metal-organic compounds
{4-Bromo-2-[3-(diethylammonio)propyliminomethyl]phenolato}diiodidozinc(II) methanol solvate
aKey Laboratory of Surface and Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xuewen-zhu@163.com
In the title complex, [ZnI2(C14H21BrN2O)]·CH3OH, the consists of a mononuclear zinc(II) complex molecule and a methanol solvent molecule. The compound was derived from the zwitterionic form of the Schiff base 4-bromo-2-[3-(diethylamino)propyliminomethyl]phenol. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand and by two iodide ions in a distorted tetrahedral coordination. In the the methanol molecules are linked to the Schiff base molecules through N—H⋯O and O—H⋯O hydrogen bonds. One I atom is disordered over two positions in a 0.702 (19):0.298 (19) ratio.
Related literature
For background to the chemistry of Schiff base complexes, see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures, see: Zhu (2008); Zhu & Yang (2008a,b,c); Qiu (2006a,b); Wei et al. (2007); Zhu et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809038446/bx2241sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809038446/bx2241Isup2.hkl
The Schiff base compound was prepared by the condensation of equimolar amounts of 5-bromosalicylaldehyde with N,N-diethylpropane-1,3-diamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnI2 (31.9 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (31.3 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed.
H2A was located from a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, O—H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C and O). The I2 atom is disordered over two distinct sites with occupancies of 0.702 (2) and 0.298 (2), respectively.
Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). Recently, we have reported a few Schiff base zinc complexes (Zhu, 2008; Zhu & Yang, 2008a,b,c). In this paper, the title new zinc(II) complex, Fig. 1, is reported.
The complex consists of a mononuclear zinc(II) complex molecule and a methanol molecule. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand, and by two I- ions, in a distorted tetrahedral coordination. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in the Schiff base zinc complexes we reported previously and other similar Schiff base zinc complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b). I2 atom is disordered over two positions [0.702(19/0.298 (19)].
In the
the methanol molecules are linked to the Schiff base molecules through O—H···O and N—H···O hydrogen bonds generating a graph-set motif C22(10) chain along [100] direction (Table 2, Fig. 2). (Bernstein et al., 1995)For background to the chemistry of Schiff base complexes see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures see: Zhu (2008); Zhu & Yang (2008a,b,c); Qiu (2006a,b); Wei et al. (2007); Zhu et al. (2007).
For related literature, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex, with ellipsoids drawn at the 30% probability level. | |
Fig. 2. The crystal packing of the title complex. |
[ZnI2(C14H21BrN2O)]·CH4O | F(000) = 1264 |
Mr = 664.45 | Dx = 2.038 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3253 reflections |
a = 10.869 (2) Å | θ = 2.2–24.5° |
b = 17.562 (3) Å | µ = 5.84 mm−1 |
c = 11.377 (2) Å | T = 298 K |
β = 94.358 (3)° | Block, colorless |
V = 2165.4 (7) Å3 | 0.20 × 0.20 × 0.17 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 4664 independent reflections |
Radiation source: fine-focus sealed tube | 3499 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 27.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −13→13 |
Tmin = 0.388, Tmax = 0.437 | k = −22→22 |
14106 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0298P)2 + 7.4538P] where P = (Fo2 + 2Fc2)/3 |
4664 reflections | (Δ/σ)max = 0.001 |
225 parameters | Δρmax = 0.75 e Å−3 |
8 restraints | Δρmin = −0.85 e Å−3 |
[ZnI2(C14H21BrN2O)]·CH4O | V = 2165.4 (7) Å3 |
Mr = 664.45 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.869 (2) Å | µ = 5.84 mm−1 |
b = 17.562 (3) Å | T = 298 K |
c = 11.377 (2) Å | 0.20 × 0.20 × 0.17 mm |
β = 94.358 (3)° |
Bruker APEXII CCD area-detector diffractometer | 4664 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3499 reflections with I > 2σ(I) |
Tmin = 0.388, Tmax = 0.437 | Rint = 0.041 |
14106 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 8 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.75 e Å−3 |
4664 reflections | Δρmin = −0.85 e Å−3 |
225 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.17105 (6) | 0.26943 (4) | −0.06556 (7) | 0.0380 (2) | |
I1 | 0.13989 (4) | 0.14098 (3) | −0.17051 (4) | 0.05239 (16) | |
I2 | 0.1766 (2) | 0.39343 (11) | −0.1861 (2) | 0.0541 (8) | 0.702 (19) |
I2' | 0.1771 (8) | 0.3793 (9) | −0.2109 (16) | 0.118 (2) | 0.298 (19) |
Br1 | 0.19879 (8) | 0.49547 (5) | 0.46762 (7) | 0.0630 (2) | |
O1 | 0.0560 (4) | 0.2904 (3) | 0.0548 (4) | 0.0443 (11) | |
O2 | 0.8239 (4) | 0.2628 (3) | −0.0180 (5) | 0.0546 (13) | |
H2 | 0.8982 | 0.2714 | −0.0142 | 0.082* | |
N1 | 0.3188 (4) | 0.2626 (3) | 0.0547 (4) | 0.0311 (11) | |
N2 | 0.6505 (5) | 0.3665 (3) | −0.0945 (5) | 0.0383 (12) | |
C1 | 0.2134 (5) | 0.3368 (3) | 0.1971 (5) | 0.0301 (13) | |
C2 | 0.0899 (5) | 0.3330 (4) | 0.1466 (5) | 0.0338 (14) | |
C3 | 0.0011 (6) | 0.3764 (4) | 0.2014 (6) | 0.0414 (16) | |
H3 | −0.0810 | 0.3733 | 0.1723 | 0.050* | |
C4 | 0.0311 (6) | 0.4231 (4) | 0.2955 (6) | 0.0431 (16) | |
H4 | −0.0297 | 0.4516 | 0.3284 | 0.052* | |
C5 | 0.1523 (6) | 0.4276 (4) | 0.3417 (6) | 0.0400 (15) | |
C6 | 0.2417 (6) | 0.3841 (3) | 0.2958 (5) | 0.0355 (14) | |
H6 | 0.3220 | 0.3857 | 0.3302 | 0.043* | |
C7 | 0.3161 (5) | 0.2950 (3) | 0.1550 (5) | 0.0340 (14) | |
H7 | 0.3870 | 0.2914 | 0.2059 | 0.041* | |
C8 | 0.4322 (5) | 0.2223 (3) | 0.0264 (6) | 0.0369 (14) | |
H8A | 0.4115 | 0.1707 | 0.0018 | 0.044* | |
H8B | 0.4888 | 0.2195 | 0.0965 | 0.044* | |
C9 | 0.4942 (5) | 0.2625 (3) | −0.0704 (6) | 0.0349 (14) | |
H9A | 0.4367 | 0.2659 | −0.1397 | 0.042* | |
H9B | 0.5644 | 0.2326 | −0.0911 | 0.042* | |
C10 | 0.5383 (5) | 0.3429 (4) | −0.0348 (6) | 0.0395 (15) | |
H10A | 0.4722 | 0.3789 | −0.0547 | 0.047* | |
H10B | 0.5568 | 0.3446 | 0.0499 | 0.047* | |
C11 | 0.6305 (6) | 0.3689 (4) | −0.2268 (6) | 0.0506 (18) | |
H11A | 0.5991 | 0.3198 | −0.2544 | 0.061* | |
H11B | 0.7096 | 0.3766 | −0.2591 | 0.061* | |
C12 | 0.5423 (8) | 0.4303 (5) | −0.2747 (8) | 0.074 (3) | |
H12A | 0.4639 | 0.4237 | −0.2425 | 0.111* | |
H12B | 0.5320 | 0.4265 | −0.3590 | 0.111* | |
H12C | 0.5753 | 0.4794 | −0.2528 | 0.111* | |
C13 | 0.7034 (6) | 0.4385 (4) | −0.0402 (7) | 0.0545 (19) | |
H13A | 0.7097 | 0.4334 | 0.0450 | 0.065* | |
H13B | 0.6478 | 0.4804 | −0.0608 | 0.065* | |
C14 | 0.8299 (7) | 0.4567 (5) | −0.0810 (8) | 0.064 (2) | |
H14A | 0.8834 | 0.4137 | −0.0666 | 0.096* | |
H14B | 0.8637 | 0.5000 | −0.0384 | 0.096* | |
H14C | 0.8225 | 0.4679 | −0.1638 | 0.096* | |
C15 | 0.7989 (8) | 0.2122 (6) | 0.0666 (8) | 0.075 (3) | |
H15A | 0.8652 | 0.1762 | 0.0773 | 0.113* | |
H15B | 0.7236 | 0.1858 | 0.0433 | 0.113* | |
H15C | 0.7900 | 0.2387 | 0.1393 | 0.113* | |
H2A | 0.705 (6) | 0.329 (3) | −0.073 (7) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0302 (4) | 0.0493 (4) | 0.0342 (4) | 0.0016 (3) | 0.0001 (3) | −0.0028 (3) |
I1 | 0.0523 (3) | 0.0513 (3) | 0.0513 (3) | 0.0029 (2) | −0.0108 (2) | −0.0073 (2) |
I2 | 0.0678 (10) | 0.0487 (8) | 0.0474 (9) | 0.0168 (6) | 0.0150 (8) | 0.0091 (5) |
I2' | 0.130 (4) | 0.100 (4) | 0.115 (5) | −0.016 (3) | −0.036 (3) | 0.035 (4) |
Br1 | 0.0832 (6) | 0.0568 (5) | 0.0503 (5) | 0.0002 (4) | 0.0141 (4) | −0.0192 (4) |
O1 | 0.026 (2) | 0.065 (3) | 0.042 (3) | −0.005 (2) | 0.0035 (19) | −0.009 (2) |
O2 | 0.032 (2) | 0.059 (3) | 0.071 (4) | −0.006 (2) | −0.006 (2) | 0.006 (3) |
N1 | 0.024 (2) | 0.035 (3) | 0.035 (3) | 0.0020 (19) | 0.005 (2) | −0.002 (2) |
N2 | 0.034 (3) | 0.040 (3) | 0.042 (3) | −0.003 (2) | 0.009 (2) | 0.002 (3) |
C1 | 0.025 (3) | 0.032 (3) | 0.033 (3) | −0.003 (2) | 0.009 (2) | 0.003 (3) |
C2 | 0.029 (3) | 0.041 (4) | 0.032 (3) | −0.002 (2) | 0.010 (3) | 0.005 (3) |
C3 | 0.030 (3) | 0.048 (4) | 0.047 (4) | 0.005 (3) | 0.010 (3) | 0.009 (3) |
C4 | 0.051 (4) | 0.040 (4) | 0.041 (4) | 0.008 (3) | 0.020 (3) | 0.008 (3) |
C5 | 0.055 (4) | 0.034 (3) | 0.032 (4) | 0.000 (3) | 0.011 (3) | −0.003 (3) |
C6 | 0.038 (3) | 0.042 (4) | 0.027 (3) | −0.003 (3) | 0.006 (3) | −0.002 (3) |
C7 | 0.024 (3) | 0.041 (3) | 0.036 (4) | −0.003 (2) | −0.003 (3) | 0.005 (3) |
C8 | 0.030 (3) | 0.032 (3) | 0.049 (4) | 0.004 (2) | 0.006 (3) | −0.003 (3) |
C9 | 0.024 (3) | 0.038 (3) | 0.043 (4) | 0.003 (2) | 0.007 (3) | −0.011 (3) |
C10 | 0.035 (3) | 0.045 (4) | 0.040 (4) | 0.000 (3) | 0.013 (3) | −0.006 (3) |
C11 | 0.049 (4) | 0.058 (5) | 0.045 (4) | −0.006 (3) | 0.011 (3) | 0.003 (4) |
C12 | 0.070 (5) | 0.076 (6) | 0.074 (6) | −0.002 (4) | −0.003 (5) | 0.026 (5) |
C13 | 0.051 (4) | 0.043 (4) | 0.069 (5) | −0.009 (3) | 0.005 (4) | −0.007 (4) |
C14 | 0.054 (4) | 0.061 (5) | 0.077 (6) | −0.019 (4) | 0.008 (4) | 0.011 (4) |
C15 | 0.055 (5) | 0.098 (7) | 0.071 (6) | −0.005 (5) | −0.002 (4) | 0.008 (5) |
Zn1—O1 | 1.958 (4) | C7—H7 | 0.9300 |
Zn1—N1 | 2.032 (5) | C8—C9 | 1.510 (9) |
Zn1—I2' | 2.545 (6) | C8—H8A | 0.9700 |
Zn1—I1 | 2.5627 (9) | C8—H8B | 0.9700 |
Zn1—I2 | 2.5768 (18) | C9—C10 | 1.536 (8) |
Br1—C5 | 1.902 (6) | C9—H9A | 0.9700 |
O1—C2 | 1.315 (7) | C9—H9B | 0.9700 |
O2—C15 | 1.353 (9) | C10—H10A | 0.9700 |
O2—H2 | 0.8200 | C10—H10B | 0.9700 |
N1—C7 | 1.278 (7) | C11—C12 | 1.516 (10) |
N1—C8 | 1.478 (7) | C11—H11A | 0.9700 |
N2—C10 | 1.499 (8) | C11—H11B | 0.9700 |
N2—C13 | 1.503 (8) | C12—H12A | 0.9600 |
N2—C11 | 1.506 (9) | C12—H12B | 0.9600 |
N2—H2A | 0.91 (6) | C12—H12C | 0.9600 |
C1—C6 | 1.412 (8) | C13—C14 | 1.519 (9) |
C1—C2 | 1.421 (8) | C13—H13A | 0.9700 |
C1—C7 | 1.447 (8) | C13—H13B | 0.9700 |
C2—C3 | 1.411 (8) | C14—H14A | 0.9600 |
C3—C4 | 1.368 (9) | C14—H14B | 0.9600 |
C3—H3 | 0.9300 | C14—H14C | 0.9600 |
C4—C5 | 1.383 (9) | C15—H15A | 0.9600 |
C4—H4 | 0.9300 | C15—H15B | 0.9600 |
C5—C6 | 1.370 (8) | C15—H15C | 0.9600 |
C6—H6 | 0.9300 | ||
O1—Zn1—N1 | 93.11 (18) | N1—C8—H8B | 109.4 |
O1—Zn1—I2' | 111.2 (5) | C9—C8—H8B | 109.4 |
N1—Zn1—I2' | 115.1 (3) | H8A—C8—H8B | 108.0 |
O1—Zn1—I1 | 115.00 (13) | C8—C9—C10 | 112.7 (5) |
N1—Zn1—I1 | 109.36 (14) | C8—C9—H9A | 109.1 |
I2'—Zn1—I1 | 111.9 (5) | C10—C9—H9A | 109.1 |
O1—Zn1—I2 | 104.79 (15) | C8—C9—H9B | 109.1 |
N1—Zn1—I2 | 111.03 (15) | C10—C9—H9B | 109.1 |
I2'—Zn1—I2 | 8.4 (5) | H9A—C9—H9B | 107.8 |
I1—Zn1—I2 | 120.23 (7) | N2—C10—C9 | 112.5 (5) |
C2—O1—Zn1 | 120.5 (4) | N2—C10—H10A | 109.1 |
C15—O2—H2 | 109.5 | C9—C10—H10A | 109.1 |
C7—N1—C8 | 118.9 (5) | N2—C10—H10B | 109.1 |
C7—N1—Zn1 | 120.3 (4) | C9—C10—H10B | 109.1 |
C8—N1—Zn1 | 120.7 (4) | H10A—C10—H10B | 107.8 |
C10—N2—C13 | 110.2 (5) | N2—C11—C12 | 114.7 (6) |
C10—N2—C11 | 113.6 (5) | N2—C11—H11A | 108.6 |
C13—N2—C11 | 114.2 (5) | C12—C11—H11A | 108.6 |
C10—N2—H2A | 103 (5) | N2—C11—H11B | 108.6 |
C13—N2—H2A | 106 (5) | C12—C11—H11B | 108.6 |
C11—N2—H2A | 109 (5) | H11A—C11—H11B | 107.6 |
C6—C1—C2 | 119.4 (5) | C11—C12—H12A | 109.5 |
C6—C1—C7 | 115.8 (5) | C11—C12—H12B | 109.5 |
C2—C1—C7 | 124.9 (5) | H12A—C12—H12B | 109.5 |
O1—C2—C3 | 119.9 (5) | C11—C12—H12C | 109.5 |
O1—C2—C1 | 123.1 (5) | H12A—C12—H12C | 109.5 |
C3—C2—C1 | 116.9 (6) | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 122.6 (6) | N2—C13—C14 | 112.2 (6) |
C4—C3—H3 | 118.7 | N2—C13—H13A | 109.2 |
C2—C3—H3 | 118.7 | C14—C13—H13A | 109.2 |
C3—C4—C5 | 119.7 (6) | N2—C13—H13B | 109.2 |
C3—C4—H4 | 120.2 | C14—C13—H13B | 109.2 |
C5—C4—H4 | 120.2 | H13A—C13—H13B | 107.9 |
C6—C5—C4 | 120.4 (6) | C13—C14—H14A | 109.5 |
C6—C5—Br1 | 118.8 (5) | C13—C14—H14B | 109.5 |
C4—C5—Br1 | 120.8 (5) | H14A—C14—H14B | 109.5 |
C5—C6—C1 | 120.9 (6) | C13—C14—H14C | 109.5 |
C5—C6—H6 | 119.5 | H14A—C14—H14C | 109.5 |
C1—C6—H6 | 119.5 | H14B—C14—H14C | 109.5 |
N1—C7—C1 | 126.3 (5) | O2—C15—H15A | 109.5 |
N1—C7—H7 | 116.9 | O2—C15—H15B | 109.5 |
C1—C7—H7 | 116.9 | H15A—C15—H15B | 109.5 |
N1—C8—C9 | 111.1 (5) | O2—C15—H15C | 109.5 |
N1—C8—H8A | 109.4 | H15A—C15—H15C | 109.5 |
C9—C8—H8A | 109.4 | H15B—C15—H15C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.86 | 2.640 (6) | 158 |
N2—H2A···O2 | 0.91 (6) | 1.81 (6) | 2.716 (7) | 173 (8) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [ZnI2(C14H21BrN2O)]·CH4O |
Mr | 664.45 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 10.869 (2), 17.562 (3), 11.377 (2) |
β (°) | 94.358 (3) |
V (Å3) | 2165.4 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.84 |
Crystal size (mm) | 0.20 × 0.20 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.388, 0.437 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14106, 4664, 3499 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.105, 1.06 |
No. of reflections | 4664 |
No. of parameters | 225 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.75, −0.85 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Zn1—O1 | 1.958 (4) | Zn1—I1 | 2.5627 (9) |
Zn1—N1 | 2.032 (5) | Zn1—I2 | 2.5768 (18) |
Zn1—I2' | 2.545 (6) | ||
O1—Zn1—N1 | 93.11 (18) | I2'—Zn1—I1 | 111.9 (5) |
O1—Zn1—I2' | 111.2 (5) | O1—Zn1—I2 | 104.79 (15) |
N1—Zn1—I2' | 115.1 (3) | N1—Zn1—I2 | 111.03 (15) |
O1—Zn1—I1 | 115.00 (13) | I2'—Zn1—I2 | 8.4 (5) |
N1—Zn1—I1 | 109.36 (14) | I1—Zn1—I2 | 120.23 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.86 | 2.640 (6) | 158.2 |
N2—H2A···O2 | 0.91 (6) | 1.81 (6) | 2.716 (7) | 173 (8) |
Symmetry code: (i) x+1, y, z. |
References
Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171. Web of Science CSD CrossRef PubMed CAS Google Scholar
Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967–5978. Web of Science CSD CrossRef PubMed CAS Google Scholar
Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434. CrossRef PubMed CAS Web of Science Google Scholar
Qiu, X.-Y. (2006a). Acta Cryst. E62, m717–m718. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qiu, X.-Y. (2006b). Acta Cryst. E62, m2173–m2174. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452–3459. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457. Web of Science CrossRef IUCr Journals Google Scholar
Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, X.-W. & Yang, X.-Z. (2008a). Acta Cryst. E64, m1090–m1091. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, X.-W. & Yang, X.-Z. (2008b). Acta Cryst. E64, m1092–m1093. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, X.-W. & Yang, X.-Z. (2008c). Acta Cryst. E64, m1094–m1095. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). Recently, we have reported a few Schiff base zinc complexes (Zhu, 2008; Zhu & Yang, 2008a,b,c). In this paper, the title new zinc(II) complex, Fig. 1, is reported.
The complex consists of a mononuclear zinc(II) complex molecule and a methanol molecule. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand, and by two I- ions, in a distorted tetrahedral coordination. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in the Schiff base zinc complexes we reported previously and other similar Schiff base zinc complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b). I2 atom is disordered over two positions [0.702(19/0.298 (19)].
In the crystal structure, the methanol molecules are linked to the Schiff base molecules through O—H···O and N—H···O hydrogen bonds generating a graph-set motif C22(10) chain along [100] direction (Table 2, Fig. 2). (Bernstein et al., 1995)