organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Thienylmethyl­ene)naphthalen-1-amine

aCollege of Materials Science and Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: taoxuquan@lcu.edu.cn

(Received 20 September 2009; accepted 13 October 2009; online 17 October 2009)

In the title compound, C15H11NS, the dihedral angle between the thio­phene and 1-naphthyl rings is 31.42 (11)°. The mol­ecule adopts a trans configuration about the central C=N bond. In the crystal, the mol­ecules are connected via weak C—H⋯π inter­actions.

Related literature

The condensation of primary amines with carbonyl compounds yields Schiff bases, see: Dey et al. (1981[Dey, K., Biswas, A. K. & Roy, A. (1981). Indian J. Chem. Sect. A, 20, 848-851.]). For the chemistry and applications of Schiff bases, see: Doine (1985[Doine, H. (1985). Bull. Chem. Soc. Jpn, 58, 1327-1328.]); Opstal et al. (2002[Opstal, T. & Verpoort, F. (2002). Synlett, 6, 935-941.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NS

  • Mr = 237.31

  • Orthorhombic, A b a 2

  • a = 10.7793 (12) Å

  • b = 21.260 (2) Å

  • c = 10.7244 (10) Å

  • V = 2457.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.40 × 0.38 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.911, Tmax = 0.958

  • 5898 measured reflections

  • 2115 independent reflections

  • 1613 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.076

  • S = 1.05

  • 2115 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 965 Friedel pairs

  • Flack parameter: 0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.93 2.87 3.783 (3) 168
Symmetry code: (i) -x, -y, z. Cg1 is the centroid of the S1,C2–C5 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The condensation of primary amines with carbonyl compounds yields Schiff bases (Dey et al., 1981). In the recent years, there has been considerable interest in the chemistry of Schiff bases (Doine, 1985). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal centred electronic factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts (Opstal et al., 2002). We report here the synthesis and crystal structure of , (I) present a new compound, 2-(2-(naphthalen-1-yl)vinyl)thiophene schiff base, (I) in this paper.

The structure of (I) consists of 1- naphthyl ring covalently linked to a thiophene ring by an azomethine bond with more stable E isomer being observed. The mean plane of the 1-naphthyl ring is twisted by 35.4 (2)° from the azomethine bond to which is connected. The molecule adopts a trans configuration about the central CN bond. In the crystal structure the molecules are interconnected via a C—H···π interactions, and the molecular structure is stabilized by one intramolecular C—H···N hydrogen bond, Table 1, Fig 2.

Related literature top

The condensation of primary amines with carbonyl compounds yields Schiff bases, see: Dey et al. (1981). For the chemistry and applications of Schiff bases, see: Doine (1985); Opstal et al. (2002). Cg1 is the centroid of the S1,C2–C5 ring.

Experimental top

Naphthylamine(10 mmol), thiophene-2-carbaldehyde (20 mmol) and 20 ml ethanol were mixed in 50 ml flask. After stirring 3 h at 303 K, the resulting mixture was recrystalized from ethanol, affording the title compound as a red crystalline solid. The single crystals were obtained methylene dichloride and n-hexane solution. The Elemental analysis: calculated for C15H11NS: C 75.91, H 4.67, N 5.90%; found: C 75.82, H 4.54, N 9.57%.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H distances is 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Structure description top

The condensation of primary amines with carbonyl compounds yields Schiff bases (Dey et al., 1981). In the recent years, there has been considerable interest in the chemistry of Schiff bases (Doine, 1985). This is due to the fact that Schiff bases offer opportunities for inducing substrate chirality, tuning the metal centred electronic factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts (Opstal et al., 2002). We report here the synthesis and crystal structure of , (I) present a new compound, 2-(2-(naphthalen-1-yl)vinyl)thiophene schiff base, (I) in this paper.

The structure of (I) consists of 1- naphthyl ring covalently linked to a thiophene ring by an azomethine bond with more stable E isomer being observed. The mean plane of the 1-naphthyl ring is twisted by 35.4 (2)° from the azomethine bond to which is connected. The molecule adopts a trans configuration about the central CN bond. In the crystal structure the molecules are interconnected via a C—H···π interactions, and the molecular structure is stabilized by one intramolecular C—H···N hydrogen bond, Table 1, Fig 2.

The condensation of primary amines with carbonyl compounds yields Schiff bases, see: Dey et al. (1981). For the chemistry and applications of Schiff bases, see: Doine (1985); Opstal et al. (2002). Cg1 is the centroid of the S1,C2–C5 ring.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the hydrogen bond and C-H···π interactions.
N-(2-Thienylmethylene)naphthalen-1-amine top
Crystal data top
C15H11NSDx = 1.283 Mg m3
Mr = 237.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aba2Cell parameters from 2185 reflections
a = 10.7793 (12) Åθ = 2.7–22.1°
b = 21.260 (2) ŵ = 0.24 mm1
c = 10.7244 (10) ÅT = 298 K
V = 2457.7 (4) Å3Block, red
Z = 80.40 × 0.38 × 0.18 mm
F(000) = 992
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2115 independent reflections
Radiation source: fine-focus sealed tube1613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.911, Tmax = 0.958k = 2515
5898 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2115 reflectionsΔρmax = 0.14 e Å3
154 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 965 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C15H11NSV = 2457.7 (4) Å3
Mr = 237.31Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 10.7793 (12) ŵ = 0.24 mm1
b = 21.260 (2) ÅT = 298 K
c = 10.7244 (10) Å0.40 × 0.38 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2115 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1613 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.958Rint = 0.038
5898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.22 e Å3
2115 reflectionsAbsolute structure: Flack (1983), 965 Friedel pairs
154 parametersAbsolute structure parameter: 0.01 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21178 (7)0.07346 (3)0.26408 (7)0.0623 (2)
N10.0437 (2)0.14325 (8)0.08130 (17)0.0461 (5)
C10.1600 (2)0.14895 (11)0.0624 (2)0.0479 (6)
H10.18650.17160.00680.058*
C20.2522 (2)0.12187 (12)0.1433 (2)0.0473 (6)
C30.3789 (2)0.12590 (13)0.1330 (2)0.0590 (7)
H30.41880.14940.07180.071*
C40.4419 (3)0.09107 (14)0.2238 (3)0.0657 (8)
H40.52790.08930.23060.079*
C50.3642 (3)0.06064 (14)0.2997 (2)0.0684 (9)
H50.39030.03510.36510.082*
C60.0400 (2)0.16984 (11)0.0053 (2)0.0443 (6)
C70.0183 (3)0.22590 (13)0.0651 (3)0.0589 (7)
H70.05230.24910.04620.071*
C80.1020 (3)0.24811 (14)0.1541 (3)0.0713 (8)
H80.08530.28570.19520.086*
C90.2072 (3)0.21592 (14)0.1819 (3)0.0645 (8)
H90.26080.23130.24260.077*
C100.2360 (2)0.15979 (12)0.1201 (2)0.0478 (6)
C110.1523 (2)0.13664 (11)0.0279 (2)0.0411 (6)
C120.1834 (3)0.08006 (11)0.0346 (3)0.0502 (7)
H120.12910.06330.09320.060*
C130.2930 (3)0.04964 (15)0.0095 (3)0.0608 (9)
H130.31350.01320.05290.073*
C140.3738 (3)0.07315 (14)0.0811 (3)0.0637 (8)
H140.44750.05200.09780.076*
C150.3464 (2)0.12602 (14)0.1444 (2)0.0577 (7)
H150.40090.14060.20510.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0579 (4)0.0738 (5)0.0552 (4)0.0094 (4)0.0061 (4)0.0063 (4)
N10.0454 (14)0.0480 (12)0.0448 (11)0.0009 (10)0.0020 (10)0.0021 (10)
C10.0512 (18)0.0478 (15)0.0447 (14)0.0005 (13)0.0007 (14)0.0021 (11)
C20.0463 (15)0.0472 (14)0.0485 (14)0.0001 (12)0.0004 (12)0.0075 (12)
C30.0502 (18)0.0651 (17)0.0617 (16)0.0062 (14)0.0018 (14)0.0004 (15)
C40.0409 (17)0.086 (2)0.0697 (18)0.0033 (15)0.0091 (15)0.0108 (17)
C50.068 (2)0.081 (2)0.0557 (19)0.0227 (17)0.0098 (15)0.0066 (15)
C60.0417 (16)0.0465 (15)0.0445 (14)0.0047 (13)0.0049 (12)0.0015 (13)
C70.0542 (18)0.0503 (17)0.0724 (17)0.0043 (14)0.0003 (14)0.0104 (15)
C80.067 (2)0.0600 (18)0.087 (2)0.0053 (17)0.0011 (18)0.0265 (17)
C90.0610 (19)0.0690 (19)0.0634 (16)0.0200 (17)0.0064 (15)0.0175 (16)
C100.0453 (16)0.0531 (15)0.0450 (13)0.0116 (13)0.0026 (12)0.0004 (13)
C110.0414 (15)0.0440 (14)0.0380 (12)0.0053 (12)0.0009 (11)0.0032 (12)
C120.055 (2)0.0485 (16)0.0471 (14)0.0007 (14)0.0011 (12)0.0038 (12)
C130.060 (2)0.0553 (16)0.0668 (18)0.0102 (16)0.0012 (15)0.0014 (15)
C140.0516 (19)0.060 (2)0.080 (2)0.0047 (15)0.0107 (16)0.0131 (17)
C150.0547 (18)0.0625 (19)0.0558 (15)0.0154 (15)0.0111 (13)0.0086 (15)
Geometric parameters (Å, º) top
S1—C51.709 (3)C7—H70.9300
S1—C21.711 (3)C8—C91.358 (4)
N1—C11.276 (3)C8—H80.9300
N1—C61.413 (3)C9—C101.400 (4)
C1—C21.440 (3)C9—H90.9300
C1—H10.9300C10—C151.414 (4)
C2—C31.372 (4)C10—C111.427 (3)
C3—C41.400 (4)C11—C121.417 (3)
C3—H30.9300C12—C131.374 (4)
C4—C51.335 (4)C12—H120.9300
C4—H40.9300C13—C141.396 (4)
C5—H50.9300C13—H130.9300
C6—C71.373 (3)C14—C151.346 (4)
C6—C111.422 (3)C14—H140.9300
C7—C81.396 (4)C15—H150.9300
C5—S1—C291.16 (14)C9—C8—H8119.3
C1—N1—C6119.0 (2)C7—C8—H8119.3
N1—C1—C2123.0 (2)C8—C9—C10120.7 (3)
N1—C1—H1118.5C8—C9—H9119.7
C2—C1—H1118.5C10—C9—H9119.7
C3—C2—C1127.8 (2)C9—C10—C15122.1 (2)
C3—C2—S1110.6 (2)C9—C10—C11118.8 (2)
C1—C2—S1121.4 (2)C15—C10—C11119.0 (2)
C2—C3—C4113.2 (3)C12—C11—C6122.9 (2)
C2—C3—H3123.4C12—C11—C10118.1 (2)
C4—C3—H3123.4C6—C11—C10119.0 (2)
C5—C4—C3112.1 (3)C13—C12—C11120.7 (3)
C5—C4—H4124.0C13—C12—H12119.6
C3—C4—H4124.0C11—C12—H12119.6
C4—C5—S1112.9 (2)C12—C13—C14120.3 (3)
C4—C5—H5123.5C12—C13—H13119.9
S1—C5—H5123.5C14—C13—H13119.9
C7—C6—N1123.1 (2)C15—C14—C13120.9 (3)
C7—C6—C11119.8 (2)C15—C14—H14119.6
N1—C6—C11117.2 (2)C13—C14—H14119.6
C6—C7—C8120.2 (3)C14—C15—C10121.0 (3)
C6—C7—H7119.9C14—C15—H15119.5
C8—C7—H7119.9C10—C15—H15119.5
C9—C8—C7121.3 (3)
C6—N1—C1—C2178.1 (2)C8—C9—C10—C110.5 (4)
N1—C1—C2—C3178.9 (2)C7—C6—C11—C12177.1 (2)
N1—C1—C2—S16.2 (3)N1—C6—C11—C121.6 (3)
C5—S1—C2—C30.9 (2)C7—C6—C11—C105.0 (3)
C5—S1—C2—C1176.7 (2)N1—C6—C11—C10176.3 (2)
C1—C2—C3—C4176.7 (2)C9—C10—C11—C12179.4 (2)
S1—C2—C3—C41.3 (3)C15—C10—C11—C120.6 (3)
C2—C3—C4—C51.0 (3)C9—C10—C11—C62.6 (3)
C3—C4—C5—S10.3 (3)C15—C10—C11—C6178.6 (2)
C2—S1—C5—C40.4 (2)C6—C11—C12—C13179.9 (2)
C1—N1—C6—C736.6 (3)C10—C11—C12—C132.0 (4)
C1—N1—C6—C11144.7 (2)C11—C12—C13—C142.0 (4)
N1—C6—C7—C8176.9 (2)C12—C13—C14—C150.5 (4)
C11—C6—C7—C84.4 (4)C13—C14—C15—C100.9 (4)
C6—C7—C8—C91.4 (4)C9—C10—C15—C14177.9 (3)
C7—C8—C9—C101.1 (5)C11—C10—C15—C140.8 (4)
C8—C9—C10—C15178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N10.932.522.837 (4)100
C13—H13···Cg1i0.932.873.783 (3)168
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H11NS
Mr237.31
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)298
a, b, c (Å)10.7793 (12), 21.260 (2), 10.7244 (10)
V3)2457.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.38 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.911, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5898, 2115, 1613
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.05
No. of reflections2115
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.22
Absolute structureFlack (1983), 965 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N10.932.522.837 (4)100
C13—H13···Cg1i0.932.873.783 (3)168
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors acknowledge the financial support of Liaocheng University (X20090101).

References

First citationDey, K., Biswas, A. K. & Roy, A. (1981). Indian J. Chem. Sect. A, 20, 848–851.  Google Scholar
First citationDoine, H. (1985). Bull. Chem. Soc. Jpn, 58, 1327–1328.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOpstal, T. & Verpoort, F. (2002). Synlett, 6, 935–941.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds