); Epifano et al. (2007). For a review of prenylated xanthone crystal structures, see: Gales & Damas, 2005).

Experimental top

Prenylation was carried out using prenyl bromide in alkaline medium under microwave irradiation according to the procedure reported by Castanheiro et al. (2009). Single crystals suitable for X-ray crystallographic analysis were grown by recrystallization from slow evaporation of a CH2Cl2/PE (60–80) solution.

Refinement top

Non-hydrogen atoms were refined anisotropically. The H atoms were positioned with idealized geometry using a riding model [O—H = 0.82, C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters [set to 1.2 times of the Ueq of the parent atom (1.5 times for the methyl groups)].

Structure description top

Prenylated xanthones have been reported to mediate a number of important biological activities, concerning a large variety of targets with therapeutic value. The presence of the prenyl side chains seems to enhance the interaction with biological membranes and with target proteins (Maia et al., 2005 and Epifano et al., 2007) and we plan to further study these kind of interactions.

However, the synthesis of prenylated xanthones usually involves toxic reagents and is considered not only very demanding but also environmentally unfriendly (Castanheiro et al., 2007). We have looked for an alternative method to obtain prenylated xanthones. The title compound was the first example of a prenylated xanthone synthesized by the microwave irradiation method (Castanheiro et al., 2009). In fact, microwave-assisted heating under controlled conditions is an invaluable technology for medicinal chemistry because it often dramatically reduces reaction times.

In the crystal, the title compound molecules are essentially planar (Fig. 1). The isoprenyl side chain adopts a nearly coplanar conformation relatively to the xanthone skeleton (corresponding dihedral angle 4.5 (2)°). This is an exception because in the crystal structures of other prenylated xanthones, the isoprenyl side chain is usually out of the plane of the xanthones moiety (for a review of prenylated xanthone crystal structures see: Gales & Damas, 2005). Moreover, the hydroxyl substituent bound to C1 forms a strong intramolecular hydrogen bond to O11 [O1—H1A···O11 = 2.5845 (17) Å].

In the crystal structure, the title compound forms stacking planes (Fig. 2) with intermolecular separation of 3.6 Å. The packing of the molecules is governed by van der Waals forces and there are no intermolecular hydrogen bonds.

For a review of the biological activity of prenylated xanthones, see: Pinto et al. (2005). For background literature and synthesis of prenylated xanthones, see: Pinto et al. (2005); Epifano et al. (2007); Castanheiro et al. (2007). For the synthesis of the title compound using microwave radiation, see: Castanheiro et al. (2009). For analysis of related structures of xanthone derivatives, see: Gales et al. (2001, 2005a,b); Castanheiro et al. (2007). For the interaction with biological membranes and target proteins, see: Maia et al. (2005); Epifano et al. (2007). For a review of prenylated xanthone crystal structures, see: Gales & Damas, 2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, showing parallel stacking planes 3.6Å apart. H atoms have been omitted.
1-Hydroxy-3-(3-methylbut-2-enyloxy)xanthone top
Crystal data top
C18H16O4Z = 2
Mr = 296.31F(000) = 312
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8199 (3) ÅCell parameters from 1141 reflections
b = 11.7014 (8) Åθ = 4.0–24.3°
c = 13.6176 (10) ŵ = 0.09 mm1
α = 77.329 (6)°T = 295 K
β = 88.582 (6)°Plate, yellow
γ = 79.039 (6)°0.4 × 0.2 × 0.1 mm
V = 735.54 (9) Å3
Data collection top
Oxford Diffraction Gemini PX Ultra CCD area-detector
diffractometer
1958 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.4°, θmin = 2.6°
ω and θ scansh = 56
8520 measured reflectionsk = 1414
2981 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.0559P]
where P = (Fo2 + 2Fc2)/3
2981 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H16O4γ = 79.039 (6)°
Mr = 296.31V = 735.54 (9) Å3
Triclinic, P1Z = 2
a = 4.8199 (3) ÅMo Kα radiation
b = 11.7014 (8) ŵ = 0.09 mm1
c = 13.6176 (10) ÅT = 295 K
α = 77.329 (6)°0.4 × 0.2 × 0.1 mm
β = 88.582 (6)°
Data collection top
Oxford Diffraction Gemini PX Ultra CCD area-detector
diffractometer
1958 reflections with I > 2σ(I)
8520 measured reflectionsRint = 0.017
2981 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
2981 reflectionsΔρmin = 0.15 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2991 (3)0.54781 (11)0.38058 (10)0.0702 (4)
H1A0.41060.54560.33430.105*
O20.0013 (3)0.78593 (11)0.61948 (9)0.0652 (4)
O100.6160 (2)0.91544 (10)0.36924 (8)0.0558 (3)
O110.6489 (3)0.62252 (12)0.24577 (10)0.0734 (4)
C10.3046 (3)0.64516 (14)0.41726 (13)0.0525 (4)
C20.1471 (3)0.66156 (14)0.50003 (12)0.0538 (4)
H2A0.04080.60550.53070.065*
C30.1479 (3)0.76265 (15)0.53766 (12)0.0518 (4)
C40.3038 (3)0.84872 (15)0.49224 (12)0.0538 (4)
H4A0.30000.91710.51680.065*
C4A0.4623 (3)0.82954 (14)0.41054 (11)0.0480 (4)
C50.9287 (4)0.99283 (16)0.25015 (13)0.0612 (5)
H5A0.91861.05670.28130.073*
C61.0918 (4)0.98563 (18)0.16677 (14)0.0689 (5)
H6A1.19061.04620.14080.083*
C71.1124 (4)0.89031 (18)0.12043 (14)0.0694 (5)
H7A1.22470.88700.06420.083*
C80.9666 (4)0.80095 (17)0.15780 (13)0.0634 (5)
H8A0.98090.73670.12690.076*
C8A0.7966 (3)0.80542 (15)0.24201 (12)0.0520 (4)
C90.6388 (3)0.71111 (15)0.28351 (13)0.0546 (4)
C9A0.4708 (3)0.72862 (14)0.36983 (12)0.0487 (4)
C10A0.7792 (3)0.90220 (15)0.28679 (12)0.0516 (4)
C1X0.1460 (4)0.69521 (16)0.67349 (13)0.0652 (5)
H1XA0.01280.62190.69910.078*
H1XB0.28070.67900.62900.078*
C2X0.2946 (4)0.74034 (17)0.75770 (14)0.0716 (5)
H2XA0.35580.82240.74760.086*
C3X0.3486 (4)0.67573 (16)0.84547 (13)0.0642 (5)
C4AX0.5155 (5)0.7288 (2)0.92405 (18)0.0985 (8)
H4AA0.55310.81420.90280.148*
H4AB0.40960.70550.98630.148*
H4AC0.69100.70070.93340.148*
C4BX0.2550 (6)0.5424 (2)0.87218 (17)0.1053 (8)
H4BA0.11110.51860.82680.158*
H4BB0.41350.50520.86690.158*
H4BC0.18080.51840.93990.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0865 (9)0.0539 (7)0.0832 (9)0.0265 (6)0.0115 (7)0.0323 (6)
O20.0812 (8)0.0638 (8)0.0629 (7)0.0349 (6)0.0260 (6)0.0248 (6)
O100.0642 (7)0.0533 (7)0.0592 (7)0.0242 (5)0.0179 (5)0.0229 (5)
O110.0800 (8)0.0676 (8)0.0872 (9)0.0196 (7)0.0159 (7)0.0447 (7)
C10.0567 (9)0.0432 (9)0.0611 (10)0.0120 (7)0.0055 (8)0.0158 (7)
C20.0588 (10)0.0490 (10)0.0579 (10)0.0207 (8)0.0024 (8)0.0118 (8)
C30.0562 (9)0.0508 (10)0.0519 (9)0.0157 (7)0.0032 (7)0.0145 (7)
C40.0635 (10)0.0489 (9)0.0579 (9)0.0211 (8)0.0108 (8)0.0229 (8)
C4A0.0511 (9)0.0435 (9)0.0530 (9)0.0138 (7)0.0024 (7)0.0140 (7)
C50.0684 (11)0.0575 (10)0.0618 (10)0.0196 (9)0.0132 (8)0.0161 (8)
C60.0727 (12)0.0681 (12)0.0644 (11)0.0201 (10)0.0158 (9)0.0071 (9)
C70.0728 (12)0.0791 (14)0.0542 (10)0.0099 (10)0.0166 (9)0.0157 (9)
C80.0668 (11)0.0676 (12)0.0573 (10)0.0061 (9)0.0053 (9)0.0229 (9)
C8A0.0504 (9)0.0562 (10)0.0503 (9)0.0056 (7)0.0025 (7)0.0174 (8)
C90.0542 (9)0.0522 (10)0.0617 (10)0.0063 (7)0.0029 (8)0.0241 (8)
C9A0.0476 (8)0.0463 (9)0.0545 (9)0.0088 (7)0.0027 (7)0.0160 (7)
C10A0.0525 (9)0.0540 (10)0.0492 (9)0.0100 (7)0.0050 (7)0.0140 (7)
C1X0.0767 (12)0.0563 (11)0.0664 (11)0.0262 (9)0.0178 (9)0.0117 (9)
C2X0.0800 (13)0.0569 (11)0.0794 (13)0.0187 (9)0.0279 (10)0.0161 (10)
C3X0.0750 (12)0.0612 (11)0.0605 (10)0.0236 (9)0.0129 (9)0.0141 (9)
C4AX0.1244 (19)0.0849 (16)0.0881 (15)0.0254 (14)0.0440 (14)0.0225 (13)
C4BX0.163 (2)0.0746 (15)0.0736 (14)0.0225 (15)0.0266 (15)0.0095 (11)
Geometric parameters (Å, º) top
O1—C11.3453 (19)C7—C81.369 (3)
O1—H1A0.8200C7—H7A0.9300
O2—C31.3548 (19)C8—C8A1.397 (2)
O2—C1X1.4460 (18)C8—H8A0.9300
O10—C10A1.3744 (19)C8A—C10A1.388 (2)
O10—C4A1.3748 (18)C8A—C91.463 (2)
O11—C91.247 (2)C9—C9A1.440 (2)
C1—C21.371 (2)C1X—C2X1.479 (3)
C1—C9A1.417 (2)C1X—H1XA0.9700
C2—C31.389 (2)C1X—H1XB0.9700
C2—H2A0.9300C2X—C3X1.316 (2)
C3—C41.398 (2)C2X—H2XA0.9300
C4—C4A1.369 (2)C3X—C4AX1.495 (3)
C4—H4A0.9300C3X—C4BX1.504 (3)
C4A—C9A1.404 (2)C4AX—H4AA0.9600
C5—C61.374 (2)C4AX—H4AB0.9600
C5—C10A1.391 (2)C4AX—H4AC0.9600
C5—H5A0.9300C4BX—H4BA0.9600
C6—C71.384 (3)C4BX—H4BB0.9600
C6—H6A0.9300C4BX—H4BC0.9600
C1—O1—H1A109.5O11—C9—C9A122.80 (16)
C3—O2—C1X117.02 (13)O11—C9—C8A121.86 (16)
C10A—O10—C4A119.38 (13)C9A—C9—C8A115.34 (15)
O1—C1—C2118.92 (15)C4A—C9A—C1116.83 (15)
O1—C1—C9A119.70 (15)C4A—C9A—C9121.62 (14)
C2—C1—C9A121.37 (15)C1—C9A—C9121.55 (15)
C1—C2—C3119.42 (15)O10—C10A—C8A123.03 (15)
C1—C2—H2A120.3O10—C10A—C5115.61 (15)
C3—C2—H2A120.3C8A—C10A—C5121.36 (15)
O2—C3—C2123.65 (14)O2—C1X—C2X107.68 (14)
O2—C3—C4115.03 (14)O2—C1X—H1XA110.2
C2—C3—C4121.31 (15)C2X—C1X—H1XA110.2
C4A—C4—C3118.15 (15)O2—C1X—H1XB110.2
C4A—C4—H4A120.9C2X—C1X—H1XB110.2
C3—C4—H4A120.9H1XA—C1X—H1XB108.5
C4—C4A—O10116.23 (14)C3X—C2X—C1X126.38 (18)
C4—C4A—C9A122.89 (14)C3X—C2X—H2XA116.8
O10—C4A—C9A120.88 (14)C1X—C2X—H2XA116.8
C6—C5—C10A118.31 (18)C2X—C3X—C4AX122.55 (19)
C6—C5—H5A120.8C2X—C3X—C4BX122.09 (19)
C10A—C5—H5A120.8C4AX—C3X—C4BX115.33 (16)
C5—C6—C7121.54 (18)C3X—C4AX—H4AA109.5
C5—C6—H6A119.2C3X—C4AX—H4AB109.5
C7—C6—H6A119.2H4AA—C4AX—H4AB109.5
C8—C7—C6119.64 (17)C3X—C4AX—H4AC109.5
C8—C7—H7A120.2H4AA—C4AX—H4AC109.5
C6—C7—H7A120.2H4AB—C4AX—H4AC109.5
C7—C8—C8A120.57 (17)C3X—C4BX—H4BA109.5
C7—C8—H8A119.7C3X—C4BX—H4BB109.5
C8A—C8—H8A119.7H4BA—C4BX—H4BB109.5
C10A—C8A—C8118.56 (16)C3X—C4BX—H4BC109.5
C10A—C8A—C9119.75 (15)H4BA—C4BX—H4BC109.5
C8—C8A—C9121.69 (16)H4BB—C4BX—H4BC109.5
O1—C1—C2—C3179.05 (15)C4—C4A—C9A—C9179.75 (14)
C9A—C1—C2—C30.7 (2)O10—C4A—C9A—C90.2 (2)
C1X—O2—C3—C24.5 (2)O1—C1—C9A—C4A178.64 (14)
C1X—O2—C3—C4175.47 (14)C2—C1—C9A—C4A1.1 (2)
C1—C2—C3—O2179.37 (14)O1—C1—C9A—C90.9 (2)
C1—C2—C3—C40.6 (2)C2—C1—C9A—C9179.34 (14)
O2—C3—C4—C4A178.50 (13)O11—C9—C9A—C4A179.71 (15)
C2—C3—C4—C4A1.5 (2)C8A—C9—C9A—C4A0.2 (2)
C3—C4—C4A—O10178.95 (13)O11—C9—C9A—C10.2 (2)
C3—C4—C4A—C9A1.1 (2)C8A—C9—C9A—C1179.34 (13)
C10A—O10—C4A—C4179.75 (12)C4A—O10—C10A—C8A0.2 (2)
C10A—O10—C4A—C9A0.2 (2)C4A—O10—C10A—C5179.70 (13)
C10A—C5—C6—C71.0 (3)C8—C8A—C10A—O10179.40 (14)
C5—C6—C7—C80.3 (3)C9—C8A—C10A—O100.7 (2)
C6—C7—C8—C8A0.2 (3)C8—C8A—C10A—C50.7 (2)
C7—C8—C8A—C10A0.1 (2)C9—C8A—C10A—C5179.25 (15)
C7—C8—C8A—C9179.96 (15)C6—C5—C10A—O10178.90 (14)
C10A—C8A—C9—O11179.85 (15)C6—C5—C10A—C8A1.2 (3)
C8—C8A—C9—O110.1 (3)C3—O2—C1X—C2X178.84 (14)
C10A—C8A—C9—C9A0.6 (2)O2—C1X—C2X—C3X149.12 (19)
C8—C8A—C9—C9A179.45 (13)C1X—C2X—C3X—C4AX176.29 (19)
C4—C4A—C9A—C10.2 (2)C1X—C2X—C3X—C4BX1.5 (3)
O10—C4A—C9A—C1179.79 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O110.821.852.5846 (17)148
C5—H5A···O2i0.932.603.514 (2)168
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H16O4
Mr296.31
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.8199 (3), 11.7014 (8), 13.6176 (10)
α, β, γ (°)77.329 (6), 88.582 (6), 79.039 (6)
V3)735.54 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Gemini PX Ultra CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8520, 2981, 1958
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.07
No. of reflections2981
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Johnson & Burnett, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O110.821.852.5846 (17)148.1
C5—H5A···O2i0.932.603.514 (2)167.9
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Fundaçao para a Ciência e a Tecnologia (FCT), I&D Units 226/2003 (CEQOFFUP) and 4040/2007 (CEQUIMED), FEDER, POCI for financial support and the FCT (projects FCT /FEDER /POCI 2010 and PTDC/CTM/64191/2006) for the PhD grant to RC (SFRH/BD/13167/2003).

References

First citationCastanheiro, R. A. P., Pinto, M. M. M., Cravo, S. M. M., Pinto, D. C. G. A., Silva, A. M. S. & Kijjoa, A. (2009). Tetrahedron, 65, 3848–3857.  Web of Science CrossRef CAS Google Scholar
First citationCastanheiro, R. A. P., Pinto, M. M. M., Silva, A. M. S., Cravo, S. M. M., Gales, L., Damas, A. M., Pedro, M. M., Nazareth, N., Nascimento, M. S. J. & Eaton, G. (2007). Bioorg. Med. Chem. 15, 6080–6088.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEpifano, F., Genovese, S., Menghini, L. & Curini, M. (2007). Phytochemistry, 68, 939–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGales, L. & Damas, A. M. (2005). Curr. Med. Chem. 12, 2499–2515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGales, L., de Sousa, M. E., Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2005). Acta Cryst. E61, o2213–o2215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGales, L., Sousa, M. E. de, Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2001). Acta Cryst. C57, 1319–1323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMaia, F., ALmeida, M. R., Gales, L., Kijjoa, A., Pinto, M. M., Saraiva, M. J. & Damas, A. M. (2005). Biochem. Pharmacol. 70, 1861–1869.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517–2538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds