metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-aqua-bis­­(μ-pyridazine-4-carboxyl­ato-κ2N:N′)bis­­[tri­aqua­(pyridazine-4-carboxyl­ato-κ2O,O′)lead(II)] dihydrate

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 5 August 2009; accepted 29 September 2009; online 3 October 2009)

The structure of the title compound, [Pb2(C5H3N2O2)4(H2O)6]·2H2O, is composed of dimeric mol­ecules in which two symmetry-related Pb2+ ions are bridged by a pair of two pyridazine-4-carboxyl­ate ligand mol­ecules via both heterocyclic N atoms and two water O atoms. Each Pb2+ ion is also coordinated by two carboxyl­ate O atoms and three water O atoms, leading to a highly irregular coordination polyhedron around Pb2+. The dimers are inter­connected by hydrogen bonds between coordinated and uncoordinated water mol­ecules and the carboxyl­ate O atoms. O—H⋯N inter­actions are also present.

Related literature

For the crystal structure of pyridazine-4-carboxylic acid hydro­chloride, see: Starosta & Leciejewicz (2008[Starosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.]). Centrosymmetric dimeric mol­ecules were reported in the structure of a calcium(II) complex with pyridazine-3-dicarboxyl­ate and water ligands (Starosta & Leciejewicz, 2007[Starosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662-m1663.]) and an uranyl complex with the same ligands (Leciejewicz & Starosta, (2009[Leciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94.]). Each dimer shows a different bridging mode.

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C5H3N2O2)4(H2O)6]·2H2O

  • Mr = 1086.92

  • Triclinic, [P \overline 1]

  • a = 7.0762 (14) Å

  • b = 9.2967 (19) Å

  • c = 12.830 (3) Å

  • α = 92.05 (3)°

  • β = 105.13 (3)°

  • γ = 102.85 (3)°

  • V = 790.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 10.73 mm−1

  • T = 293 K

  • 0.35 × 0.18 × 0.03 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.254, Tmax = 0.762

  • 4862 measured reflections

  • 4512 independent reflections

  • 3958 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 200 reflections intensity decay: 1.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.06

  • 4512 reflections

  • 253 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 5.63 e Å−3

  • Δρmin = −3.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O12i 0.86 (2) 1.93 (2) 2.736 (6) 154 (4)
O4—H42⋯O12ii 0.87 (2) 1.92 (4) 2.754 (6) 161 (11)
O1—H11⋯O5 0.86 (2) 2.08 (3) 2.943 (9) 174 (10)
O1—H12⋯O11iii 0.86 (2) 2.09 (6) 2.849 (7) 146 (9)
O5—H51⋯N22iv 0.86 (2) 2.23 (5) 3.013 (8) 151 (9)
O5—H52⋯O21v 0.87 (2) 2.12 (6) 2.897 (8) 149 (10)
O3—H31⋯O12vi 0.86 (2) 2.09 (7) 2.819 (7) 142 (10)
O3—H32⋯N21iv 0.86 (2) 2.01 (6) 2.794 (7) 151 (10)
O2—H21⋯O5vii 0.86 (2) 2.13 (5) 2.906 (8) 150 (9)
O2—H22⋯O11ii 0.86 (2) 2.07 (4) 2.891 (7) 159 (9)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y, -z+2; (vi) -x+1, -y+1, -z+1; (vii) x-1, y, z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound (I) is built of dimeric molecules (Fig.1) in which two symmetry related, nine-coordinate Pb2+ ions are chelated by two pairs of pyridazine-4-carboxylate anions via their both hetero-ring atoms, each pair showing different chelating mode: one uses both its hetero-ring N atoms to bridge the metal ions, its deprotonated carboxylate O atoms are left inactive in coordination, the other coordinates the Pb2+ions only via carboxylate groups which act as bidentate. In addition, the Pb2+ ions are bridged by a pair of water molecules. Three coordinated water O atoms complete the coordination enviroment of Pb2+ ions. The coordination geometry around a metal ion is highly irregular. Pyridazine rings are planar with r.m.s. 0.0081 (2)Å (ligand 1) and 0.0030 (2)Å (ligand 2). The coordinated (C27/O21/O22) and non-coordinated (C17/O11/O12) carboxylic groups make dihedral angles of 5.6 (1)° and 11.9 (1)° with their respective pyridazine rings. A packing diagram of (I) displayed in Fig.2 shows how the dimers are linked by a network of hydrogen bonds. Their relevant geometrical parameters are listed in Table 1.

Related literature top

For the crystal structure of pyridazine-4-carboxylic acid hydrochloride, see: Starosta & Leciejewicz, (2008). Centrosymmetric dimeric molecules were reported in the structure of a calcium(II) complex with pyridazine-3-dicarboxylate and water ligands (Starosta & Leciejewicz, 2007) and an uranyl complex with the same ligands (Leciejewicz & Starosta, (2009). Each dimer shows a different bridging mode.

Experimental top

2 Mmol of pyridazine-4-carboxylic acid were dissolved in 100 ml of hot water and boiled for two hours with small excess of Pb(OH)2. After cooling to room temperature the mixture was filtered and left to crystallize. Few days later colorless single crystals were found in the mother liquid. They were separated, washed with cold ethanol and dried in air.

Refinement top

H atoms attached to pyridazine-ring C atoms were positioned geometrically and refined with a riding model using AFIX43 instruction. The positions of water H atoms were initially located from Fourier maps and refined isotropically with restraints on O—H distance (0.86 Å) and H—O—H angle.

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

#==============================================================================

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma,2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A dimer of (1) with atom labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the structure.
Di-µ-aqua-bis(µ-pyridazine-4-carboxylato- κ2N:N')bis[triaqua(pyridazine-4-carboxylato- κ2O,O')lead(II)] dihydrate top
Crystal data top
[Pb2(C5H3N2O2)4(H2O)6]·2H2OZ = 1
Mr = 1086.92F(000) = 516
Triclinic, P1Dx = 2.283 Mg m3
a = 7.0762 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2967 (19) ÅCell parameters from 25 reflections
c = 12.830 (3) Åθ = 6–15°
α = 92.05 (3)°µ = 10.73 mm1
β = 105.13 (3)°T = 293 K
γ = 102.85 (3)°Plate, colourless
V = 790.4 (3) Å30.35 × 0.18 × 0.03 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
3958 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 30.2°, θmin = 1.7°
Profile data from ω/2θ scansh = 09
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1312
Tmin = 0.254, Tmax = 0.762l = 1816
4862 measured reflections3 standard reflections every 200 reflections
4512 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1029P)2]
where P = (Fo2 + 2Fc2)/3
4512 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 5.63 e Å3
15 restraintsΔρmin = 3.77 e Å3
Crystal data top
[Pb2(C5H3N2O2)4(H2O)6]·2H2Oγ = 102.85 (3)°
Mr = 1086.92V = 790.4 (3) Å3
Triclinic, P1Z = 1
a = 7.0762 (14) ÅMo Kα radiation
b = 9.2967 (19) ŵ = 10.73 mm1
c = 12.830 (3) ÅT = 293 K
α = 92.05 (3)°0.35 × 0.18 × 0.03 mm
β = 105.13 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
3958 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.016
Tmin = 0.254, Tmax = 0.7623 standard reflections every 200 reflections
4862 measured reflections intensity decay: 1.2%
4512 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04515 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 5.63 e Å3
4512 reflectionsΔρmin = 3.77 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.11555 (3)0.048890 (18)0.675973 (14)0.02300 (9)
O110.4666 (8)0.6974 (5)0.6607 (4)0.0360 (10)
O40.2317 (7)0.0086 (5)0.5150 (4)0.0309 (9)
O210.2153 (8)0.1496 (5)0.8788 (4)0.0387 (11)
O10.3206 (8)0.1283 (6)0.7946 (4)0.0395 (11)
H110.430 (8)0.075 (11)0.838 (5)0.047*
H120.347 (11)0.155 (10)0.736 (4)0.047*
N120.1246 (8)0.2794 (5)0.5304 (4)0.0265 (9)
N110.0425 (8)0.2525 (5)0.4237 (4)0.0280 (10)
O220.0922 (10)0.3005 (6)0.7692 (4)0.0452 (13)
O120.4408 (7)0.7751 (4)0.4972 (4)0.0331 (9)
C170.4044 (8)0.6811 (6)0.5601 (5)0.0247 (10)
C140.2716 (7)0.5309 (5)0.5091 (4)0.0208 (9)
C130.2351 (9)0.4143 (6)0.5710 (5)0.0249 (10)
H130.29160.43170.64580.030*
C150.1807 (9)0.5029 (6)0.3995 (5)0.0273 (11)
H150.19400.57690.35320.033*
C160.0682 (10)0.3600 (7)0.3606 (5)0.0309 (12)
H160.00790.33890.28630.037*
C240.2220 (9)0.3860 (6)0.9548 (5)0.0273 (11)
C270.1684 (10)0.2701 (6)0.8588 (5)0.0297 (11)
O50.7080 (10)0.0331 (7)0.9439 (4)0.0471 (13)
H510.753 (16)0.123 (4)0.975 (6)0.057*
H520.682 (16)0.024 (7)0.993 (5)0.057*
N210.3150 (10)0.6062 (7)1.1197 (5)0.0385 (13)
N220.2595 (11)0.6394 (6)1.0184 (6)0.0391 (13)
C250.2804 (11)0.3556 (7)1.0582 (5)0.0342 (13)
H230.29070.26061.07480.041*
C230.2131 (11)0.5332 (7)0.9376 (5)0.0325 (12)
H250.17310.55710.86670.039*
C260.3247 (13)0.4707 (9)1.1396 (6)0.0396 (15)
H260.36310.45031.21150.048*
O30.4919 (9)0.1749 (7)0.7070 (4)0.0449 (12)
O20.1694 (9)0.0786 (7)0.7638 (5)0.0490 (14)
H410.277 (8)0.082 (6)0.533 (5)0.07 (3)*
H420.316 (12)0.072 (6)0.521 (10)0.07 (3)*
H310.529 (18)0.231 (10)0.661 (6)0.07 (4)*
H320.557 (16)0.215 (11)0.771 (3)0.08 (4)*
H210.172 (17)0.018 (9)0.815 (6)0.05 (3)*
H220.259 (10)0.160 (6)0.740 (7)0.04 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02442 (13)0.01967 (12)0.02294 (13)0.00112 (8)0.00730 (9)0.00286 (7)
O110.040 (2)0.026 (2)0.032 (2)0.0024 (18)0.0027 (19)0.0031 (17)
O40.029 (2)0.0177 (18)0.044 (3)0.0019 (15)0.0105 (19)0.0037 (16)
O210.049 (3)0.029 (2)0.035 (2)0.010 (2)0.008 (2)0.0061 (18)
O10.041 (3)0.039 (3)0.039 (3)0.012 (2)0.010 (2)0.003 (2)
N120.031 (2)0.0161 (19)0.032 (2)0.0016 (17)0.012 (2)0.0006 (17)
N110.032 (2)0.0169 (19)0.032 (2)0.0005 (17)0.009 (2)0.0032 (17)
O220.069 (4)0.039 (3)0.025 (2)0.016 (3)0.007 (2)0.0038 (19)
O120.036 (2)0.0166 (17)0.046 (3)0.0025 (16)0.016 (2)0.0023 (16)
C170.022 (2)0.015 (2)0.036 (3)0.0028 (17)0.009 (2)0.0044 (18)
C140.019 (2)0.0133 (19)0.031 (3)0.0033 (16)0.0100 (19)0.0011 (17)
C130.025 (2)0.020 (2)0.028 (3)0.0035 (19)0.006 (2)0.0020 (19)
C150.030 (3)0.019 (2)0.033 (3)0.003 (2)0.010 (2)0.006 (2)
C160.032 (3)0.024 (3)0.030 (3)0.000 (2)0.003 (2)0.002 (2)
C240.032 (3)0.023 (2)0.026 (3)0.005 (2)0.007 (2)0.0055 (19)
C270.038 (3)0.024 (2)0.027 (3)0.004 (2)0.011 (2)0.006 (2)
O50.064 (4)0.042 (3)0.039 (3)0.016 (3)0.017 (3)0.001 (2)
N210.040 (3)0.037 (3)0.034 (3)0.004 (2)0.009 (2)0.013 (2)
N220.048 (3)0.025 (2)0.042 (3)0.009 (2)0.010 (3)0.005 (2)
C250.048 (4)0.031 (3)0.025 (3)0.013 (3)0.012 (3)0.001 (2)
C230.044 (3)0.028 (3)0.027 (3)0.013 (2)0.009 (2)0.003 (2)
C260.052 (4)0.042 (4)0.024 (3)0.010 (3)0.009 (3)0.006 (2)
O30.043 (3)0.051 (3)0.025 (2)0.016 (2)0.008 (2)0.007 (2)
O20.045 (3)0.053 (3)0.042 (3)0.012 (2)0.023 (2)0.011 (2)
Geometric parameters (Å, º) top
Pb1—O32.578 (6)C13—H130.9300
Pb1—O212.593 (5)C15—C161.386 (8)
Pb1—O22.638 (6)C15—H150.9300
Pb1—O222.647 (5)C16—H160.9300
Pb1—O12.688 (6)C24—C251.343 (9)
Pb1—O42.707 (5)C24—C231.406 (8)
O11—C171.242 (8)C24—C271.517 (8)
O4—H410.86 (2)O5—H510.86 (2)
O4—H420.87 (2)O5—H520.87 (2)
O21—C271.254 (8)N21—C261.308 (10)
O1—H110.86 (2)N21—N221.324 (10)
O1—H120.86 (2)N22—C231.328 (8)
N12—C131.327 (7)C25—C261.390 (9)
N12—N111.331 (7)C25—H230.9300
N11—C161.320 (8)C23—H250.9300
O22—C271.208 (8)C26—H260.9300
O12—C171.241 (7)O3—H310.86 (2)
C17—C141.514 (7)O3—H320.86 (2)
C14—C151.373 (8)O2—H210.86 (2)
C14—C131.385 (7)O2—H220.86 (2)
O3—Pb1—O2179.05 (17)N12—C13—H13118.0
O3—Pb1—O2146.72 (18)C14—C13—H13118.0
O21—Pb1—O270.88 (18)C14—C15—C16117.4 (5)
O3—Pb1—O2285.5 (2)C14—C15—H15121.3
O21—Pb1—O2249.16 (16)C16—C15—H15121.3
O2—Pb1—O2285.5 (2)N11—C16—C15123.2 (6)
O3—Pb1—O174.2 (2)N11—C16—H16118.4
O21—Pb1—O171.28 (16)C15—C16—H16118.4
O2—Pb1—O182.8 (2)C25—C24—C23117.0 (5)
O22—Pb1—O1119.77 (16)C25—C24—C27123.0 (6)
O3—Pb1—O4137.65 (16)C23—C24—C27120.1 (6)
O21—Pb1—O4132.46 (16)O22—C27—O21124.6 (6)
O2—Pb1—O475.25 (18)O22—C27—C24119.1 (6)
O22—Pb1—O496.49 (16)O21—C27—C24116.3 (6)
O1—Pb1—O4135.76 (15)H51—O5—H52107 (3)
Pb1—O4—H41100.9 (17)C26—N21—N22120.3 (6)
Pb1—O4—H42110 (8)N21—N22—C23119.1 (6)
H41—O4—H42107 (3)C24—C25—C26117.9 (6)
C27—O21—Pb193.8 (4)C24—C25—H23121.1
Pb1—O1—H11110 (8)C26—C25—H23121.1
Pb1—O1—H1287 (7)N22—C23—C24122.7 (6)
H11—O1—H12109 (3)N22—C23—H25118.7
C13—N12—N11118.9 (5)C24—C23—H25118.7
C16—N11—N12119.9 (5)N21—C26—C25123.0 (7)
C27—O22—Pb192.3 (4)N21—C26—H26118.5
O12—C17—O11126.7 (5)C25—C26—H26118.5
O12—C17—C14116.7 (5)Pb1—O3—H31120 (8)
O11—C17—C14116.6 (5)Pb1—O3—H32117 (8)
C15—C14—C13116.5 (5)H31—O3—H32109 (4)
C15—C14—C17122.0 (5)Pb1—O2—H21108 (7)
C13—C14—C17121.5 (5)Pb1—O2—H22127 (6)
N12—C13—C14124.0 (5)H21—O2—H22124 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O12i0.86 (2)1.93 (2)2.736 (6)154 (4)
O4—H42···O12ii0.87 (2)1.92 (4)2.754 (6)161 (11)
O1—H11···O50.86 (2)2.08 (3)2.943 (9)174 (10)
O1—H12···O11iii0.86 (2)2.09 (6)2.849 (7)146 (9)
O5—H51···N22iv0.86 (2)2.23 (5)3.013 (8)151 (9)
O5—H52···O21v0.87 (2)2.12 (6)2.897 (8)149 (10)
O3—H31···O12vi0.86 (2)2.09 (7)2.819 (7)142 (10)
O3—H32···N21iv0.86 (2)2.01 (6)2.794 (7)151 (10)
O2—H21···O5vii0.86 (2)2.13 (5)2.906 (8)150 (9)
O2—H22···O11ii0.86 (2)2.07 (4)2.891 (7)159 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y+1, z+2; (v) x+1, y, z+2; (vi) x+1, y+1, z+1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pb2(C5H3N2O2)4(H2O)6]·2H2O
Mr1086.92
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0762 (14), 9.2967 (19), 12.830 (3)
α, β, γ (°)92.05 (3), 105.13 (3), 102.85 (3)
V3)790.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)10.73
Crystal size (mm)0.35 × 0.18 × 0.03
Data collection
DiffractometerKuma KM-4 four-circle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.254, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
4862, 4512, 3958
Rint0.016
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.06
No. of reflections4512
No. of parameters253
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)5.63, 3.77

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma,2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O12i0.86 (2)1.93 (2)2.736 (6)154 (4)
O4—H42···O12ii0.87 (2)1.92 (4)2.754 (6)161 (11)
O1—H11···O50.86 (2)2.08 (3)2.943 (9)174 (10)
O1—H12···O11iii0.86 (2)2.09 (6)2.849 (7)146 (9)
O5—H51···N22iv0.86 (2)2.23 (5)3.013 (8)151 (9)
O5—H52···O21v0.87 (2)2.12 (6)2.897 (8)149 (10)
O3—H31···O12vi0.86 (2)2.09 (7)2.819 (7)142 (10)
O3—H32···N21iv0.86 (2)2.01 (6)2.794 (7)151 (10)
O2—H21···O5vii0.86 (2)2.13 (5)2.906 (8)150 (9)
O2—H22···O11ii0.86 (2)2.07 (4)2.891 (7)159 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y+1, z+2; (v) x+1, y, z+2; (vi) x+1, y+1, z+1; (vii) x1, y, z.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationLeciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662–m1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds