organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,5-Di­methyl­pyrazol-1-yl)[5-(3,5-di­methyl­pyrazol-1-ylcarbon­yl)-2-thien­yl]methanone

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 17 August 2009; accepted 6 October 2009; online 17 October 2009)

The title compound, C16H16N4O2S, crystallizes with two symmetry-independent half-mol­ecules in the asymmetric unit. All non-H atoms in each molecule lie in a crystallographic mirror plane. The mol­ecules form sheets in the ac plane, which then form stacks along the b axis. The sheets are connected via ππ stacking inter­actions [centroid–centroid distance between pyrazolato rings = 3.6949 (8) Å].

Related literature

In the course of our studies toward effective polymerization catalysts we have investigated Pd complexes with pyrazolyl derivatives as ligands, see: Guzei et al. (2003[Guzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715-722.]); Mohlala et al. (2005[Mohlala, M. S., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). J. Mol. Cat. Chem. A, 241, 93-100.]). The title compound was isolated serendipitously during this work. For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and for Mogul, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For thiophene carbonyl linker pyrazolyl compounds, see: Ojwach et al. (2005[Ojwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843-853.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O2S

  • Mr = 328.39

  • Monoclinic, P 21 /m

  • a = 15.615 (3) Å

  • b = 6.7153 (16) Å

  • c = 16.803 (4) Å

  • β = 114.452 (4)°

  • V = 1603.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker CCD 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.958

  • 7557 measured reflections

  • 3297 independent reflections

  • 2744 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.03

  • 3297 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, modiCIFer (Guzei, 2007[Guzei, I. A. (2007). modiCIFer. University of Wisconsin-Madison, Madison, Wisconsin, USA.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In the course of our studies toward effective polymerization catalysts we investigated Pd complexes with pyrazolyl derivatives as ligands. Benzene carbonyl (Guzei et al., 2003) and pyridine carbonyl (Mohlala et al., 2005) were used as linkers between two pyrazolyl units which served as ligands that readily form complexes with palladium. During the project development the title compound (I) was serendipitously isolated. Single crystals of (I) were obtained by slow evaporation of its dichloromethane:hexane (2:1) solution.

Compound (I) crystallizes with two symmetry independent half-molecules in the asymmetric unit. Each molecule lies in a crystallographic mirror plane. Compound (I) (Fig. 1) has typical bond distances and angles as confirmed by the Mogul structural check (Bruno et al., 2002) and a comparison to 11 related compounds in the Cambridge Structural Database (Allen, 2002). The two molecules of compound (I) present in the asymmetric unit have essentially identical geometries as illustrated in the overlay diagram (Fig. 2).

In the crystal the molecules of (I) form sheets in the a-c plane which then form stacks along the b axis. The molecules within the sheets are joined by a weak C—H···O hydrogen bonding interaction, C8—H8···O4. The sheets are separated by a distance equal to the length of the b axis. The stacking of the sheets is aided by several weak π-π stacking interactions between atoms C3 and C6 (3.374 Å) and atoms C27 and C30 (3.390 Å). Two weak hydrogen bonding interactions, C21—H21C···O3 and C16—H16B···O2, of the type C—H···O also contribute to the stacking of the sheets.

Related literature top

In the course of our studies toward effective polymerization catalysts we have investigated Pd complexes with pyrazolyl derivatives as ligands, see: Guzei et al. (2003); Mohlala et al. (2005). The title compound was isolated serendipitously during this work. For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2002). For related literature, see: Ojwach et al. (2005).

Experimental top

3,5-Dimethylpyrazole (0.63 g, 6.76 mmol) and 2 ml of Et3N were added to a solution of 2,5-thiophenedicarbonyl dichloride (0.70 g, 3.34 mmol) in toluene (40 ml), and the resultant solution was refluxed 24 h. The reaction was filtered to remove the Et3NH+Cl- by-product, and the solvent was evaporated from the filtrate to give a yellow residue. The yellow solid was purified by chromatography on silica gel using a dichloromethane:diethyl ether (8:1) mixture as eluent. Removal of the solvent from the eluent gave analytically pure product. Single crystals suitable for X-ray studies were obtained from dichloromethane:hexane(2:1) solution of (I). Yield: 0.85 g, 78%. 1H NMR (CDCl3): δ 8.24 (s, 2H, thiophene); 6.06 (s, 2H, 4-pz); 2.63 (s, 6H, 5-Mepz); 2.33 (s, 6H, 3-Mepz). 13C{1H} NMR: δ 160.6, 152.5, 145.1, 142.7, 135.8, 111.6, 14.4, 13.8. IR (nulo mull): µ(C=O) 1680 cm-1.

Refinement top

All H-atoms were placed in geometrically idealized locations with C—H distances of 0.96 Å to the primary and 0.93 Å to the aromatic carbon atoms. The H-atoms were refined as riding with thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearinng C atom). One hydrogen atom attached to carbon atoms C1, C5, C12, C16, C17, C21, C28, and C32 is equally disordered over two positions about the mirror plane.

Structure description top

In the course of our studies toward effective polymerization catalysts we investigated Pd complexes with pyrazolyl derivatives as ligands. Benzene carbonyl (Guzei et al., 2003) and pyridine carbonyl (Mohlala et al., 2005) were used as linkers between two pyrazolyl units which served as ligands that readily form complexes with palladium. During the project development the title compound (I) was serendipitously isolated. Single crystals of (I) were obtained by slow evaporation of its dichloromethane:hexane (2:1) solution.

Compound (I) crystallizes with two symmetry independent half-molecules in the asymmetric unit. Each molecule lies in a crystallographic mirror plane. Compound (I) (Fig. 1) has typical bond distances and angles as confirmed by the Mogul structural check (Bruno et al., 2002) and a comparison to 11 related compounds in the Cambridge Structural Database (Allen, 2002). The two molecules of compound (I) present in the asymmetric unit have essentially identical geometries as illustrated in the overlay diagram (Fig. 2).

In the crystal the molecules of (I) form sheets in the a-c plane which then form stacks along the b axis. The molecules within the sheets are joined by a weak C—H···O hydrogen bonding interaction, C8—H8···O4. The sheets are separated by a distance equal to the length of the b axis. The stacking of the sheets is aided by several weak π-π stacking interactions between atoms C3 and C6 (3.374 Å) and atoms C27 and C30 (3.390 Å). Two weak hydrogen bonding interactions, C21—H21C···O3 and C16—H16B···O2, of the type C—H···O also contribute to the stacking of the sheets.

In the course of our studies toward effective polymerization catalysts we have investigated Pd complexes with pyrazolyl derivatives as ligands, see: Guzei et al. (2003); Mohlala et al. (2005). The title compound was isolated serendipitously during this work. For a description of the Cambridge Structural Database, see: Allen (2002) and for Mogul, see: Bruno et al. (2002). For related literature, see: Ojwach et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), modiCIFer (Guzei, 2007) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are ommitted for clarity.
[Figure 2] Fig. 2. An overlap diagram of the two independent molecules of (I) in the asymmetric unit showing their differences.
(3,5-Dimethylpyrazol-1-yl)[5-(3,5-dimethylpyrazol-1-ylcarbonyl)-2- thienyl]methanone top
Crystal data top
C16H16N4O2SF(000) = 688
Mr = 328.39Dx = 1.360 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 999 reflections
a = 15.615 (3) Åθ = 1.3–26.3°
b = 6.7153 (16) ŵ = 0.22 mm1
c = 16.803 (4) ÅT = 296 K
β = 114.452 (4)°Block, colourless
V = 1603.9 (6) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker CCD 1000 area-detector
diffractometer
3297 independent reflections
Radiation source: fine-focus sealed tube2744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
0.30° ω scansθmax = 26.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 187
Tmin = 0.938, Tmax = 0.958k = 88
7557 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3297 reflectionsΔρmax = 0.33 e Å3
286 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXTL (Version 6.10; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (8)
Crystal data top
C16H16N4O2SV = 1603.9 (6) Å3
Mr = 328.39Z = 4
Monoclinic, P21/mMo Kα radiation
a = 15.615 (3) ŵ = 0.22 mm1
b = 6.7153 (16) ÅT = 296 K
c = 16.803 (4) Å0.30 × 0.30 × 0.20 mm
β = 114.452 (4)°
Data collection top
Bruker CCD 1000 area-detector
diffractometer
3297 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2744 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.958Rint = 0.017
7557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
3297 reflectionsΔρmin = 0.22 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.76388 (4)0.25000.02885 (3)0.04546 (18)
S20.21011 (4)0.75000.46771 (3)0.04529 (18)
O11.02198 (12)0.25000.16162 (10)0.0602 (5)
O20.56735 (13)0.25000.11813 (11)0.0656 (5)
O30.32829 (12)0.75000.37697 (10)0.0598 (5)
O40.12968 (14)0.75000.66244 (11)0.0687 (5)
N10.91549 (13)0.25000.06725 (12)0.0463 (5)
N20.98581 (13)0.25000.01605 (11)0.0438 (4)
N30.51710 (14)0.25000.01002 (13)0.0491 (5)
N40.53697 (15)0.25000.07758 (13)0.0538 (5)
N50.53108 (14)0.75000.57482 (12)0.0504 (5)
N60.47457 (13)0.75000.48641 (12)0.0454 (5)
N70.03038 (14)0.75000.51918 (12)0.0472 (5)
N80.02073 (14)0.75000.43423 (13)0.0499 (5)
C11.16450 (17)0.25000.09562 (16)0.0545 (6)
H1A1.17460.37920.12240.082*0.50
H1B1.21540.21870.07980.082*0.50
H1C1.16160.15210.13610.082*0.50
C21.07409 (16)0.25000.01566 (15)0.0440 (5)
C31.05827 (17)0.25000.06987 (15)0.0493 (6)
H31.10370.25000.09220.059*
C40.95929 (17)0.25000.11908 (15)0.0461 (5)
C50.9038 (2)0.25000.21587 (16)0.0638 (7)
H5A0.90790.12130.23890.096*0.50
H5B0.92860.34900.24180.096*0.50
H5C0.83910.27970.22910.096*0.50
C60.96182 (16)0.25000.08757 (14)0.0433 (5)
C70.86051 (16)0.25000.06999 (14)0.0426 (5)
C80.83320 (18)0.25000.13777 (14)0.0504 (6)
H80.87570.25000.19620.060*
C90.73637 (18)0.25000.11117 (15)0.0530 (6)
H90.70730.25000.14960.064*
C100.68842 (17)0.25000.02215 (14)0.0446 (5)
C110.58809 (18)0.25000.04065 (15)0.0498 (6)
C120.3760 (2)0.25000.15831 (18)0.0785 (9)
H12A0.40510.34970.17990.118*0.50
H12B0.31020.27870.17830.118*0.50
H12C0.38390.12160.17950.118*0.50
C130.42081 (18)0.25000.06136 (16)0.0544 (6)
C140.38063 (19)0.25000.00366 (18)0.0594 (7)
H140.31650.25000.01720.071*
C150.45420 (19)0.25000.08064 (17)0.0553 (6)
C160.4463 (2)0.25000.16601 (19)0.0737 (9)
H16A0.39200.17440.16080.111*0.50
H16B0.44010.38440.18230.111*0.50
H16C0.50170.19120.21000.111*0.50
C170.4882 (2)0.75000.34029 (17)0.0690 (8)
H17A0.45270.86970.31830.103*0.50
H17B0.44790.63650.31810.103*0.50
H17C0.53870.74380.32180.103*0.50
C180.52755 (18)0.75000.43745 (16)0.0498 (6)
C190.61859 (18)0.75000.49724 (17)0.0552 (6)
H190.67170.75000.48530.066*
C200.61758 (17)0.75000.58059 (17)0.0511 (6)
C210.69948 (19)0.75000.66823 (18)0.0696 (8)
H21A0.68060.80650.71090.104*0.50
H21B0.74970.82770.66530.104*0.50
H21C0.72060.61580.68450.104*0.50
C220.37624 (16)0.75000.45456 (14)0.0448 (5)
C230.33142 (16)0.75000.51683 (14)0.0447 (5)
C240.36440 (18)0.75000.60527 (16)0.0651 (8)
H240.42800.75000.64270.078*
C250.29274 (19)0.75000.63368 (16)0.0659 (8)
H250.30380.75000.69250.079*
C260.20405 (17)0.75000.56718 (14)0.0469 (5)
C270.12019 (18)0.75000.58736 (15)0.0488 (6)
C280.0696 (2)0.75000.60687 (19)0.0652 (7)
H28A0.03070.85090.64540.098*0.50
H28B0.05250.62220.63460.098*0.50
H28C0.13440.77690.59390.098*0.50
C290.05587 (18)0.75000.52427 (17)0.0515 (6)
C300.12032 (19)0.75000.44038 (18)0.0578 (6)
H300.18530.75000.42150.069*
C310.07062 (18)0.75000.38631 (17)0.0536 (6)
C320.1090 (2)0.75000.28947 (18)0.0739 (8)
H32A0.06000.71570.27140.111*0.50
H32B0.13290.88000.26780.111*0.50
H32C0.15900.65430.26650.111*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0355 (3)0.0652 (4)0.0380 (3)0.0000.0176 (2)0.000
S20.0319 (3)0.0649 (4)0.0372 (3)0.0000.0124 (2)0.000
O10.0441 (10)0.0916 (13)0.0403 (9)0.0000.0128 (7)0.000
O20.0464 (11)0.1080 (15)0.0426 (9)0.0000.0186 (8)0.000
O30.0430 (10)0.0934 (13)0.0402 (9)0.0000.0144 (7)0.000
O40.0543 (12)0.1112 (15)0.0454 (9)0.0000.0256 (8)0.000
N10.0349 (11)0.0628 (12)0.0396 (10)0.0000.0138 (8)0.000
N20.0351 (10)0.0561 (11)0.0392 (10)0.0000.0143 (8)0.000
N30.0364 (11)0.0665 (13)0.0462 (10)0.0000.0188 (8)0.000
N40.0417 (12)0.0752 (14)0.0492 (11)0.0000.0233 (9)0.000
N50.0370 (11)0.0640 (12)0.0449 (10)0.0000.0117 (8)0.000
N60.0381 (11)0.0546 (11)0.0438 (10)0.0000.0173 (8)0.000
N70.0391 (11)0.0586 (12)0.0472 (11)0.0000.0211 (9)0.000
N80.0360 (11)0.0690 (13)0.0442 (10)0.0000.0162 (8)0.000
C10.0325 (13)0.0699 (16)0.0567 (14)0.0000.0140 (10)0.000
C20.0325 (12)0.0491 (12)0.0507 (13)0.0000.0174 (9)0.000
C30.0399 (13)0.0622 (14)0.0517 (13)0.0000.0249 (11)0.000
C40.0417 (13)0.0548 (13)0.0447 (12)0.0000.0209 (10)0.000
C50.0570 (17)0.092 (2)0.0424 (13)0.0000.0205 (12)0.000
C60.0388 (13)0.0516 (12)0.0401 (11)0.0000.0171 (9)0.000
C70.0392 (12)0.0495 (12)0.0391 (11)0.0000.0163 (9)0.000
C80.0455 (14)0.0685 (15)0.0383 (11)0.0000.0186 (10)0.000
C90.0472 (15)0.0761 (16)0.0427 (12)0.0000.0255 (10)0.000
C100.0400 (13)0.0537 (13)0.0447 (12)0.0000.0223 (10)0.000
C110.0413 (14)0.0624 (14)0.0480 (13)0.0000.0210 (10)0.000
C120.0435 (16)0.126 (3)0.0563 (16)0.0000.0109 (12)0.000
C130.0384 (14)0.0671 (16)0.0564 (14)0.0000.0184 (11)0.000
C140.0359 (14)0.0757 (17)0.0704 (17)0.0000.0256 (12)0.000
C150.0474 (16)0.0678 (16)0.0581 (15)0.0000.0294 (12)0.000
C160.0614 (19)0.110 (2)0.0636 (17)0.0000.0393 (15)0.000
C170.0647 (19)0.097 (2)0.0557 (15)0.0000.0353 (14)0.000
C180.0462 (14)0.0540 (13)0.0554 (14)0.0000.0273 (11)0.000
C190.0392 (14)0.0632 (15)0.0684 (16)0.0000.0275 (12)0.000
C200.0337 (13)0.0561 (14)0.0593 (15)0.0000.0151 (11)0.000
C210.0384 (15)0.091 (2)0.0659 (17)0.0000.0081 (12)0.000
C220.0381 (13)0.0532 (13)0.0427 (12)0.0000.0161 (10)0.000
C230.0316 (12)0.0543 (13)0.0433 (12)0.0000.0107 (9)0.000
C240.0347 (13)0.115 (2)0.0405 (12)0.0000.0104 (10)0.000
C250.0417 (15)0.117 (2)0.0370 (12)0.0000.0139 (10)0.000
C260.0399 (13)0.0590 (14)0.0416 (12)0.0000.0166 (10)0.000
C270.0425 (14)0.0605 (14)0.0445 (12)0.0000.0189 (10)0.000
C280.0601 (18)0.0769 (18)0.0756 (18)0.0000.0452 (15)0.000
C290.0419 (14)0.0557 (14)0.0645 (15)0.0000.0298 (12)0.000
C300.0362 (14)0.0664 (16)0.0729 (17)0.0000.0247 (12)0.000
C310.0385 (14)0.0618 (14)0.0573 (14)0.0000.0166 (11)0.000
C320.0474 (16)0.109 (2)0.0545 (15)0.0000.0099 (12)0.000
Geometric parameters (Å, º) top
S1—C101.720 (2)C10—C111.483 (3)
S1—C71.721 (2)C12—C131.483 (4)
S2—C261.713 (2)C12—H12A0.9600
S2—C231.725 (2)C12—H12B0.9600
O1—C61.209 (3)C12—H12C0.9600
O2—C111.204 (3)C13—C141.355 (4)
O3—C221.205 (3)C14—C151.407 (4)
O4—C271.208 (3)C14—H140.9300
N1—C41.311 (3)C15—C161.490 (3)
N1—N21.376 (2)C16—H16A0.9600
N2—C21.381 (3)C16—H16B0.9600
N2—C61.399 (3)C16—H16C0.9600
N3—N41.373 (3)C17—C181.487 (3)
N3—C131.390 (3)C17—H17A0.9600
N3—C111.402 (3)C17—H17B0.9600
N4—C151.315 (3)C17—H17C0.9600
N5—C201.314 (3)C18—C191.359 (4)
N5—N61.379 (3)C19—C201.407 (4)
N6—C181.387 (3)C19—H190.9300
N6—C221.401 (3)C20—C211.498 (3)
N7—N81.372 (3)C21—H21A0.9600
N7—C291.384 (3)C21—H21B0.9600
N7—C271.396 (3)C21—H21C0.9600
N8—C311.316 (3)C22—C231.480 (3)
C1—C21.493 (3)C23—C241.356 (3)
C1—H1A0.9600C24—C251.387 (4)
C1—H1B0.9600C24—H240.9300
C1—H1C0.9600C25—C261.373 (3)
C2—C31.354 (3)C25—H250.9300
C3—C41.419 (3)C26—C271.482 (3)
C3—H30.9300C28—C291.489 (3)
C4—C51.493 (3)C28—H28A0.9600
C5—H5A0.9600C28—H28B0.9600
C5—H5B0.9600C28—H28C0.9600
C5—H5C0.9600C29—C301.351 (4)
C6—C71.484 (3)C30—C311.418 (4)
C7—C81.372 (3)C30—H300.9300
C8—C91.388 (4)C31—C321.483 (4)
C8—H80.9300C32—H32A0.9600
C9—C101.368 (3)C32—H32B0.9600
C9—H90.9300C32—H32C0.9600
C10—S1—C791.54 (11)N4—C15—C14111.5 (2)
C26—S2—C2391.51 (11)N4—C15—C16120.8 (3)
C4—N1—N2105.05 (18)C14—C15—C16127.7 (3)
N1—N2—C2111.90 (17)C15—C16—H16A109.5
N1—N2—C6119.30 (18)C15—C16—H16B109.5
C2—N2—C6128.8 (2)H16A—C16—H16B109.5
N4—N3—C13111.83 (18)C15—C16—H16C109.5
N4—N3—C11122.10 (19)H16A—C16—H16C109.5
C13—N3—C11126.1 (2)H16B—C16—H16C109.5
C15—N4—N3104.6 (2)C18—C17—H17A109.5
C20—N5—N6105.0 (2)C18—C17—H17B109.5
N5—N6—C18111.48 (19)H17A—C17—H17B109.5
N5—N6—C22121.53 (19)C18—C17—H17C109.5
C18—N6—C22126.98 (19)H17A—C17—H17C109.5
N8—N7—C29111.94 (19)H17B—C17—H17C109.5
N8—N7—C27119.62 (19)C19—C18—N6105.0 (2)
C29—N7—C27128.4 (2)C19—C18—C17129.9 (2)
C31—N8—N7105.1 (2)N6—C18—C17125.1 (2)
C2—C1—H1A109.5C18—C19—C20107.3 (2)
C2—C1—H1B109.5C18—C19—H19126.4
H1A—C1—H1B109.5C20—C19—H19126.4
C2—C1—H1C109.5N5—C20—C19111.2 (2)
H1A—C1—H1C109.5N5—C20—C21120.4 (2)
H1B—C1—H1C109.5C19—C20—C21128.4 (2)
C3—C2—N2105.1 (2)C20—C21—H21A109.5
C3—C2—C1130.1 (2)C20—C21—H21B109.5
N2—C2—C1124.7 (2)H21A—C21—H21B109.5
C2—C3—C4107.1 (2)C20—C21—H21C109.5
C2—C3—H3126.4H21A—C21—H21C109.5
C4—C3—H3126.4H21B—C21—H21C109.5
N1—C4—C3110.8 (2)O3—C22—N6120.3 (2)
N1—C4—C5119.7 (2)O3—C22—C23120.1 (2)
C3—C4—C5129.5 (2)N6—C22—C23119.61 (19)
C4—C5—H5A109.5C24—C23—C22134.3 (2)
C4—C5—H5B109.5C24—C23—S2111.59 (18)
H5A—C5—H5B109.5C22—C23—S2114.13 (16)
C4—C5—H5C109.5C23—C24—C25112.5 (2)
H5A—C5—H5C109.5C23—C24—H24123.8
H5B—C5—H5C109.5C25—C24—H24123.8
O1—C6—N2120.9 (2)C26—C25—C24113.9 (2)
O1—C6—C7121.0 (2)C26—C25—H25123.0
N2—C6—C7118.12 (19)C24—C25—H25123.0
C8—C7—C6120.5 (2)C25—C26—C27120.2 (2)
C8—C7—S1110.59 (18)C25—C26—S2110.47 (18)
C6—C7—S1128.96 (17)C27—C26—S2129.35 (18)
C7—C8—C9113.8 (2)O4—C27—N7120.3 (2)
C7—C8—H8123.1O4—C27—C26120.1 (2)
C9—C8—H8123.1N7—C27—C26119.7 (2)
C10—C9—C8112.5 (2)C29—C28—H28A109.5
C10—C9—H9123.8C29—C28—H28B109.5
C8—C9—H9123.8H28A—C28—H28B109.5
C9—C10—C11135.8 (2)C29—C28—H28C109.5
C9—C10—S1111.54 (19)H28A—C28—H28C109.5
C11—C10—S1112.66 (16)H28B—C28—H28C109.5
O2—C11—N3119.8 (2)C30—C29—N7105.0 (2)
O2—C11—C10120.1 (2)C30—C29—C28129.8 (3)
N3—C11—C10120.1 (2)N7—C29—C28125.2 (2)
C13—C12—H12A109.5C29—C30—C31107.4 (2)
C13—C12—H12B109.5C29—C30—H30126.3
H12A—C12—H12B109.5C31—C30—H30126.3
C13—C12—H12C109.5N8—C31—C30110.5 (2)
H12A—C12—H12C109.5N8—C31—C32121.0 (2)
H12B—C12—H12C109.5C30—C31—C32128.5 (2)
C14—C13—N3105.0 (2)C31—C32—H32A109.5
C14—C13—C12129.7 (3)C31—C32—H32B109.5
N3—C13—C12125.4 (2)H32A—C32—H32B109.5
C13—C14—C15107.1 (2)C31—C32—H32C109.5
C13—C14—H14126.5H32A—C32—H32C109.5
C15—C14—H14126.5H32B—C32—H32C109.5
C4—N1—N2—C20.0N3—N4—C15—C140.0
C4—N1—N2—C6180.0N3—N4—C15—C16180.0
C13—N3—N4—C150.0C13—C14—C15—N40.0
C11—N3—N4—C15180.0C13—C14—C15—C16180.0
C20—N5—N6—C180.0N5—N6—C18—C190.000 (1)
C20—N5—N6—C22180.0C22—N6—C18—C19180.0
C29—N7—N8—C310.0N5—N6—C18—C17180.0
C27—N7—N8—C31180.0C22—N6—C18—C170.000 (1)
N1—N2—C2—C30.0N6—C18—C19—C200.0
C6—N2—C2—C3180.0C17—C18—C19—C20180.0
N1—N2—C2—C1180.0N6—N5—C20—C190.0
C6—N2—C2—C10.0N6—N5—C20—C21180.0
N2—C2—C3—C40.0C18—C19—C20—N50.0
C1—C2—C3—C4180.0C18—C19—C20—C21180.0
N2—N1—C4—C30.0N5—N6—C22—O3180.0
N2—N1—C4—C5180.0C18—N6—C22—O30.000 (1)
C2—C3—C4—N10.0N5—N6—C22—C230.000 (1)
C2—C3—C4—C5180.0C18—N6—C22—C23180.0
N1—N2—C6—O1180.0O3—C22—C23—C24180.0
C2—N2—C6—O10.0N6—C22—C23—C240.000 (1)
N1—N2—C6—C70.0O3—C22—C23—S20.000 (1)
C2—N2—C6—C7180.0N6—C22—C23—S2180.0
O1—C6—C7—C80.0C26—S2—C23—C240.0
N2—C6—C7—C8180.0C26—S2—C23—C22180.0
O1—C6—C7—S1180.0C22—C23—C24—C25180.0
N2—C6—C7—S10.0S2—C23—C24—C250.0
C10—S1—C7—C80.0C23—C24—C25—C260.0
C10—S1—C7—C6180.0C24—C25—C26—C27180.0
C6—C7—C8—C9180.0C24—C25—C26—S20.0
S1—C7—C8—C90.0C23—S2—C26—C250.0
C7—C8—C9—C100.0C23—S2—C26—C27180.0
C8—C9—C10—C11180.0N8—N7—C27—O4180.0
C8—C9—C10—S10.0C29—N7—C27—O40.0
C7—S1—C10—C90.0N8—N7—C27—C260.0
C7—S1—C10—C11180.0C29—N7—C27—C26180.0
N4—N3—C11—O2180.0C25—C26—C27—O40.000 (1)
C13—N3—C11—O20.0S2—C26—C27—O4180.0
N4—N3—C11—C100.0C25—C26—C27—N7180.0
C13—N3—C11—C10180.0S2—C26—C27—N70.0
C9—C10—C11—O2180.0N8—N7—C29—C300.0
S1—C10—C11—O20.0C27—N7—C29—C30180.0
C9—C10—C11—N30.0N8—N7—C29—C28180.0
S1—C10—C11—N3180.0C27—N7—C29—C280.000 (1)
N4—N3—C13—C140.0N7—C29—C30—C310.0
C11—N3—C13—C14180.0C28—C29—C30—C31180.0
N4—N3—C13—C12180.0N7—N8—C31—C300.0
C11—N3—C13—C120.0N7—N8—C31—C32180.0
N3—C13—C14—C150.0C29—C30—C31—N80.000 (1)
C12—C13—C14—C15180.0C29—C30—C31—C32180.0

Experimental details

Crystal data
Chemical formulaC16H16N4O2S
Mr328.39
Crystal system, space groupMonoclinic, P21/m
Temperature (K)296
a, b, c (Å)15.615 (3), 6.7153 (16), 16.803 (4)
β (°) 114.452 (4)
V3)1603.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker CCD 1000 area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.938, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
7557, 3297, 2744
Rint0.017
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.03
No. of reflections3297
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999), modiCIFer (Guzei, 2007) and publCIF (Westrip, 2009).

 

Acknowledgements

This work was supported by the National Research Foundation (South Africa).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A. (2007). modiCIFer. University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Li, K., Bikzhanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715–722.  Web of Science CSD CrossRef Google Scholar
First citationMohlala, M. S., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). J. Mol. Cat. Chem. A, 241, 93–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationOjwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds