organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­fluoro­benzene

aInstitut für Anorganische Chemie der Universität, 45117 Essen, Germany, and bIndian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: roland.boese@uni-due.de, gautam_desiraju@yahoo.com

(Received 12 August 2009; accepted 25 September 2009; online 7 October 2009)

The weak electrostatic and dispersive forces between C(δ+)—F(δ−) and H(δ+)—C(δ−) are at the borderline of the hydrogen-bond phenomenon and are poorly directional and further deformed in the presence of other dominant inter­actions, e.g. C—H⋯π. The title compound, C6H4F2, Z′ = 2, forms one-dimensional tapes along two homodromic C—H⋯F hydrogen bonds. The one-dimensional tapes are connected into corrugated two-dimensional sheets by further bi- or trifrucated C—H⋯F hydrogen bonds. Packing in the third dimension is controlled by C—H⋯π inter­actions.

Related literature

For C—H⋯F inter­actions, see: Althoff et al. (2006[Althoff, G., Ruiz, J., Rodriguez, V., Lopez, G., Perez, J. & Janiak, C. (2006). CrystEngComm, 8, 662-665.]); Bats et al. (2000[Bats, J. W., Parsch, J. & Engels, J. W. (2000). Acta Cryst. C56, 201-205.]); Choudhury et al. (2004[Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644-o647.]); D'Oria & Novoa (2008[D'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423-436.]); Dunitz & Taylor (1997[Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89-98.]); Howard et al. (1996[Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 38, 12613-12622.]); Müller et al. (2007[Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]); O'Hagan (2008[O'Hagan, D. (2008). Chem. Soc. Rev. 37, 308-319.]); Reichenbacher et al. (2005[Reichenbacher, K., Suss, H. I. & Hulliger, J. (2005). J. Chem. Soc. Rev. 34, 22-30.]); Weiss et al. (1997[Weiss, H. C., Boese, R., Smith, H. L. & Haley, M. M. (1997). Chem. Commun. pp. 2403-2404.]). For the crystal structures of polyfluorinated benzenes, see: Thalladi et al. (1998[Thalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.]). For crystallization techniques, see: Boese & Nussbaumer (1994[Boese, R. & Nussbaumer, M. (1994). In Situ Crystallisation Techniques. In Organic Crystal Chemistry, edited by D. W. Jones, pp. 20-37. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4F2

  • Mr = 114.09

  • Monoclinic, C 2/c

  • a = 24.6618 (13) Å

  • b = 12.2849 (5) Å

  • c = 7.2336 (4) Å

  • β = 106.842 (3)°

  • V = 2097.55 (18) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 153 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.961

  • 7831 measured reflections

  • 2099 independent reflections

  • 1578 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.100

  • S = 1.01

  • 2099 reflections

  • 146 parameters

  • H-atom parameters not refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F12i 0.96 2.72 3.3750 (14) 126
C4—H4⋯F2ii 0.96 2.76 3.5386 (16) 139
C5—H5⋯F11iii 0.95 2.71 3.2948 (16) 121
C6—H6⋯F11iii 0.96 2.66 3.2644 (15) 121
C6—H6⋯F1iv 0.96 2.82 3.5789 (17) 137
C12—H12⋯F1v 0.96 2.70 3.3919 (14) 130
C14—H14⋯F2vi 0.96 2.72 3.3442 (16) 123
C14—H14⋯F12vii 0.96 2.73 3.5075 (18) 138
C15—H15⋯F2vi 0.96 2.81 3.3995 (17) 120
C16—H16⋯F11viii 0.96 2.75 3.5591 (16) 142
C2—H2⋯Cg2ix 0.96 2.96 3.6653 (13) 131
C12—H12⋯Cg2v 0.96 2.99 3.6547 (13) 127
C5—H5⋯Cg1x 0.95 2.83 3.5153 (12) 130
C15—H15⋯Cg1 0.96 2.87 3.5283 (13) 127
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [x, -y, z-{\script{1\over 2}}]; (vi) [-x, y, -z+{\script{1\over 2}}]; (vii) -x, -y, -z; (viii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ix) x, y, z+1; (x) [x, -y+1, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and GIMP (The GIMP team, 2008[The GIMP team (2008). The GNU Image Manipulation Program, http://www.gimp.org.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Despite the high electronegativity difference between carbon and fluorine, the C—F bond acts as a poor hydrogen bond acceptor due to the hardness of the F-atom (Dunitz & Taylor, 1997; O'Hagan, 2008). The resultant weak C—H···F—C interactions (Howard et al., 1996; Reichenbacher et al., 2005) arise mainly due to electrostatic and dispersive forces between the Cδ±-Fδ- and the Hδ±-Cδ- fragments. These interactions, at the borderline of the hydrogen bond phenomenon, are also poorly directional and are deformed by other dominant interactions (Weiss et al., 1997; D'Oria & Novoa 2008; Müller et al., 2007). In the absence of other interactions these weak interactions can play a role in the overall crystal packing of the molecule (Bats et al., 2000; Choudhury et al., 2004; Althoff et al., 2006). In activated systems such as polyfluorobenzenes, C—H···F—C interactions may be of significance, and some of us had reported the crystal structures of several polyfluorinated benzenes in this connection (Thalladi et al., 1998). As a continuation of this work, we report here the crystal structure of 1,3-difluorobenzene. The comparison crystal structures of 1,2- and 1,4-difluorobenzene and 1,3,5-trifluorobenzene have been reported in this earlier work.

Related literature top

For C—H···F interactions, see: Althoff et al. (2006); Bats et al. (2000); Choudhury et al. (2004); D'Oria & Novoa (2008); Dunitz & Taylor (1997); Howard et al. (1996); Müller et al. (2007); O'Hagan (2008); Reichenbacher et al. (2005); Weiss et al. (1997). For the crystal structures of polyfluorinated benzenes, see: Thalladi et al. (1998). For crystallization techniques, see: Boese & Nussbaumer (1994). Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Experimental top

Single crystals of 1,3-difluorobenzene were grown from commerical samples by zone melting in a quartz capillary at 163 K according to the procedure outlined by Boese & Nussbaumer (1994).

Refinement top

H atoms were positioned geoemtrically (C-H = 0.95 or 0.96 Å) and refined using a riding model, with their isotropic displacement parameters set equal to 1.2 times Ueq of the corresponding carbon atom.

Structure description top

Despite the high electronegativity difference between carbon and fluorine, the C—F bond acts as a poor hydrogen bond acceptor due to the hardness of the F-atom (Dunitz & Taylor, 1997; O'Hagan, 2008). The resultant weak C—H···F—C interactions (Howard et al., 1996; Reichenbacher et al., 2005) arise mainly due to electrostatic and dispersive forces between the Cδ±-Fδ- and the Hδ±-Cδ- fragments. These interactions, at the borderline of the hydrogen bond phenomenon, are also poorly directional and are deformed by other dominant interactions (Weiss et al., 1997; D'Oria & Novoa 2008; Müller et al., 2007). In the absence of other interactions these weak interactions can play a role in the overall crystal packing of the molecule (Bats et al., 2000; Choudhury et al., 2004; Althoff et al., 2006). In activated systems such as polyfluorobenzenes, C—H···F—C interactions may be of significance, and some of us had reported the crystal structures of several polyfluorinated benzenes in this connection (Thalladi et al., 1998). As a continuation of this work, we report here the crystal structure of 1,3-difluorobenzene. The comparison crystal structures of 1,2- and 1,4-difluorobenzene and 1,3,5-trifluorobenzene have been reported in this earlier work.

For C—H···F interactions, see: Althoff et al. (2006); Bats et al. (2000); Choudhury et al. (2004); D'Oria & Novoa (2008); Dunitz & Taylor (1997); Howard et al. (1996); Müller et al. (2007); O'Hagan (2008); Reichenbacher et al. (2005); Weiss et al. (1997). For the crystal structures of polyfluorinated benzenes, see: Thalladi et al. (1998). For crystallization techniques, see: Boese & Nussbaumer (1994). Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and GIMP (The GIMP team, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of 1,3-difluorobenzene: (a) two-dimensional network of C—H···F—C interactions viewed along the c axis, (b) with independent molecules coloured blue and green, (c) Herringbone arrangement of molecules viewed along the a axis and (d) coloured as before.
[Figure 2] Fig. 2. Displacement ellipsoid plot of 1,3-difluorobenzene.
1,3-Difluorobenzene top
Crystal data top
C6H4F2F(000) = 928
Mr = 114.09Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2977 reflections
a = 24.6618 (13) Åθ = 2.9–28.2°
b = 12.2849 (5) ŵ = 0.13 mm1
c = 7.2336 (4) ÅT = 153 K
β = 106.842 (3)°Cylindric, colourless
V = 2097.55 (18) Å30.30 × 0.30 × 0.30 mm
Z = 16
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2099 independent reflections
Radiation source: fine-focus sealed tube1578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 1.9°
Data collection strategy APEX 2/COSMO with chi +/– 10° scansh = 2729
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1616
Tmin = 0.876, Tmax = 0.961l = 98
7831 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters not refined
wR(F2) = 0.100 w = 1/[s2(Fo2) + (0.0494P)2 + 0.6228P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2099 reflectionsΔρmax = 0.19 e Å3
146 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXTL (Bruker, 2008), Fc*=kFc[1+0.001xFc2λ3sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (7)
Crystal data top
C6H4F2V = 2097.55 (18) Å3
Mr = 114.09Z = 16
Monoclinic, C2/cMo Kα radiation
a = 24.6618 (13) ŵ = 0.13 mm1
b = 12.2849 (5) ÅT = 153 K
c = 7.2336 (4) Å0.30 × 0.30 × 0.30 mm
β = 106.842 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2099 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1578 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.961Rint = 0.020
7831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.100H-atom parameters not refined
S = 1.01Δρmax = 0.19 e Å3
2099 reflectionsΔρmin = 0.13 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.20034 (3)0.21738 (6)0.63089 (12)0.0520 (3)
F20.01617 (3)0.35397 (7)0.49907 (14)0.0587 (3)
C10.16251 (5)0.29864 (9)0.56491 (16)0.0349 (3)
C20.10797 (6)0.28273 (9)0.56876 (17)0.0372 (3)
H20.09660.21700.61880.045*
C30.07043 (6)0.36645 (10)0.49742 (18)0.0370 (3)
C40.08585 (6)0.46202 (9)0.42616 (17)0.0378 (3)
H40.05860.51870.37750.045*
C50.14156 (6)0.47408 (9)0.42727 (16)0.0370 (3)
H50.15310.53940.37930.044*
C60.18102 (6)0.39238 (9)0.49720 (17)0.0355 (3)
H60.21990.40080.49890.043*
F110.23615 (3)0.09707 (6)0.01979 (13)0.0571 (3)
F120.05258 (4)0.03682 (6)0.08892 (13)0.0625 (3)
C110.18189 (6)0.11273 (10)0.01807 (17)0.0365 (3)
C120.14440 (6)0.02770 (9)0.03976 (17)0.0382 (3)
H120.15580.04090.08000.046*
C130.08994 (6)0.04613 (9)0.03803 (18)0.0385 (3)
C140.07131 (6)0.14411 (9)0.01511 (18)0.0380 (3)
H140.03250.15450.01220.046*
C150.11075 (6)0.22716 (9)0.07194 (17)0.0383 (3)
H150.09920.29610.11050.046*
C160.16634 (6)0.21260 (9)0.07456 (18)0.0392 (3)
H160.19340.27050.11330.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0441 (6)0.0416 (4)0.0679 (5)0.0105 (3)0.0124 (4)0.0059 (3)
F20.0295 (6)0.0668 (5)0.0841 (6)0.0076 (4)0.0234 (5)0.0023 (4)
C10.0343 (9)0.0338 (5)0.0352 (6)0.0013 (5)0.0078 (6)0.0017 (4)
C20.0397 (9)0.0341 (6)0.0401 (6)0.0071 (5)0.0153 (6)0.0012 (4)
