organic compounds
1-Hydroxy-3-(3-methylbut-2-enyloxy)xanthone
aInstituto de Biologia Molecular e Celular, & Instituto de Ciências Biomédicas Abel Salazar, Portugal, and bCentro de Química Medicinal da Universidade do Porto (CEQUIMED–UP), e Serviço de Química Orgânica, Faculdade de Farmácia, Universidade do Porto, Portugal
*Correspondence e-mail: amdamas@ibmc.up.pt
In the title compound, C18H16O4, a monoprenylated xanthone, the xanthone skeleton exhibits an essentially planar conformation (r.m.s. deviation 0.0072 Å) and the isoprenyl side chain remains approximately in the mean plane of the xanthone unit, making a dihedral angle of 4.5 (2)°. The hydroxyl group forms an intramolecular O—H⋯O hydrogen bond. Moreover, there is a weak intermolecular C—H⋯O interaction between a ring C atom and the xanthene O atom. In the there are no intermolecular hydrogen bonds and the crystallographic packing is governed by leading to an arrangement in which the molecules assemble with their planes parallel to each other, having a separation of 3.6 (3) Å.
Related literature
For a review of the biological activity of prenylated xanthones, see: Pinto et al. (2005). For background literature and synthesis of prenylated xanthones, see: Pinto et al. (2005); Epifano et al. (2007); Castanheiro et al. (2007). For the synthesis of the title compound using microwave radiation, see: Castanheiro et al. (2009). For analysis of related structures of xanthone derivatives, see: Gales et al. (2001, 2005a,b); Castanheiro et al. (2007). For the interaction with biological membranes and target proteins, see: Maia et al. (2005); Epifano et al. (2007). For a review of prenylated xanthone crystal structures, see: Gales & Damas, 2005).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809040069/bv2126sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040069/bv2126Isup2.hkl
Prenylation was carried out using prenyl bromide in alkaline medium under microwave irradiation according to the procedure reported by Castanheiro et al. (2009). Single crystals suitable for X-ray crystallographic analysis were grown by recrystallization from slow evaporation of a CH2Cl2/PE (60–80) solution.
Non-hydrogen atoms were refined anisotropically. The H atoms were positioned with idealized geometry using a riding model [O—H = 0.82, C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters [set to 1.2 times of the Ueq of the parent atom (1.5 times for the methyl groups)].
Prenylated xanthones have been reported to mediate a number of important biological activities, concerning a large variety of targets with therapeutic value. The presence of the prenyl side chains seems to enhance the interaction with biological membranes and with target proteins (Maia et al., 2005 and Epifano et al., 2007) and we plan to further study these kind of interactions.
However, the synthesis of prenylated xanthones usually involves toxic reagents and is considered not only very demanding but also environmentally unfriendly (Castanheiro et al., 2007). We have looked for an alternative method to obtain prenylated xanthones. The title compound was the first example of a prenylated xanthone synthesized by the microwave irradiation method (Castanheiro et al., 2009). In fact, microwave-assisted heating under controlled conditions is an invaluable technology for medicinal chemistry because it often dramatically reduces reaction times.
In the crystal, the title compound molecules are essentially planar (Fig. 1). The isoprenyl side chain adopts a nearly coplanar conformation relatively to the xanthone skeleton (corresponding dihedral angle 4.5 (2)°). This is an exception because in the crystal structures of other prenylated xanthones, the isoprenyl side chain is usually out of the plane of the xanthones moiety (for a review of prenylated xanthone crystal structures see: Gales & Damas, 2005). Moreover, the hydroxyl substituent bound to C1 forms a strong intramolecular hydrogen bond to O11 [O1—H1A···O11 = 2.5845 (17) Å].
In the
the title compound forms stacking planes (Fig. 2) with intermolecular separation of 3.6 Å. The packing of the molecules is governed by and there are no intermolecular hydrogen bonds.For a review of the biological activity of prenylated xanthones, see: Pinto et al. (2005). For background literature and synthesis of prenylated xanthones, see: Pinto et al. (2005); Epifano et al. (2007); Castanheiro et al. (2007). For the synthesis of the title compound using microwave radiation, see: Castanheiro et al. (2009). For analysis of related structures of xanthone derivatives, see: Gales et al. (2001, 2005a,b); Castanheiro et al. (2007). For the interaction with biological membranes and target proteins, see: Maia et al. (2005); Epifano et al. (2007). For a review of prenylated xanthone crystal structures, see: Gales & Damas, 2005).
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell
CrysAlis CCD (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Johnson & Burnett, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H16O4 | Z = 2 |
Mr = 296.31 | F(000) = 312 |
Triclinic, P1 | Dx = 1.338 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8199 (3) Å | Cell parameters from 1141 reflections |
b = 11.7014 (8) Å | θ = 4.0–24.3° |
c = 13.6176 (10) Å | µ = 0.09 mm−1 |
α = 77.329 (6)° | T = 295 K |
β = 88.582 (6)° | Plate, yellow |
γ = 79.039 (6)° | 0.4 × 0.2 × 0.1 mm |
V = 735.54 (9) Å3 |
Oxford Diffraction Gemini PX Ultra CCD area-detector diffractometer | 1958 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 26.4°, θmin = 2.6° |
ω and θ scans | h = −5→6 |
8520 measured reflections | k = −14→14 |
2981 independent reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0771P)2 + 0.0559P] where P = (Fo2 + 2Fc2)/3 |
2981 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C18H16O4 | γ = 79.039 (6)° |
Mr = 296.31 | V = 735.54 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.8199 (3) Å | Mo Kα radiation |
b = 11.7014 (8) Å | µ = 0.09 mm−1 |
c = 13.6176 (10) Å | T = 295 K |
α = 77.329 (6)° | 0.4 × 0.2 × 0.1 mm |
β = 88.582 (6)° |
Oxford Diffraction Gemini PX Ultra CCD area-detector diffractometer | 1958 reflections with I > 2σ(I) |
8520 measured reflections | Rint = 0.017 |
2981 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.16 e Å−3 |
2981 reflections | Δρmin = −0.15 e Å−3 |
202 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2991 (3) | 0.54781 (11) | 0.38058 (10) | 0.0702 (4) | |
H1A | 0.4106 | 0.5456 | 0.3343 | 0.105* | |
O2 | 0.0013 (3) | 0.78593 (11) | 0.61948 (9) | 0.0652 (4) | |
O10 | 0.6160 (2) | 0.91544 (10) | 0.36924 (8) | 0.0558 (3) | |
O11 | 0.6489 (3) | 0.62252 (12) | 0.24577 (10) | 0.0734 (4) | |
C1 | 0.3046 (3) | 0.64516 (14) | 0.41726 (13) | 0.0525 (4) | |
C2 | 0.1471 (3) | 0.66156 (14) | 0.50003 (12) | 0.0538 (4) | |
H2A | 0.0408 | 0.6055 | 0.5307 | 0.065* | |
C3 | 0.1479 (3) | 0.76265 (15) | 0.53766 (12) | 0.0518 (4) | |
C4 | 0.3038 (3) | 0.84872 (15) | 0.49224 (12) | 0.0538 (4) | |
H4A | 0.3000 | 0.9171 | 0.5168 | 0.065* | |
C4A | 0.4623 (3) | 0.82954 (14) | 0.41054 (11) | 0.0480 (4) | |
C5 | 0.9287 (4) | 0.99283 (16) | 0.25015 (13) | 0.0612 (5) | |
H5A | 0.9186 | 1.0567 | 0.2813 | 0.073* | |
C6 | 1.0918 (4) | 0.98563 (18) | 0.16677 (14) | 0.0689 (5) | |
H6A | 1.1906 | 1.0462 | 0.1408 | 0.083* | |
C7 | 1.1124 (4) | 0.89031 (18) | 0.12043 (14) | 0.0694 (5) | |
H7A | 1.2247 | 0.8870 | 0.0642 | 0.083* | |
C8 | 0.9666 (4) | 0.80095 (17) | 0.15780 (13) | 0.0634 (5) | |
H8A | 0.9809 | 0.7367 | 0.1269 | 0.076* | |
C8A | 0.7966 (3) | 0.80542 (15) | 0.24201 (12) | 0.0520 (4) | |
C9 | 0.6388 (3) | 0.71111 (15) | 0.28351 (13) | 0.0546 (4) | |
C9A | 0.4708 (3) | 0.72862 (14) | 0.36983 (12) | 0.0487 (4) | |
C10A | 0.7792 (3) | 0.90220 (15) | 0.28679 (12) | 0.0516 (4) | |
C1X | −0.1460 (4) | 0.69521 (16) | 0.67349 (13) | 0.0652 (5) | |
H1XA | −0.0128 | 0.6219 | 0.6991 | 0.078* | |
H1XB | −0.2807 | 0.6790 | 0.6290 | 0.078* | |
C2X | −0.2946 (4) | 0.74034 (17) | 0.75770 (14) | 0.0716 (5) | |
H2XA | −0.3558 | 0.8224 | 0.7476 | 0.086* | |
C3X | −0.3486 (4) | 0.67573 (16) | 0.84547 (13) | 0.0642 (5) | |
C4AX | −0.5155 (5) | 0.7288 (2) | 0.92405 (18) | 0.0985 (8) | |
H4AA | −0.5531 | 0.8142 | 0.9028 | 0.148* | |
H4AB | −0.4096 | 0.7055 | 0.9863 | 0.148* | |
H4AC | −0.6910 | 0.7007 | 0.9334 | 0.148* | |
C4BX | −0.2550 (6) | 0.5424 (2) | 0.87218 (17) | 0.1053 (8) | |
H4BA | −0.1111 | 0.5186 | 0.8268 | 0.158* | |
H4BB | −0.4135 | 0.5052 | 0.8669 | 0.158* | |
H4BC | −0.1808 | 0.5184 | 0.9399 | 0.158* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0865 (9) | 0.0539 (7) | 0.0832 (9) | −0.0265 (6) | 0.0115 (7) | −0.0323 (6) |
O2 | 0.0812 (8) | 0.0638 (8) | 0.0629 (7) | −0.0349 (6) | 0.0260 (6) | −0.0248 (6) |
O10 | 0.0642 (7) | 0.0533 (7) | 0.0592 (7) | −0.0242 (5) | 0.0179 (5) | −0.0229 (5) |
O11 | 0.0800 (8) | 0.0676 (8) | 0.0872 (9) | −0.0196 (7) | 0.0159 (7) | −0.0447 (7) |
C1 | 0.0567 (9) | 0.0432 (9) | 0.0611 (10) | −0.0120 (7) | −0.0055 (8) | −0.0158 (7) |
C2 | 0.0588 (10) | 0.0490 (10) | 0.0579 (10) | −0.0207 (8) | 0.0024 (8) | −0.0118 (8) |
C3 | 0.0562 (9) | 0.0508 (10) | 0.0519 (9) | −0.0157 (7) | 0.0032 (7) | −0.0145 (7) |
C4 | 0.0635 (10) | 0.0489 (9) | 0.0579 (9) | −0.0211 (8) | 0.0108 (8) | −0.0229 (8) |
C4A | 0.0511 (9) | 0.0435 (9) | 0.0530 (9) | −0.0138 (7) | 0.0024 (7) | −0.0140 (7) |
C5 | 0.0684 (11) | 0.0575 (10) | 0.0618 (10) | −0.0196 (9) | 0.0132 (8) | −0.0161 (8) |
C6 | 0.0727 (12) | 0.0681 (12) | 0.0644 (11) | −0.0201 (10) | 0.0158 (9) | −0.0071 (9) |
C7 | 0.0728 (12) | 0.0791 (14) | 0.0542 (10) | −0.0099 (10) | 0.0166 (9) | −0.0157 (9) |
C8 | 0.0668 (11) | 0.0676 (12) | 0.0573 (10) | −0.0061 (9) | 0.0053 (9) | −0.0229 (9) |
C8A | 0.0504 (9) | 0.0562 (10) | 0.0503 (9) | −0.0056 (7) | 0.0025 (7) | −0.0174 (8) |
C9 | 0.0542 (9) | 0.0522 (10) | 0.0617 (10) | −0.0063 (7) | −0.0029 (8) | −0.0241 (8) |
C9A | 0.0476 (8) | 0.0463 (9) | 0.0545 (9) | −0.0088 (7) | −0.0027 (7) | −0.0160 (7) |
C10A | 0.0525 (9) | 0.0540 (10) | 0.0492 (9) | −0.0100 (7) | 0.0050 (7) | −0.0140 (7) |
C1X | 0.0767 (12) | 0.0563 (11) | 0.0664 (11) | −0.0262 (9) | 0.0178 (9) | −0.0117 (9) |
C2X | 0.0800 (13) | 0.0569 (11) | 0.0794 (13) | −0.0187 (9) | 0.0279 (10) | −0.0161 (10) |
C3X | 0.0750 (12) | 0.0612 (11) | 0.0605 (10) | −0.0236 (9) | 0.0129 (9) | −0.0141 (9) |
C4AX | 0.1244 (19) | 0.0849 (16) | 0.0881 (15) | −0.0254 (14) | 0.0440 (14) | −0.0225 (13) |
C4BX | 0.163 (2) | 0.0746 (15) | 0.0736 (14) | −0.0225 (15) | 0.0266 (15) | −0.0095 (11) |
O1—C1 | 1.3453 (19) | C7—C8 | 1.369 (3) |
O1—H1A | 0.8200 | C7—H7A | 0.9300 |
O2—C3 | 1.3548 (19) | C8—C8A | 1.397 (2) |
O2—C1X | 1.4460 (18) | C8—H8A | 0.9300 |
O10—C10A | 1.3744 (19) | C8A—C10A | 1.388 (2) |
O10—C4A | 1.3748 (18) | C8A—C9 | 1.463 (2) |
O11—C9 | 1.247 (2) | C9—C9A | 1.440 (2) |
C1—C2 | 1.371 (2) | C1X—C2X | 1.479 (3) |
C1—C9A | 1.417 (2) | C1X—H1XA | 0.9700 |
C2—C3 | 1.389 (2) | C1X—H1XB | 0.9700 |
C2—H2A | 0.9300 | C2X—C3X | 1.316 (2) |
C3—C4 | 1.398 (2) | C2X—H2XA | 0.9300 |
C4—C4A | 1.369 (2) | C3X—C4AX | 1.495 (3) |
C4—H4A | 0.9300 | C3X—C4BX | 1.504 (3) |
C4A—C9A | 1.404 (2) | C4AX—H4AA | 0.9600 |
C5—C6 | 1.374 (2) | C4AX—H4AB | 0.9600 |
C5—C10A | 1.391 (2) | C4AX—H4AC | 0.9600 |
C5—H5A | 0.9300 | C4BX—H4BA | 0.9600 |
C6—C7 | 1.384 (3) | C4BX—H4BB | 0.9600 |
C6—H6A | 0.9300 | C4BX—H4BC | 0.9600 |
C1—O1—H1A | 109.5 | O11—C9—C9A | 122.80 (16) |
C3—O2—C1X | 117.02 (13) | O11—C9—C8A | 121.86 (16) |
C10A—O10—C4A | 119.38 (13) | C9A—C9—C8A | 115.34 (15) |
O1—C1—C2 | 118.92 (15) | C4A—C9A—C1 | 116.83 (15) |
O1—C1—C9A | 119.70 (15) | C4A—C9A—C9 | 121.62 (14) |
C2—C1—C9A | 121.37 (15) | C1—C9A—C9 | 121.55 (15) |
C1—C2—C3 | 119.42 (15) | O10—C10A—C8A | 123.03 (15) |
C1—C2—H2A | 120.3 | O10—C10A—C5 | 115.61 (15) |
C3—C2—H2A | 120.3 | C8A—C10A—C5 | 121.36 (15) |
O2—C3—C2 | 123.65 (14) | O2—C1X—C2X | 107.68 (14) |
O2—C3—C4 | 115.03 (14) | O2—C1X—H1XA | 110.2 |
C2—C3—C4 | 121.31 (15) | C2X—C1X—H1XA | 110.2 |
C4A—C4—C3 | 118.15 (15) | O2—C1X—H1XB | 110.2 |
C4A—C4—H4A | 120.9 | C2X—C1X—H1XB | 110.2 |
C3—C4—H4A | 120.9 | H1XA—C1X—H1XB | 108.5 |
C4—C4A—O10 | 116.23 (14) | C3X—C2X—C1X | 126.38 (18) |
C4—C4A—C9A | 122.89 (14) | C3X—C2X—H2XA | 116.8 |
O10—C4A—C9A | 120.88 (14) | C1X—C2X—H2XA | 116.8 |
C6—C5—C10A | 118.31 (18) | C2X—C3X—C4AX | 122.55 (19) |
C6—C5—H5A | 120.8 | C2X—C3X—C4BX | 122.09 (19) |
C10A—C5—H5A | 120.8 | C4AX—C3X—C4BX | 115.33 (16) |
C5—C6—C7 | 121.54 (18) | C3X—C4AX—H4AA | 109.5 |
C5—C6—H6A | 119.2 | C3X—C4AX—H4AB | 109.5 |
C7—C6—H6A | 119.2 | H4AA—C4AX—H4AB | 109.5 |
C8—C7—C6 | 119.64 (17) | C3X—C4AX—H4AC | 109.5 |
C8—C7—H7A | 120.2 | H4AA—C4AX—H4AC | 109.5 |
C6—C7—H7A | 120.2 | H4AB—C4AX—H4AC | 109.5 |
C7—C8—C8A | 120.57 (17) | C3X—C4BX—H4BA | 109.5 |
C7—C8—H8A | 119.7 | C3X—C4BX—H4BB | 109.5 |
C8A—C8—H8A | 119.7 | H4BA—C4BX—H4BB | 109.5 |
C10A—C8A—C8 | 118.56 (16) | C3X—C4BX—H4BC | 109.5 |
C10A—C8A—C9 | 119.75 (15) | H4BA—C4BX—H4BC | 109.5 |
C8—C8A—C9 | 121.69 (16) | H4BB—C4BX—H4BC | 109.5 |
O1—C1—C2—C3 | −179.05 (15) | C4—C4A—C9A—C9 | 179.75 (14) |
C9A—C1—C2—C3 | 0.7 (2) | O10—C4A—C9A—C9 | −0.2 (2) |
C1X—O2—C3—C2 | 4.5 (2) | O1—C1—C9A—C4A | 178.64 (14) |
C1X—O2—C3—C4 | −175.47 (14) | C2—C1—C9A—C4A | −1.1 (2) |
C1—C2—C3—O2 | −179.37 (14) | O1—C1—C9A—C9 | −0.9 (2) |
C1—C2—C3—C4 | 0.6 (2) | C2—C1—C9A—C9 | 179.34 (14) |
O2—C3—C4—C4A | 178.50 (13) | O11—C9—C9A—C4A | −179.71 (15) |
C2—C3—C4—C4A | −1.5 (2) | C8A—C9—C9A—C4A | −0.2 (2) |
C3—C4—C4A—O10 | −178.95 (13) | O11—C9—C9A—C1 | −0.2 (2) |
C3—C4—C4A—C9A | 1.1 (2) | C8A—C9—C9A—C1 | 179.34 (13) |
C10A—O10—C4A—C4 | −179.75 (12) | C4A—O10—C10A—C8A | 0.2 (2) |
C10A—O10—C4A—C9A | 0.2 (2) | C4A—O10—C10A—C5 | −179.70 (13) |
C10A—C5—C6—C7 | −1.0 (3) | C8—C8A—C10A—O10 | 179.40 (14) |
C5—C6—C7—C8 | 0.3 (3) | C9—C8A—C10A—O10 | −0.7 (2) |
C6—C7—C8—C8A | 0.2 (3) | C8—C8A—C10A—C5 | −0.7 (2) |
C7—C8—C8A—C10A | −0.1 (2) | C9—C8A—C10A—C5 | 179.25 (15) |
C7—C8—C8A—C9 | −179.96 (15) | C6—C5—C10A—O10 | −178.90 (14) |
C10A—C8A—C9—O11 | −179.85 (15) | C6—C5—C10A—C8A | 1.2 (3) |
C8—C8A—C9—O11 | 0.1 (3) | C3—O2—C1X—C2X | −178.84 (14) |
C10A—C8A—C9—C9A | 0.6 (2) | O2—C1X—C2X—C3X | −149.12 (19) |
C8—C8A—C9—C9A | −179.45 (13) | C1X—C2X—C3X—C4AX | −176.29 (19) |
C4—C4A—C9A—C1 | 0.2 (2) | C1X—C2X—C3X—C4BX | 1.5 (3) |
O10—C4A—C9A—C1 | −179.79 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O11 | 0.82 | 1.85 | 2.5846 (17) | 148 |
C5—H5A···O2i | 0.93 | 2.60 | 3.514 (2) | 168 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H16O4 |
Mr | 296.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 4.8199 (3), 11.7014 (8), 13.6176 (10) |
α, β, γ (°) | 77.329 (6), 88.582 (6), 79.039 (6) |
V (Å3) | 735.54 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.4 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini PX Ultra CCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8520, 2981, 1958 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.147, 1.07 |
No. of reflections | 2981 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.15 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Johnson & Burnett, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O11 | 0.82 | 1.85 | 2.5846 (17) | 148.1 |
C5—H5A···O2i | 0.93 | 2.60 | 3.514 (2) | 167.9 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Acknowledgements
The authors thank the Fundaçao para a Ciência e a Tecnologia (FCT), I&D Units 226/2003 (CEQOFFUP) and 4040/2007 (CEQUIMED), FEDER, POCI for financial support and the FCT (projects FCT /FEDER /POCI 2010 and PTDC/CTM/64191/2006) for the PhD grant to RC (SFRH/BD/13167/2003).
References
Castanheiro, R. A. P., Pinto, M. M. M., Cravo, S. M. M., Pinto, D. C. G. A., Silva, A. M. S. & Kijjoa, A. (2009). Tetrahedron, 65, 3848–3857. Web of Science CrossRef CAS Google Scholar
Castanheiro, R. A. P., Pinto, M. M. M., Silva, A. M. S., Cravo, S. M. M., Gales, L., Damas, A. M., Pedro, M. M., Nazareth, N., Nascimento, M. S. J. & Eaton, G. (2007). Bioorg. Med. Chem. 15, 6080–6088. Web of Science CSD CrossRef PubMed CAS Google Scholar
Epifano, F., Genovese, S., Menghini, L. & Curini, M. (2007). Phytochemistry, 68, 939–953. Web of Science CrossRef PubMed CAS Google Scholar
Gales, L. & Damas, A. M. (2005). Curr. Med. Chem. 12, 2499–2515. Web of Science CrossRef PubMed CAS Google Scholar
Gales, L., de Sousa, M. E., Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2005). Acta Cryst. E61, o2213–o2215. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gales, L., Sousa, M. E. de, Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2001). Acta Cryst. C57, 1319–1323. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Maia, F., ALmeida, M. R., Gales, L., Kijjoa, A., Pinto, M. M., Saraiva, M. J. & Damas, A. M. (2005). Biochem. Pharmacol. 70, 1861–1869. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517–2538. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Prenylated xanthones have been reported to mediate a number of important biological activities, concerning a large variety of targets with therapeutic value. The presence of the prenyl side chains seems to enhance the interaction with biological membranes and with target proteins (Maia et al., 2005 and Epifano et al., 2007) and we plan to further study these kind of interactions.
However, the synthesis of prenylated xanthones usually involves toxic reagents and is considered not only very demanding but also environmentally unfriendly (Castanheiro et al., 2007). We have looked for an alternative method to obtain prenylated xanthones. The title compound was the first example of a prenylated xanthone synthesized by the microwave irradiation method (Castanheiro et al., 2009). In fact, microwave-assisted heating under controlled conditions is an invaluable technology for medicinal chemistry because it often dramatically reduces reaction times.
In the crystal, the title compound molecules are essentially planar (Fig. 1). The isoprenyl side chain adopts a nearly coplanar conformation relatively to the xanthone skeleton (corresponding dihedral angle 4.5 (2)°). This is an exception because in the crystal structures of other prenylated xanthones, the isoprenyl side chain is usually out of the plane of the xanthones moiety (for a review of prenylated xanthone crystal structures see: Gales & Damas, 2005). Moreover, the hydroxyl substituent bound to C1 forms a strong intramolecular hydrogen bond to O11 [O1—H1A···O11 = 2.5845 (17) Å].
In the crystal structure, the title compound forms stacking planes (Fig. 2) with intermolecular separation of 3.6 Å. The packing of the molecules is governed by van der Waals forces and there are no intermolecular hydrogen bonds.