organic compounds
2-[3-Cyano-4-(2-methylpropoxy)phenyl]-4-methylthiazole-5-carboxylic acid pyridine solvate
aInstitute of Medicine, China Pharmaceutical University, Nanjing 210009, People's Republic of China, and bCollege of Basic Sciences, China Pharmaceutical University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: lut163@163.com
In the title compound, C16H16N2O3S·C5H5N, the benzene and thiazole rings of the Febuxostat [2-(3-cyano-4-isobutyloxy)phenyl-4-methyl-5-thiazolecarboxylic acid] molecule are almost coplanar [dihedral angle = 2.4 (1)°]. The carboxyl group is coplanar with the thiazole ring [O—C—C—C and O—C—C—S torsion angles of −0.7 (4) and 0.6 (3)°, respectively]. The pyridine molecule of crystallization is linked to the Febuxostat molecule through an O—H⋯N hydrogen bond. A weak π–π stacking interaction is observed between the benzene ring of the Febuxostat molecule and pyridine molecule, with a centroid–centroid distance of 3.7530 (18) Å.
Related literature
For general background to gout, see: Alexander (2008). For the synthesis, stability and biological activity of Febuxostat, see: Edwards (2009); Hiramatsu et al. (2000); Perez-Ruiz et al. (2008); Sorbera et al. (2001); Zhou et al. (2007). For a related structure, see: Fontrodona et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809039002/ci2885sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039002/ci2885Isup2.hkl
2-(3-Formyl-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylic acid ethyl ester (42.6 g, 0.123 mol) was treated with formic acid (384 ml), sodium formate (15.3 g, 0.147 mol) and hydroxylamine hydrochloride (10.2 g, 0.147 mol) to give 21.4 g of 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylic acid ethyl ester (yield 50.5%). Then it was hydrolyzed with NaOH in tetrahydrofuran and ethanol. Finally, brown block crystals of the title compound appropriate for X-ray data collection were obtained by slow evaporation of a pyridine solution at room temperature (yield 70%).
All H atoms were initially located from a difference Fourier map and then were regenerated at ideal positions and treated as riding, with O-H = 0.82 Å, C-H = 0.93-0.98 Å and Uiso(H) = 1.2-1.5Ueq(C,O).
The oxidation of xanthine results in the formation of uric acid. Disorders of uric acid metabolism include gout which is the most common inflammatory arthritis initiated by tissue deposition of monosodium urate (MSU) crystals (Alexander, 2008). Some inventions are related to methods of preserving or increasing renal function in a subject by administering a therapeutically effective amount of at least one xanthine oxidoreductase inhibiting compound. 2-(3-Cyano-4-isobutyloxy)phenyl-4-methyl-5-thiazolecarboxylic acid (Febuxostat) is one of the novel drug that have been evaluated and shown to be highly effective in the management of hyperuricemia (Perez-Ruiz et al., 2008; Edwards, 2009), thus enlarging the therapeutic options available to lower uric acid levels. Many patents or papers have been reported on the synthesis,
and their effect on the stability and bioavailability of this drug (Hiramatsu et al., 2000; Sorbera et al., 2001; Zhou et al., 2007). However, there are few reports on its single-crystal structure. In the present study, we report the of the title compound.The
of the title compound contains one febuxostat molecule and one pyridine molecule. The phenyl ring and thiazole rings of the febuxostat molecule are almost coplanar (Fig. 1), with the dihedral angle between them being 2.4 (1)°. The carboxyl group is coplanar with the thiazole ring as indicated by torsion angles O1—C1—C2—C4 and O2—C1—C2—S of -0.7 (4)° and 0.6 (3)°, respectively. Bond lengths and angles are comparable to those observed in a related structure (Fontrodona et al., 2001).In the crystal, pyridine moleclue is linked to the febuxostat molecule through a O2—H2A···N3(x, y, 1 + z) hydrogen bond (Table 1). A weak π-π stacking interaction is observed between the benzene ring and pyridine molecule, with a centroid-to-centroid distance of 3.7530 (18) Å.
For general background to gout, see: Alexander (2008). For the synthesis,
stability and biological activity of Febuxostat, see: Edwards (2009); Hiramatsu et al. (2000); Perez-Ruiz et al. (2008); Sorbera et al. (2001); Zhou et al. (2007). For a related structure, see: Fontrodona et al. (2001).Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. |
C16H16N2O3S·C5H5N | Z = 2 |
Mr = 395.47 | F(000) = 416 |
Triclinic, P1 | Dx = 1.270 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6040 (17) Å | Cell parameters from 25 reflections |
b = 10.339 (2) Å | θ = 10–13° |
c = 12.611 (3) Å | µ = 0.18 mm−1 |
α = 82.51 (3)° | T = 296 K |
β = 80.69 (3)° | Block, brown |
γ = 69.61 (3)° | 0.30 × 0.20 × 0.20 mm |
V = 1034.4 (4) Å3 |
Enraf–Nonius CAD-4 diffractometer | 2815 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 25.3°, θmin = 1.6° |
ω/2θ scans | h = 0→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→12 |
Tmin = 0.947, Tmax = 0.964 | l = −14→15 |
4017 measured reflections | 3 standard reflections every 200 reflections |
3747 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.12P] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.001 |
3747 reflections | Δρmax = 0.33 e Å−3 |
255 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.030 (5) |
C16H16N2O3S·C5H5N | γ = 69.61 (3)° |
Mr = 395.47 | V = 1034.4 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.6040 (17) Å | Mo Kα radiation |
b = 10.339 (2) Å | µ = 0.18 mm−1 |
c = 12.611 (3) Å | T = 296 K |
α = 82.51 (3)° | 0.30 × 0.20 × 0.20 mm |
β = 80.69 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2815 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.032 |
Tmin = 0.947, Tmax = 0.964 | 3 standard reflections every 200 reflections |
4017 measured reflections | intensity decay: 1% |
3747 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.33 e Å−3 |
3747 reflections | Δρmin = −0.19 e Å−3 |
255 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.83182 (8) | 0.26459 (7) | 0.30078 (4) | 0.0564 (2) | |
O1 | 0.5471 (2) | 0.2112 (2) | 0.10983 (14) | 0.0754 (6) | |
O2 | 0.7344 (2) | 0.3198 (2) | 0.08925 (14) | 0.0754 (6) | |
H2A | 0.7091 | 0.3381 | 0.0277 | 0.113* | |
O3 | 1.1361 (2) | 0.20514 (18) | 0.76698 (12) | 0.0586 (5) | |
N1 | 0.6870 (3) | 0.1219 (2) | 0.43509 (15) | 0.0586 (5) | |
N2 | 1.2786 (4) | 0.4042 (4) | 0.5613 (2) | 0.1041 (10) | |
C1 | 0.6483 (3) | 0.2464 (3) | 0.14487 (19) | 0.0570 (6) | |
C2 | 0.6882 (3) | 0.2095 (3) | 0.25744 (18) | 0.0523 (6) | |
C3 | 0.7976 (3) | 0.1847 (2) | 0.42631 (17) | 0.0510 (6) | |
C4 | 0.6240 (3) | 0.1354 (3) | 0.33987 (18) | 0.0562 (6) | |
C5 | 0.4943 (4) | 0.0713 (3) | 0.3353 (2) | 0.0790 (9) | |
H5A | 0.4167 | 0.1282 | 0.2874 | 0.118* | |
H5B | 0.4357 | 0.0636 | 0.4062 | 0.118* | |
H5C | 0.5472 | −0.0191 | 0.3096 | 0.118* | |
C6 | 0.8868 (3) | 0.1864 (2) | 0.51606 (17) | 0.0509 (6) | |
C7 | 0.9984 (3) | 0.2585 (3) | 0.50346 (18) | 0.0554 (6) | |
H7A | 1.0183 | 0.3054 | 0.4374 | 0.067* | |
C8 | 1.0807 (3) | 0.2614 (2) | 0.58894 (17) | 0.0529 (6) | |
C9 | 1.0521 (3) | 0.1928 (2) | 0.68921 (17) | 0.0494 (5) | |
C10 | 0.9425 (3) | 0.1192 (2) | 0.70122 (17) | 0.0539 (6) | |
H10A | 0.9230 | 0.0714 | 0.7669 | 0.065* | |
C11 | 0.8622 (3) | 0.1166 (3) | 0.61544 (18) | 0.0555 (6) | |
H11A | 0.7892 | 0.0664 | 0.6247 | 0.067* | |
C12 | 1.1917 (4) | 0.3398 (3) | 0.57499 (19) | 0.0705 (8) | |
C13 | 1.1139 (3) | 0.1363 (3) | 0.87244 (17) | 0.0532 (6) | |
H13A | 1.1489 | 0.0371 | 0.8677 | 0.064* | |
H13B | 0.9971 | 0.1684 | 0.9025 | 0.064* | |
C14 | 1.2185 (3) | 0.1690 (3) | 0.94322 (18) | 0.0555 (6) | |
H14A | 1.3341 | 0.1432 | 0.9081 | 0.067* | |
C15 | 1.1568 (4) | 0.3222 (3) | 0.9600 (2) | 0.0716 (7) | |
H15A | 1.1603 | 0.3744 | 0.8914 | 0.107* | |
H15B | 1.2270 | 0.3404 | 1.0039 | 0.107* | |
H15C | 1.0440 | 0.3487 | 0.9952 | 0.107* | |
C16 | 1.2148 (4) | 0.0832 (4) | 1.0511 (2) | 0.0829 (9) | |
H16A | 1.2555 | −0.0134 | 1.0389 | 0.124* | |
H16B | 1.1021 | 0.1077 | 1.0865 | 0.124* | |
H16C | 1.2844 | 0.1012 | 1.0956 | 0.124* | |
N3 | 0.6706 (3) | 0.3879 (3) | 0.89010 (17) | 0.0662 (6) | |
C17 | 0.5872 (4) | 0.4524 (3) | 0.6832 (2) | 0.0784 (9) | |
H17A | 0.5589 | 0.4742 | 0.6134 | 0.094* | |
C18 | 0.6965 (4) | 0.5024 (3) | 0.7160 (2) | 0.0755 (8) | |
H18A | 0.7444 | 0.5589 | 0.6687 | 0.091* | |
C19 | 0.7359 (4) | 0.4686 (3) | 0.8200 (2) | 0.0702 (7) | |
H19A | 0.8106 | 0.5035 | 0.8418 | 0.084* | |
C20 | 0.5646 (3) | 0.3398 (3) | 0.8567 (2) | 0.0743 (8) | |
H20A | 0.5182 | 0.2830 | 0.9048 | 0.089* | |
C21 | 0.5200 (4) | 0.3700 (4) | 0.7544 (2) | 0.0816 (9) | |
H21A | 0.4447 | 0.3345 | 0.7341 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.0649 (4) | 0.0694 (4) | 0.0399 (3) | −0.0261 (3) | −0.0190 (3) | 0.0038 (3) |
O1 | 0.0859 (13) | 0.1005 (15) | 0.0542 (11) | −0.0423 (11) | −0.0318 (9) | 0.0028 (10) |
O2 | 0.0786 (12) | 0.1131 (16) | 0.0442 (9) | −0.0428 (12) | −0.0256 (9) | 0.0128 (10) |
O3 | 0.0751 (11) | 0.0709 (11) | 0.0383 (8) | −0.0323 (9) | −0.0229 (7) | 0.0072 (7) |
N1 | 0.0607 (12) | 0.0784 (14) | 0.0422 (10) | −0.0284 (11) | −0.0138 (9) | −0.0006 (9) |
N2 | 0.148 (3) | 0.140 (3) | 0.0683 (16) | −0.102 (2) | −0.0507 (17) | 0.0359 (16) |
C1 | 0.0562 (14) | 0.0680 (16) | 0.0436 (12) | −0.0115 (12) | −0.0179 (11) | −0.0042 (11) |
C2 | 0.0498 (13) | 0.0645 (15) | 0.0428 (12) | −0.0140 (11) | −0.0157 (10) | −0.0078 (10) |
C3 | 0.0547 (13) | 0.0588 (14) | 0.0387 (12) | −0.0158 (11) | −0.0124 (10) | −0.0011 (10) |
C4 | 0.0553 (14) | 0.0725 (16) | 0.0445 (12) | −0.0224 (12) | −0.0131 (10) | −0.0058 (11) |
C5 | 0.0804 (19) | 0.113 (2) | 0.0605 (16) | −0.0508 (18) | −0.0194 (14) | −0.0009 (16) |
C6 | 0.0562 (13) | 0.0583 (14) | 0.0383 (11) | −0.0164 (11) | −0.0130 (10) | −0.0027 (10) |
C7 | 0.0665 (15) | 0.0631 (15) | 0.0382 (11) | −0.0226 (12) | −0.0155 (10) | 0.0049 (10) |
C8 | 0.0653 (15) | 0.0591 (14) | 0.0391 (12) | −0.0249 (12) | −0.0163 (10) | 0.0034 (10) |
C9 | 0.0599 (13) | 0.0503 (13) | 0.0378 (11) | −0.0152 (11) | −0.0148 (10) | −0.0015 (9) |
C10 | 0.0697 (15) | 0.0583 (14) | 0.0362 (11) | −0.0240 (12) | −0.0147 (10) | 0.0053 (10) |
C11 | 0.0658 (15) | 0.0625 (15) | 0.0448 (12) | −0.0273 (12) | −0.0150 (10) | −0.0011 (10) |
C12 | 0.095 (2) | 0.089 (2) | 0.0439 (13) | −0.0501 (17) | −0.0309 (13) | 0.0172 (13) |
C13 | 0.0673 (15) | 0.0578 (14) | 0.0367 (11) | −0.0214 (12) | −0.0164 (10) | 0.0025 (10) |
C14 | 0.0565 (14) | 0.0710 (16) | 0.0400 (12) | −0.0198 (12) | −0.0142 (10) | −0.0021 (11) |
C15 | 0.0767 (18) | 0.084 (2) | 0.0662 (16) | −0.0361 (15) | −0.0154 (14) | −0.0125 (14) |
C16 | 0.104 (2) | 0.103 (2) | 0.0470 (14) | −0.0364 (19) | −0.0328 (15) | 0.0091 (14) |
N3 | 0.0607 (13) | 0.0864 (16) | 0.0445 (11) | −0.0141 (12) | −0.0165 (10) | 0.0022 (10) |
C17 | 0.0798 (19) | 0.094 (2) | 0.0447 (14) | −0.0046 (17) | −0.0231 (13) | 0.0020 (14) |
C18 | 0.085 (2) | 0.0775 (19) | 0.0538 (15) | −0.0176 (16) | −0.0115 (14) | 0.0084 (13) |
C19 | 0.0737 (17) | 0.0765 (18) | 0.0588 (16) | −0.0207 (15) | −0.0166 (13) | −0.0022 (13) |
C20 | 0.0643 (17) | 0.104 (2) | 0.0547 (15) | −0.0288 (16) | −0.0183 (13) | 0.0081 (14) |
C21 | 0.0717 (18) | 0.118 (3) | 0.0588 (16) | −0.0306 (17) | −0.0282 (14) | 0.0032 (16) |
S—C2 | 1.714 (2) | C10—H10A | 0.93 |
S—C3 | 1.718 (2) | C11—H11A | 0.93 |
O1—C1 | 1.214 (3) | C13—C14 | 1.508 (3) |
O2—C1 | 1.304 (3) | C13—H13A | 0.97 |
O2—H2A | 0.82 | C13—H13B | 0.97 |
O3—C9 | 1.352 (3) | C14—C15 | 1.516 (4) |
O3—C13 | 1.442 (3) | C14—C16 | 1.526 (4) |
N1—C3 | 1.310 (3) | C14—H14A | 0.98 |
N1—C4 | 1.367 (3) | C15—H15A | 0.96 |
N2—C12 | 1.143 (4) | C15—H15B | 0.96 |
C1—C2 | 1.485 (3) | C15—H15C | 0.96 |
C2—C4 | 1.369 (4) | C16—H16A | 0.96 |
C3—C6 | 1.472 (3) | C16—H16B | 0.96 |
C4—C5 | 1.494 (3) | C16—H16C | 0.96 |
C5—H5A | 0.96 | N3—C20 | 1.323 (4) |
C5—H5B | 0.96 | N3—C19 | 1.330 (4) |
C5—H5C | 0.96 | C17—C18 | 1.357 (4) |
C6—C11 | 1.386 (3) | C17—C21 | 1.357 (5) |
C6—C7 | 1.386 (3) | C17—H17A | 0.93 |
C7—C8 | 1.391 (3) | C18—C19 | 1.377 (4) |
C7—H7A | 0.93 | C18—H18A | 0.93 |
C8—C9 | 1.396 (3) | C19—H19A | 0.93 |
C8—C12 | 1.432 (4) | C20—C21 | 1.371 (4) |
C9—C10 | 1.384 (3) | C20—H20A | 0.93 |
C10—C11 | 1.382 (3) | C21—H21A | 0.93 |
C2—S—C3 | 89.34 (11) | O3—C13—C14 | 107.94 (19) |
C1—O2—H2A | 109.5 | O3—C13—H13A | 110.1 |
C9—O3—C13 | 118.94 (18) | C14—C13—H13A | 110.1 |
C3—N1—C4 | 111.2 (2) | O3—C13—H13B | 110.1 |
O1—C1—O2 | 124.6 (2) | C14—C13—H13B | 110.1 |
O1—C1—C2 | 123.2 (3) | H13A—C13—H13B | 108.4 |
O2—C1—C2 | 112.2 (2) | C13—C14—C15 | 111.3 (2) |
C4—C2—C1 | 129.7 (2) | C13—C14—C16 | 109.1 (2) |
C4—C2—S | 110.16 (17) | C15—C14—C16 | 110.7 (2) |
C1—C2—S | 120.2 (2) | C13—C14—H14A | 108.6 |
N1—C3—C6 | 123.1 (2) | C15—C14—H14A | 108.6 |
N1—C3—S | 114.60 (16) | C16—C14—H14A | 108.6 |
C6—C3—S | 122.33 (18) | C14—C15—H15A | 109.5 |
N1—C4—C2 | 114.7 (2) | C14—C15—H15B | 109.5 |
N1—C4—C5 | 118.6 (2) | H15A—C15—H15B | 109.5 |
C2—C4—C5 | 126.7 (2) | C14—C15—H15C | 109.5 |
C4—C5—H5A | 109.5 | H15A—C15—H15C | 109.5 |
C4—C5—H5B | 109.5 | H15B—C15—H15C | 109.5 |
H5A—C5—H5B | 109.5 | C14—C16—H16A | 109.5 |
C4—C5—H5C | 109.5 | C14—C16—H16B | 109.5 |
H5A—C5—H5C | 109.5 | H16A—C16—H16B | 109.5 |
H5B—C5—H5C | 109.5 | C14—C16—H16C | 109.5 |
C11—C6—C7 | 117.9 (2) | H16A—C16—H16C | 109.5 |
C11—C6—C3 | 121.4 (2) | H16B—C16—H16C | 109.5 |
C7—C6—C3 | 120.7 (2) | C20—N3—C19 | 117.5 (2) |
C6—C7—C8 | 120.5 (2) | C18—C17—C21 | 118.6 (3) |
C6—C7—H7A | 119.8 | C18—C17—H17A | 120.7 |
C8—C7—H7A | 119.8 | C21—C17—H17A | 120.7 |
C7—C8—C9 | 120.9 (2) | C17—C18—C19 | 119.4 (3) |
C7—C8—C12 | 119.5 (2) | C17—C18—H18A | 120.3 |
C9—C8—C12 | 119.6 (2) | C19—C18—H18A | 120.3 |
O3—C9—C10 | 125.7 (2) | N3—C19—C18 | 122.2 (3) |
O3—C9—C8 | 115.8 (2) | N3—C19—H19A | 118.9 |
C10—C9—C8 | 118.6 (2) | C18—C19—H19A | 118.9 |
C11—C10—C9 | 119.9 (2) | N3—C20—C21 | 123.0 (3) |
C11—C10—H10A | 120.0 | N3—C20—H20A | 118.5 |
C9—C10—H10A | 120.0 | C21—C20—H20A | 118.5 |
C10—C11—C6 | 122.2 (2) | C17—C21—C20 | 119.2 (3) |
C10—C11—H11A | 118.9 | C17—C21—H21A | 120.4 |
C6—C11—H11A | 118.9 | C20—C21—H21A | 120.4 |
N2—C12—C8 | 178.1 (3) | ||
O1—C1—C2—C4 | −0.7 (4) | C6—C7—C8—C9 | −0.4 (4) |
O2—C1—C2—C4 | 179.4 (2) | C6—C7—C8—C12 | −178.2 (2) |
O1—C1—C2—S | −179.5 (2) | C13—O3—C9—C10 | 0.5 (3) |
O2—C1—C2—S | 0.6 (3) | C13—O3—C9—C8 | −179.5 (2) |
C3—S—C2—C4 | 0.17 (19) | C7—C8—C9—O3 | −178.6 (2) |
C3—S—C2—C1 | 179.2 (2) | C12—C8—C9—O3 | −0.8 (4) |
C4—N1—C3—C6 | −179.6 (2) | C7—C8—C9—C10 | 1.4 (4) |
C4—N1—C3—S | 0.1 (3) | C12—C8—C9—C10 | 179.1 (2) |
C2—S—C3—N1 | −0.1 (2) | O3—C9—C10—C11 | 178.9 (2) |
C2—S—C3—C6 | 179.5 (2) | C8—C9—C10—C11 | −1.0 (3) |
C3—N1—C4—C2 | 0.1 (3) | C9—C10—C11—C6 | −0.2 (4) |
C3—N1—C4—C5 | −179.3 (2) | C7—C6—C11—C10 | 1.1 (4) |
C1—C2—C4—N1 | −179.0 (2) | C3—C6—C11—C10 | −178.8 (2) |
S—C2—C4—N1 | −0.2 (3) | C9—O3—C13—C14 | −179.00 (19) |
C1—C2—C4—C5 | 0.3 (4) | O3—C13—C14—C15 | 64.7 (3) |
S—C2—C4—C5 | 179.2 (2) | O3—C13—C14—C16 | −173.0 (2) |
N1—C3—C6—C11 | 2.2 (4) | C21—C17—C18—C19 | −0.1 (5) |
S—C3—C6—C11 | −177.39 (18) | C20—N3—C19—C18 | 0.0 (4) |
N1—C3—C6—C7 | −177.7 (2) | C17—C18—C19—N3 | 0.2 (4) |
S—C3—C6—C7 | 2.7 (3) | C19—N3—C20—C21 | −0.2 (4) |
C11—C6—C7—C8 | −0.8 (4) | C18—C17—C21—C20 | −0.1 (5) |
C3—C6—C7—C8 | 179.1 (2) | N3—C20—C21—C17 | 0.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N3i | 0.82 | 1.79 | 2.611 (3) | 174 |
C5—H5A···O1 | 0.96 | 2.52 | 3.055 (3) | 115 |
Symmetry code: (i) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C16H16N2O3S·C5H5N |
Mr | 395.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.6040 (17), 10.339 (2), 12.611 (3) |
α, β, γ (°) | 82.51 (3), 80.69 (3), 69.61 (3) |
V (Å3) | 1034.4 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.947, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4017, 3747, 2815 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.156, 0.99 |
No. of reflections | 3747 |
No. of parameters | 255 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.19 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N3i | 0.82 | 1.79 | 2.611 (3) | 174 |
Symmetry code: (i) x, y, z−1. |
References
Alexander, S. (2008). Arthritis Res. Ther. 10, 221–227. Web of Science PubMed Google Scholar
Edwards, N. L. (2009). Rheumatology, 48, 15–19. Web of Science CrossRef Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fontrodona, X., Diaz, S., Linden, A. & Villalgordo, J. M. (2001). Synthesis, pp. 2021–2027. CSD CrossRef Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hiramatsu, T., Matsumoto, K. & Watanabe, K. (2000). China Patent CN1 275 126. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Perez-Ruiz, F., Dalbeth, N. & Schlesinger, N. (2008). Future Rheumatol. 3, 421–427. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sorbera, L. A., Revel, L., Rabasseda, X. & Castaner, J. (2001). Drugs Fut. 26, 32–38. CAS Google Scholar
Zhou, X. G., Tang, X. M., Deng, J., Ye, W. R., Luo, J., Luo, J., Zhang, D. L. & Fan, B. (2007). China Patent CN1 970 547. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The oxidation of xanthine results in the formation of uric acid. Disorders of uric acid metabolism include gout which is the most common inflammatory arthritis initiated by tissue deposition of monosodium urate (MSU) crystals (Alexander, 2008). Some inventions are related to methods of preserving or increasing renal function in a subject by administering a therapeutically effective amount of at least one xanthine oxidoreductase inhibiting compound. 2-(3-Cyano-4-isobutyloxy)phenyl-4-methyl-5-thiazolecarboxylic acid (Febuxostat) is one of the novel drug that have been evaluated and shown to be highly effective in the management of hyperuricemia (Perez-Ruiz et al., 2008; Edwards, 2009), thus enlarging the therapeutic options available to lower uric acid levels. Many patents or papers have been reported on the synthesis, polymorphism and their effect on the stability and bioavailability of this drug (Hiramatsu et al., 2000; Sorbera et al., 2001; Zhou et al., 2007). However, there are few reports on its single-crystal structure. In the present study, we report the crystal structure of the title compound.
The asymmetric unit of the title compound contains one febuxostat molecule and one pyridine molecule. The phenyl ring and thiazole rings of the febuxostat molecule are almost coplanar (Fig. 1), with the dihedral angle between them being 2.4 (1)°. The carboxyl group is coplanar with the thiazole ring as indicated by torsion angles O1—C1—C2—C4 and O2—C1—C2—S of -0.7 (4)° and 0.6 (3)°, respectively. Bond lengths and angles are comparable to those observed in a related structure (Fontrodona et al., 2001).
In the crystal, pyridine moleclue is linked to the febuxostat molecule through a O2—H2A···N3(x, y, 1 + z) hydrogen bond (Table 1). A weak π-π stacking interaction is observed between the benzene ring and pyridine molecule, with a centroid-to-centroid distance of 3.7530 (18) Å.