C30.0257 (9)0.0455 (6)0.0411 (6)0.0062 (5)0.0118 (6)0.0064 (5)
C40.0346 (9)0.0382 (6)0.0379 (6)0.0027 (5)0.0064 (6)0.0002 (5)
C50.0405 (9)0.0351 (6)0.0362 (6)0.0046 (5)0.0123 (6)0.0017 (4)
C60.0267 (9)0.0421 (6)0.0395 (6)0.0053 (5)0.0122 (6)0.0038 (5)
F110.0289 (6)0.0654 (5)0.0794 (6)0.0116 (4)0.0195 (5)0.0076 (4)
F120.0502 (6)0.0499 (5)0.0894 (6)0.0173 (4)0.0235 (5)0.0145 (4)
C110.0242 (9)0.0468 (6)0.0392 (6)0.0077 (5)0.0100 (6)0.0073 (5)
C120.0425 (9)0.0346 (6)0.0402 (6)0.0064 (5)0.0161 (6)0.0016 (5)
C130.0370 (9)0.0375 (6)0.0416 (6)0.0045 (5)0.0122 (6)0.0014 (5)
C140.0283 (9)0.0452 (6)0.0433 (7)0.0049 (5)0.0149 (6)0.0019 (5)
C150.0403 (9)0.0357 (6)0.0409 (6)0.0049 (5)0.0150 (6)0.0018 (4)
C160.0355 (9)0.0381 (6)0.0423 (7)0.0041 (5)0.0086 (6)0.0017 (5)
Geometric parameters (Å, º) top
F1—C11.3553 (13)F11—C111.3486 (14)
F2—C31.3506 (15)F12—C131.3515 (14)
C1—C21.3673 (18)C11—C121.3773 (17)
C1—C61.3797 (15)C11—C161.3820 (16)
C2—C31.3800 (17)C12—C131.3656 (18)
C2—H20.96C12—H120.96
C3—C41.3793 (16)C13—C141.3821 (16)
C4—C51.3794 (18)C14—C151.3872 (17)
C4—H40.96C14—H140.96
C5—C61.3874 (17)C15—C161.3772 (18)
C5—H50.95C15—H150.96
C6—H60.96C16—H160.96
F1—C1—C2117.92 (10)F11—C11—C12118.14 (11)
F1—C1—C6118.36 (11)F11—C11—C16118.92 (11)
C2—C1—C6123.71 (11)C12—C11—C16122.94 (12)
C1—C2—C3116.30 (10)C13—C12—C11116.54 (11)
C1—C2—H2121.7C13—C12—H12121.6
C3—C2—H2122.0C11—C12—H12121.8
F2—C3—C2118.12 (10)F12—C13—C12117.85 (10)
F2—C3—C4118.76 (12)F12—C13—C14118.50 (11)
C2—C3—C4123.12 (12)C12—C13—C14123.65 (11)
C3—C4—C5118.11 (11)C13—C14—C15117.50 (12)
C3—C4—H4121.0C13—C14—H14121.3
C5—C4—H4120.9C15—C14—H14121.2
C4—C5—C6121.10 (11)C16—C15—C14121.22 (11)
C4—C5—H5119.5C16—C15—H15119.3
C6—C5—H5119.4C14—C15—H15119.5
C1—C6—C5117.64 (12)C15—C16—C11118.14 (11)
C1—C6—H6121.2C15—C16—H16120.8
C5—C6—H6121.2C11—C16—H16121.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F12i0.962.723.3750 (14)126
C4—H4···F2ii0.962.763.5386 (16)139
C5—H5···F11iii0.952.713.2948 (16)121
C6—H6···F11iii0.962.663.2644 (15)121
C6—H6···F1iv0.962.823.5789 (17)137
C12—H12···F1v0.962.703.3919 (14)130
C14—H14···F2vi0.962.723.3442 (16)123
C14—H14···F12vii0.962.733.5075 (18)138
C15—H15···F2vi0.962.813.3995 (17)120
C16—H16···F11viii0.962.753.5591 (16)142
C2—H2···Cg2ix0.962.963.6653 (13)131
C12—H12···Cg2v0.962.993.6547 (13)127
C5—H5···Cg1x0.952.833.5153 (12)130
C15—H15···Cg10.962.873.5283 (13)127
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1/2; (vi) x, y, z+1/2; (vii) x, y, z; (viii) x+1/2, y+1/2, z; (ix) x, y, z+1; (x) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H4F2
Mr114.09
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)24.6618 (13), 12.2849 (5), 7.2336 (4)
β (°) 106.842 (3)
V3)2097.55 (18)
Z16
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.876, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7831, 2099, 1578
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.100, 1.01
No. of reflections2099
No. of parameters146
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and GIMP (The GIMP team, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F12i0.962.723.3750 (14)126
C4—H4···F2ii0.962.763.5386 (16)139
C5—H5···F11iii0.952.713.2948 (16)121
C6—H6···F11iii0.962.663.2644 (15)121
C6—H6···F1iv0.962.823.5789 (17)137
C12—H12···F1v0.962.703.3919 (14)130
C14—H14···F2vi0.962.723.3442 (16)123
C14—H14···F12vii0.962.733.5075 (18)138
C15—H15···F2vi0.962.813.3995 (17)120
C16—H16···F11viii0.962.753.5591 (16)142
C2—H2···Cg2ix0.962.963.6653 (13)131
C12—H12···Cg2v0.962.993.6547 (13)127
C5—H5···Cg1x0.952.833.5153 (12)130
C15—H15···Cg10.962.873.5283 (13)127
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1/2; (vi) x, y, z+1/2; (vii) x, y, z; (viii) x+1/2, y+1/2, z; (ix) x, y, z+1; (x) x, y+1, z1/2.
 

Acknowledgements

MTK and RB thank the DFG FOR-618. GRD thanks the DST for the award of a J.C. Bose fellowship. TST thanks the UGC for an SRF.

References

First citationAlthoff, G., Ruiz, J., Rodriguez, V., Lopez, G., Perez, J. & Janiak, C. (2006). CrystEngComm, 8, 662–665.  Web of Science CSD CrossRef CAS Google Scholar
First citationBats, J. W., Parsch, J. & Engels, J. W. (2000). Acta Cryst. C56, 201–205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoese, R. & Nussbaumer, M. (1994). In Situ Crystallisation Techniques. In Organic Crystal Chemistry, edited by D. W. Jones, pp. 20–37. Oxford University Press.  Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, o644–o647.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationD'Oria, E. & Novoa, J. J. (2008). CrystEngComm, 10, 423–436.  CAS Google Scholar
First citationDunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89–98.  CrossRef CAS Web of Science Google Scholar
First citationHoward, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 38, 12613–12622.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMüller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science PubMed Google Scholar
First citationO'Hagan, D. (2008). Chem. Soc. Rev. 37, 308–319.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReichenbacher, K., Suss, H. I. & Hulliger, J. (2005). J. Chem. Soc. Rev. 34, 22–30.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThalladi, V. R., Weiss, H. C., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.  Web of Science CSD CrossRef CAS Google Scholar
First citationThe GIMP team (2008). The GNU Image Manipulation Program, http://www.gimp.org.  Google Scholar
First citationWeiss, H. C., Boese, R., Smith, H. L. & Haley, M. M. (1997). Chem. Commun. pp. 2403–2404.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds