metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Bromo-2-[3-(di­ethyl­ammonio)propyl­imino­meth­yl]phenolato}di­iodidozinc(II) methanol solvate

aKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xuewen-zhu@163.com

(Received 10 September 2009; accepted 22 September 2009; online 3 October 2009)

In the title complex, [ZnI2(C14H21BrN2O)]·CH3OH, the asymmetric unit consists of a mononuclear zinc(II) complex mol­ecule and a methanol solvent mol­ecule. The compound was derived from the zwitterionic form of the Schiff base 4-bromo-2-[3-(diethyl­amino)propyl­imino­meth­yl]phenol. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand and by two iodide ions in a distorted tetra­hedral coordination. In the crystal structure, the methanol mol­ecules are linked to the Schiff base mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds. One I atom is disordered over two positions in a 0.702 (19):0.298 (19) ratio.

Related literature

For background to the chemistry of Schiff base complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Biswas et al. (2008[Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513-4519.]); Chen et al. (2008[Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Darensbourg & Frantz (2007[Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967-5978.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Kawamoto et al. (2008[Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095-3104.]); Lipscomb & Sträter (1996[Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.]); Tomat et al. (2007[Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224-6226.]); Wu et al. (2008[Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452-3459.]); Yuan et al. (2007[Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235-11242.]). For related structures, see: Zhu (2008[Zhu, X.-W. (2008). Acta Cryst. E64, m1456-m1457.]); Zhu & Yang (2008a[Zhu, X.-W. & Yang, X.-Z. (2008a). Acta Cryst. E64, m1090-m1091.],b[Zhu, X.-W. & Yang, X.-Z. (2008b). Acta Cryst. E64, m1092-m1093.],c[Zhu, X.-W. & Yang, X.-Z. (2008c). Acta Cryst. E64, m1094-m1095.]); Qiu (2006a[Qiu, X.-Y. (2006a). Acta Cryst. E62, m717-m718.],b[Qiu, X.-Y. (2006b). Acta Cryst. E62, m2173-m2174.]); Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.]); Zhu et al. (2007[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431-m1432.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C14H21BrN2O)]·CH4O

  • Mr = 664.45

  • Monoclinic, P 21 /n

  • a = 10.869 (2) Å

  • b = 17.562 (3) Å

  • c = 11.377 (2) Å

  • β = 94.358 (3)°

  • V = 2165.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.84 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.388, Tmax = 0.437

  • 14106 measured reflections

  • 4664 independent reflections

  • 3499 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.105

  • S = 1.06

  • 4664 reflections

  • 225 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.958 (4)
Zn1—N1 2.032 (5)
Zn1—I2′ 2.545 (6)
Zn1—I1 2.5627 (9)
Zn1—I2 2.5768 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.86 2.640 (6) 158
N2—H2A⋯O2 0.91 (6) 1.81 (6) 2.716 (7) 173 (8)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). Recently, we have reported a few Schiff base zinc complexes (Zhu, 2008; Zhu & Yang, 2008a,b,c). In this paper, the title new zinc(II) complex, Fig. 1, is reported.

The complex consists of a mononuclear zinc(II) complex molecule and a methanol molecule. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand, and by two I- ions, in a distorted tetrahedral coordination. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in the Schiff base zinc complexes we reported previously and other similar Schiff base zinc complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b). I2 atom is disordered over two positions [0.702(19/0.298 (19)].

In the crystal structure, the methanol molecules are linked to the Schiff base molecules through O—H···O and N—H···O hydrogen bonds generating a graph-set motif C22(10) chain along [100] direction (Table 2, Fig. 2). (Bernstein et al., 1995)

Related literature top

For background to the chemistry of Schiff base complexes see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures see: Zhu (2008); Zhu & Yang (2008a,b,c); Qiu (2006a,b); Wei et al. (2007); Zhu et al. (2007).

For related literature, see: Bernstein et al. (1995).

Experimental top

The Schiff base compound was prepared by the condensation of equimolar amounts of 5-bromosalicylaldehyde with N,N-diethylpropane-1,3-diamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnI2 (31.9 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (31.3 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed.

Refinement top

H2A was located from a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, O—H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C and O). The I2 atom is disordered over two distinct sites with occupancies of 0.702 (2) and 0.298 (2), respectively.

Structure description top

Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). Recently, we have reported a few Schiff base zinc complexes (Zhu, 2008; Zhu & Yang, 2008a,b,c). In this paper, the title new zinc(II) complex, Fig. 1, is reported.

The complex consists of a mononuclear zinc(II) complex molecule and a methanol molecule. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand, and by two I- ions, in a distorted tetrahedral coordination. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in the Schiff base zinc complexes we reported previously and other similar Schiff base zinc complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b). I2 atom is disordered over two positions [0.702(19/0.298 (19)].

In the crystal structure, the methanol molecules are linked to the Schiff base molecules through O—H···O and N—H···O hydrogen bonds generating a graph-set motif C22(10) chain along [100] direction (Table 2, Fig. 2). (Bernstein et al., 1995)

For background to the chemistry of Schiff base complexes see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures see: Zhu (2008); Zhu & Yang (2008a,b,c); Qiu (2006a,b); Wei et al. (2007); Zhu et al. (2007).

For related literature, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title complex.
{4-Bromo-2-[3-(diethylammonio)propyliminomethyl]phenolato}diiodidozinc(II) methanol solvate top
Crystal data top
[ZnI2(C14H21BrN2O)]·CH4OF(000) = 1264
Mr = 664.45Dx = 2.038 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3253 reflections
a = 10.869 (2) Åθ = 2.2–24.5°
b = 17.562 (3) ŵ = 5.84 mm1
c = 11.377 (2) ÅT = 298 K
β = 94.358 (3)°Block, colorless
V = 2165.4 (7) Å30.20 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4664 independent reflections
Radiation source: fine-focus sealed tube3499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1313
Tmin = 0.388, Tmax = 0.437k = 2222
14106 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0298P)2 + 7.4538P]
where P = (Fo2 + 2Fc2)/3
4664 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.75 e Å3
8 restraintsΔρmin = 0.85 e Å3
Crystal data top
[ZnI2(C14H21BrN2O)]·CH4OV = 2165.4 (7) Å3
Mr = 664.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.869 (2) ŵ = 5.84 mm1
b = 17.562 (3) ÅT = 298 K
c = 11.377 (2) Å0.20 × 0.20 × 0.17 mm
β = 94.358 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4664 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3499 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.437Rint = 0.041
14106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0488 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.75 e Å3
4664 reflectionsΔρmin = 0.85 e Å3
225 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.17105 (6)0.26943 (4)0.06556 (7)0.0380 (2)
I10.13989 (4)0.14098 (3)0.17051 (4)0.05239 (16)
I20.1766 (2)0.39343 (11)0.1861 (2)0.0541 (8)0.702 (19)
I2'0.1771 (8)0.3793 (9)0.2109 (16)0.118 (2)0.298 (19)
Br10.19879 (8)0.49547 (5)0.46762 (7)0.0630 (2)
O10.0560 (4)0.2904 (3)0.0548 (4)0.0443 (11)
O20.8239 (4)0.2628 (3)0.0180 (5)0.0546 (13)
H20.89820.27140.01420.082*
N10.3188 (4)0.2626 (3)0.0547 (4)0.0311 (11)
N20.6505 (5)0.3665 (3)0.0945 (5)0.0383 (12)
C10.2134 (5)0.3368 (3)0.1971 (5)0.0301 (13)
C20.0899 (5)0.3330 (4)0.1466 (5)0.0338 (14)
C30.0011 (6)0.3764 (4)0.2014 (6)0.0414 (16)
H30.08100.37330.17230.050*
C40.0311 (6)0.4231 (4)0.2955 (6)0.0431 (16)
H40.02970.45160.32840.052*
C50.1523 (6)0.4276 (4)0.3417 (6)0.0400 (15)
C60.2417 (6)0.3841 (3)0.2958 (5)0.0355 (14)
H60.32200.38570.33020.043*
C70.3161 (5)0.2950 (3)0.1550 (5)0.0340 (14)
H70.38700.29140.20590.041*
C80.4322 (5)0.2223 (3)0.0264 (6)0.0369 (14)
H8A0.41150.17070.00180.044*
H8B0.48880.21950.09650.044*
C90.4942 (5)0.2625 (3)0.0704 (6)0.0349 (14)
H9A0.43670.26590.13970.042*
H9B0.56440.23260.09110.042*
C100.5383 (5)0.3429 (4)0.0348 (6)0.0395 (15)
H10A0.47220.37890.05470.047*
H10B0.55680.34460.04990.047*
C110.6305 (6)0.3689 (4)0.2268 (6)0.0506 (18)
H11A0.59910.31980.25440.061*
H11B0.70960.37660.25910.061*
C120.5423 (8)0.4303 (5)0.2747 (8)0.074 (3)
H12A0.46390.42370.24250.111*
H12B0.53200.42650.35900.111*
H12C0.57530.47940.25280.111*
C130.7034 (6)0.4385 (4)0.0402 (7)0.0545 (19)
H13A0.70970.43340.04500.065*
H13B0.64780.48040.06080.065*
C140.8299 (7)0.4567 (5)0.0810 (8)0.064 (2)
H14A0.88340.41370.06660.096*
H14B0.86370.50000.03840.096*
H14C0.82250.46790.16380.096*
C150.7989 (8)0.2122 (6)0.0666 (8)0.075 (3)
H15A0.86520.17620.07730.113*
H15B0.72360.18580.04330.113*
H15C0.79000.23870.13930.113*
H2A0.705 (6)0.329 (3)0.073 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0302 (4)0.0493 (4)0.0342 (4)0.0016 (3)0.0001 (3)0.0028 (3)
I10.0523 (3)0.0513 (3)0.0513 (3)0.0029 (2)0.0108 (2)0.0073 (2)
I20.0678 (10)0.0487 (8)0.0474 (9)0.0168 (6)0.0150 (8)0.0091 (5)
I2'0.130 (4)0.100 (4)0.115 (5)0.016 (3)0.036 (3)0.035 (4)
Br10.0832 (6)0.0568 (5)0.0503 (5)0.0002 (4)0.0141 (4)0.0192 (4)
O10.026 (2)0.065 (3)0.042 (3)0.005 (2)0.0035 (19)0.009 (2)
O20.032 (2)0.059 (3)0.071 (4)0.006 (2)0.006 (2)0.006 (3)
N10.024 (2)0.035 (3)0.035 (3)0.0020 (19)0.005 (2)0.002 (2)
N20.034 (3)0.040 (3)0.042 (3)0.003 (2)0.009 (2)0.002 (3)
C10.025 (3)0.032 (3)0.033 (3)0.003 (2)0.009 (2)0.003 (3)
C20.029 (3)0.041 (4)0.032 (3)0.002 (2)0.010 (3)0.005 (3)
C30.030 (3)0.048 (4)0.047 (4)0.005 (3)0.010 (3)0.009 (3)
C40.051 (4)0.040 (4)0.041 (4)0.008 (3)0.020 (3)0.008 (3)
C50.055 (4)0.034 (3)0.032 (4)0.000 (3)0.011 (3)0.003 (3)
C60.038 (3)0.042 (4)0.027 (3)0.003 (3)0.006 (3)0.002 (3)
C70.024 (3)0.041 (3)0.036 (4)0.003 (2)0.003 (3)0.005 (3)
C80.030 (3)0.032 (3)0.049 (4)0.004 (2)0.006 (3)0.003 (3)
C90.024 (3)0.038 (3)0.043 (4)0.003 (2)0.007 (3)0.011 (3)
C100.035 (3)0.045 (4)0.040 (4)0.000 (3)0.013 (3)0.006 (3)
C110.049 (4)0.058 (5)0.045 (4)0.006 (3)0.011 (3)0.003 (4)
C120.070 (5)0.076 (6)0.074 (6)0.002 (4)0.003 (5)0.026 (5)
C130.051 (4)0.043 (4)0.069 (5)0.009 (3)0.005 (4)0.007 (4)
C140.054 (4)0.061 (5)0.077 (6)0.019 (4)0.008 (4)0.011 (4)
C150.055 (5)0.098 (7)0.071 (6)0.005 (5)0.002 (4)0.008 (5)
Geometric parameters (Å, º) top
Zn1—O11.958 (4)C7—H70.9300
Zn1—N12.032 (5)C8—C91.510 (9)
Zn1—I2'2.545 (6)C8—H8A0.9700
Zn1—I12.5627 (9)C8—H8B0.9700
Zn1—I22.5768 (18)C9—C101.536 (8)
Br1—C51.902 (6)C9—H9A0.9700
O1—C21.315 (7)C9—H9B0.9700
O2—C151.353 (9)C10—H10A0.9700
O2—H20.8200C10—H10B0.9700
N1—C71.278 (7)C11—C121.516 (10)
N1—C81.478 (7)C11—H11A0.9700
N2—C101.499 (8)C11—H11B0.9700
N2—C131.503 (8)C12—H12A0.9600
N2—C111.506 (9)C12—H12B0.9600
N2—H2A0.91 (6)C12—H12C0.9600
C1—C61.412 (8)C13—C141.519 (9)
C1—C21.421 (8)C13—H13A0.9700
C1—C71.447 (8)C13—H13B0.9700
C2—C31.411 (8)C14—H14A0.9600
C3—C41.368 (9)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.383 (9)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.370 (8)C15—H15C0.9600
C6—H60.9300
O1—Zn1—N193.11 (18)N1—C8—H8B109.4
O1—Zn1—I2'111.2 (5)C9—C8—H8B109.4
N1—Zn1—I2'115.1 (3)H8A—C8—H8B108.0
O1—Zn1—I1115.00 (13)C8—C9—C10112.7 (5)
N1—Zn1—I1109.36 (14)C8—C9—H9A109.1
I2'—Zn1—I1111.9 (5)C10—C9—H9A109.1
O1—Zn1—I2104.79 (15)C8—C9—H9B109.1
N1—Zn1—I2111.03 (15)C10—C9—H9B109.1
I2'—Zn1—I28.4 (5)H9A—C9—H9B107.8
I1—Zn1—I2120.23 (7)N2—C10—C9112.5 (5)
C2—O1—Zn1120.5 (4)N2—C10—H10A109.1
C15—O2—H2109.5C9—C10—H10A109.1
C7—N1—C8118.9 (5)N2—C10—H10B109.1
C7—N1—Zn1120.3 (4)C9—C10—H10B109.1
C8—N1—Zn1120.7 (4)H10A—C10—H10B107.8
C10—N2—C13110.2 (5)N2—C11—C12114.7 (6)
C10—N2—C11113.6 (5)N2—C11—H11A108.6
C13—N2—C11114.2 (5)C12—C11—H11A108.6
C10—N2—H2A103 (5)N2—C11—H11B108.6
C13—N2—H2A106 (5)C12—C11—H11B108.6
C11—N2—H2A109 (5)H11A—C11—H11B107.6
C6—C1—C2119.4 (5)C11—C12—H12A109.5
C6—C1—C7115.8 (5)C11—C12—H12B109.5
C2—C1—C7124.9 (5)H12A—C12—H12B109.5
O1—C2—C3119.9 (5)C11—C12—H12C109.5
O1—C2—C1123.1 (5)H12A—C12—H12C109.5
C3—C2—C1116.9 (6)H12B—C12—H12C109.5
C4—C3—C2122.6 (6)N2—C13—C14112.2 (6)
C4—C3—H3118.7N2—C13—H13A109.2
C2—C3—H3118.7C14—C13—H13A109.2
C3—C4—C5119.7 (6)N2—C13—H13B109.2
C3—C4—H4120.2C14—C13—H13B109.2
C5—C4—H4120.2H13A—C13—H13B107.9
C6—C5—C4120.4 (6)C13—C14—H14A109.5
C6—C5—Br1118.8 (5)C13—C14—H14B109.5
C4—C5—Br1120.8 (5)H14A—C14—H14B109.5
C5—C6—C1120.9 (6)C13—C14—H14C109.5
C5—C6—H6119.5H14A—C14—H14C109.5
C1—C6—H6119.5H14B—C14—H14C109.5
N1—C7—C1126.3 (5)O2—C15—H15A109.5
N1—C7—H7116.9O2—C15—H15B109.5
C1—C7—H7116.9H15A—C15—H15B109.5
N1—C8—C9111.1 (5)O2—C15—H15C109.5
N1—C8—H8A109.4H15A—C15—H15C109.5
C9—C8—H8A109.4H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.862.640 (6)158
N2—H2A···O20.91 (6)1.81 (6)2.716 (7)173 (8)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[ZnI2(C14H21BrN2O)]·CH4O
Mr664.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.869 (2), 17.562 (3), 11.377 (2)
β (°) 94.358 (3)
V3)2165.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.84
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.388, 0.437
No. of measured, independent and
observed [I > 2σ(I)] reflections
14106, 4664, 3499
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.105, 1.06
No. of reflections4664
No. of parameters225
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.85

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.958 (4)Zn1—I12.5627 (9)
Zn1—N12.032 (5)Zn1—I22.5768 (18)
Zn1—I2'2.545 (6)
O1—Zn1—N193.11 (18)I2'—Zn1—I1111.9 (5)
O1—Zn1—I2'111.2 (5)O1—Zn1—I2104.79 (15)
N1—Zn1—I2'115.1 (3)N1—Zn1—I2111.03 (15)
O1—Zn1—I1115.00 (13)I2'—Zn1—I28.4 (5)
N1—Zn1—I1109.36 (14)I1—Zn1—I2120.23 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.862.640 (6)158.2
N2—H2A···O20.91 (6)1.81 (6)2.716 (7)173 (8)
Symmetry code: (i) x+1, y, z.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967–5978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationQiu, X.-Y. (2006a). Acta Cryst. E62, m717–m718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y. (2006b). Acta Cryst. E62, m2173–m2174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452–3459.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. & Yang, X.-Z. (2008a). Acta Cryst. E64, m1090–m1091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. & Yang, X.-Z. (2008b). Acta Cryst. E64, m1092–m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. & Yang, X.-Z. (2008c). Acta Cryst. E64, m1094–m1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds