organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Formyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-t-3,t-5-di­methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamil Nadu, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 September 2009; accepted 12 October 2009; online 23 October 2009)

In the title compound, C22H25NO4, the piperidine ring adopts a distorted boat conformation. The methyl groups at the 3 and 5 positions of the piperidine ring are in axial and equatorial orientations, respectively. Both H and O atoms in the aldehyde group are disordered over two positions with occupancies of 0.534 (5) and 0.466 (5). In the crystal, the mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For general background to piperidine derivatives, see: Escolano & Amat (2006[Escolano, C. & Amat, M. (2006). Chem. Eur. J. 12, 8198-8207.]); Wang & Wuorola (1992[Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proc. Int. 24, 585-621.]); Grishina et al. (1994[Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 1401-1426.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25NO4

  • Mr = 367.43

  • Monoclinic, P 21 /n

  • a = 11.0954 (4) Å

  • b = 14.5407 (3) Å

  • c = 12.7050 (4) Å

  • β = 110.977 (1)°

  • V = 1913.91 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.974

  • 24720 measured reflections

  • 5524 independent reflections

  • 3703 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.05

  • 5524 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.98 2.48 3.429 (2) 163
C15—H15C⋯O2ii 0.96 2.53 3.240 (4) 131
C20—H20⋯O1iii 0.93 2.51 3.432 (2) 171
Symmetry codes: (i) -x+2, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The piperidine ring is a common feature occurring in many biologically active natural products and therapeutic agents. Piperidine containing entities constitute important targets for pharmaceutical research (Escolano & Amat, 2006). Piperidine derivatives, namely 4-piperidones are synthetic intermediates in the preparation of various alkaloids and pharmaceutical products (Wang et al., 1992; Grishina et al., 1994).

In the title molecule (Fig.1), the piperidine ring adopts a distorted boat conformation. The methyl groups at 3 and 5 positions of the piperidine ring are in axial and equatorial orientations [N1—C2—C3—C14 = -63.02 (15)° and N1—C6—C5—C15 = 176.60 (11)°]. The phenyl rings at 2 and 6 positions of the piperidine ring are axially [C4—C3—C2—C8 = -68.32 (14)°] and equatorially [C4—C5—C6—C16 = 176.69 (10)°] oriented. The dihedral angle between the two phenyl rings is 41.97 (8)°.

Centrosymmetrically related molecules form R22(8) (Bernstein et al., 1995) dimers through C—H···O hydrogen bonds involving atoms C3 and O1. The dimers are linked into a zigzag C(8) chain running along the b axis by intermolecular C—H···O hydrogen bonds involving atoms C20 and O1 (Table 1). Further, C15—H15C···O2 interactions link the chains along the c axis to form a three-dimensional network.

Related literature top

For general background to piperidine derivatives, see: Escolano & Amat (2006); Wang et al. (1992); Grishina et al. (1994). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

An ice-cold solution of acetic-formic anhydride was prepared from acetic anhydride (10 ml) and 85% formic acid (5 ml) and was added slowly to a cold solution of r-2,c-6-bis(4-methoxyphenyl)-t-3,t-5-dimethylpiperidin-4-one (1.69 g) in benzene (30 ml). The reaction mixture was stirred at room temperature for 5 h. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated. The resulting mass was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio 1:1.

Refinement top

The O and H atoms of the formyl group is disordered over two positions with occupancies of 0.534 (5) and 0.466 (5). H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C). A rotating group model was used for the methoxy methyl groups.

Structure description top

The piperidine ring is a common feature occurring in many biologically active natural products and therapeutic agents. Piperidine containing entities constitute important targets for pharmaceutical research (Escolano & Amat, 2006). Piperidine derivatives, namely 4-piperidones are synthetic intermediates in the preparation of various alkaloids and pharmaceutical products (Wang et al., 1992; Grishina et al., 1994).

In the title molecule (Fig.1), the piperidine ring adopts a distorted boat conformation. The methyl groups at 3 and 5 positions of the piperidine ring are in axial and equatorial orientations [N1—C2—C3—C14 = -63.02 (15)° and N1—C6—C5—C15 = 176.60 (11)°]. The phenyl rings at 2 and 6 positions of the piperidine ring are axially [C4—C3—C2—C8 = -68.32 (14)°] and equatorially [C4—C5—C6—C16 = 176.69 (10)°] oriented. The dihedral angle between the two phenyl rings is 41.97 (8)°.

Centrosymmetrically related molecules form R22(8) (Bernstein et al., 1995) dimers through C—H···O hydrogen bonds involving atoms C3 and O1. The dimers are linked into a zigzag C(8) chain running along the b axis by intermolecular C—H···O hydrogen bonds involving atoms C20 and O1 (Table 1). Further, C15—H15C···O2 interactions link the chains along the c axis to form a three-dimensional network.

For general background to piperidine derivatives, see: Escolano & Amat (2006); Wang et al. (1992); Grishina et al. (1994). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
1-Formyl-r-2,c-6-bis(4-methoxyphenyl)- t-3,t-5-dimethylpiperidin-4-one top
Crystal data top
C22H25NO4F(000) = 784
Mr = 367.43Dx = 1.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5524 reflections
a = 11.0954 (4) Åθ = 2.1–29.9°
b = 14.5407 (3) ŵ = 0.09 mm1
c = 12.7050 (4) ÅT = 293 K
β = 110.977 (1)°Block, colourless
V = 1913.91 (10) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5524 independent reflections
Radiation source: fine-focus sealed tube3703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 29.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1512
Tmin = 0.974, Tmax = 0.974k = 2019
24720 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.3189P]
where P = (Fo2 + 2Fc2)/3
5524 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H25NO4V = 1913.91 (10) Å3
Mr = 367.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0954 (4) ŵ = 0.09 mm1
b = 14.5407 (3) ÅT = 293 K
c = 12.7050 (4) Å0.30 × 0.20 × 0.20 mm
β = 110.977 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5524 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3703 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.974Rint = 0.029
24720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
5524 reflectionsΔρmin = 0.23 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.87856 (11)0.03534 (7)0.05971 (10)0.0574 (3)
O21.0929 (3)0.3733 (2)0.3086 (2)0.1143 (15)0.534 (5)
O2'1.2050 (3)0.3881 (2)0.2198 (3)0.1036 (16)0.466 (5)
O30.92438 (12)0.33025 (8)0.37580 (9)0.0647 (3)
O40.60958 (11)0.58982 (7)0.13202 (9)0.0600 (3)
N11.03399 (11)0.28962 (8)0.15129 (9)0.0446 (3)
C21.08936 (13)0.22990 (9)0.08641 (11)0.0433 (3)
H21.18310.23890.11770.052*
C31.06451 (13)0.13017 (10)0.10905 (12)0.0455 (3)
H31.09760.09060.06310.055*
C40.92172 (13)0.11238 (9)0.07622 (11)0.0408 (3)
C50.83662 (12)0.19522 (9)0.06811 (11)0.0397 (3)
H50.81820.22270.00640.048*
C60.90568 (13)0.26797 (9)0.15605 (10)0.0402 (3)
H60.91980.24150.23050.048*
C71.1102 (2)0.34871 (18)0.22651 (19)0.0930 (7)
H71.18150.37200.21330.112*0.534 (5)
H7'1.08870.36190.29180.112*0.466 (5)
C81.04508 (12)0.25691 (9)0.03708 (11)0.0405 (3)
C91.01446 (16)0.19282 (10)0.12353 (13)0.0536 (4)
H91.02000.13050.10620.064*
C100.97608 (17)0.21971 (11)0.23422 (13)0.0582 (4)
H100.95540.17530.29060.070*
C110.96764 (14)0.31160 (10)0.26313 (12)0.0472 (3)
C121.00016 (15)0.37652 (10)0.17907 (13)0.0517 (4)
H120.99680.43870.19680.062*
C131.03795 (14)0.34869 (10)0.06774 (13)0.0496 (3)
H131.05930.39320.01150.060*
C141.13194 (17)0.10344 (14)0.23312 (14)0.0675 (5)
H14A1.22190.11870.25680.101*
H14B1.12270.03850.24170.101*
H14C1.09340.13640.27860.101*
C150.70806 (15)0.16822 (11)0.07688 (17)0.0619 (4)
H15A0.65310.22130.06370.093*
H15B0.72240.14440.15090.093*
H15C0.66750.12190.02160.093*
C160.82499 (13)0.35393 (9)0.14503 (11)0.0406 (3)
C170.79081 (14)0.40931 (9)0.05079 (11)0.0435 (3)
H170.81740.39320.00840.052*
C180.71800 (14)0.48820 (9)0.04184 (11)0.0444 (3)
H180.69600.52460.02250.053*
C190.67825 (13)0.51235 (9)0.12957 (11)0.0433 (3)
C200.70878 (16)0.45640 (11)0.22319 (12)0.0533 (4)
H200.68030.47150.28150.064*
C210.78103 (16)0.37843 (10)0.23047 (12)0.0518 (4)
H210.80090.34130.29400.062*
C220.9119 (2)0.42401 (13)0.40951 (16)0.0748 (5)
H22A0.87990.42760.49030.112*
H22B0.99460.45350.37970.112*
H22C0.85270.45430.38130.112*
C230.58744 (18)0.65403 (12)0.04332 (15)0.0655 (5)
H23A0.54420.70700.05780.098*
H23B0.53460.62630.02650.098*
H23C0.66850.67230.03860.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0733 (7)0.0333 (5)0.0769 (7)0.0017 (5)0.0407 (6)0.0034 (5)
O20.096 (2)0.140 (3)0.085 (2)0.0135 (19)0.0052 (15)0.072 (2)
O2'0.0510 (18)0.085 (2)0.156 (3)0.0229 (15)0.0140 (18)0.046 (2)
O30.0798 (8)0.0614 (7)0.0550 (6)0.0062 (6)0.0265 (6)0.0104 (5)
O40.0746 (7)0.0486 (6)0.0589 (6)0.0254 (5)0.0266 (5)0.0045 (5)
N10.0411 (6)0.0452 (6)0.0437 (6)0.0008 (5)0.0105 (5)0.0090 (5)
C20.0353 (6)0.0446 (8)0.0507 (7)0.0034 (5)0.0162 (6)0.0003 (6)
C30.0479 (8)0.0426 (8)0.0514 (8)0.0141 (6)0.0243 (6)0.0085 (6)
C40.0526 (8)0.0337 (7)0.0423 (7)0.0041 (6)0.0244 (6)0.0024 (5)
C50.0399 (6)0.0335 (6)0.0467 (7)0.0032 (5)0.0166 (5)0.0013 (5)
C60.0479 (7)0.0379 (7)0.0366 (6)0.0073 (6)0.0173 (5)0.0014 (5)
C70.0728 (13)0.1154 (18)0.0846 (14)0.0275 (13)0.0205 (11)0.0533 (13)
C80.0373 (6)0.0380 (7)0.0518 (7)0.0001 (5)0.0227 (6)0.0001 (6)
C90.0768 (11)0.0344 (7)0.0575 (9)0.0039 (7)0.0337 (8)0.0006 (6)
C100.0841 (12)0.0440 (8)0.0535 (9)0.0016 (8)0.0330 (8)0.0051 (7)
C110.0452 (7)0.0494 (8)0.0525 (8)0.0033 (6)0.0242 (6)0.0044 (6)
C120.0569 (9)0.0368 (7)0.0652 (9)0.0021 (6)0.0264 (7)0.0065 (7)
C130.0550 (8)0.0379 (7)0.0588 (8)0.0072 (6)0.0237 (7)0.0043 (6)
C140.0601 (10)0.0778 (12)0.0615 (10)0.0226 (9)0.0179 (8)0.0232 (9)
C150.0469 (8)0.0496 (9)0.0950 (13)0.0020 (7)0.0323 (8)0.0004 (8)
C160.0500 (7)0.0346 (7)0.0385 (6)0.0058 (5)0.0175 (5)0.0017 (5)
C170.0535 (8)0.0428 (7)0.0378 (6)0.0063 (6)0.0208 (6)0.0009 (5)
C180.0526 (8)0.0398 (7)0.0402 (7)0.0050 (6)0.0159 (6)0.0042 (6)
C190.0473 (7)0.0361 (7)0.0460 (7)0.0059 (6)0.0160 (6)0.0032 (5)
C200.0732 (10)0.0496 (9)0.0462 (8)0.0149 (7)0.0324 (7)0.0006 (6)
C210.0746 (10)0.0454 (8)0.0412 (7)0.0165 (7)0.0280 (7)0.0066 (6)
C220.0856 (13)0.0710 (12)0.0707 (11)0.0147 (10)0.0316 (10)0.0259 (9)
C230.0765 (11)0.0466 (9)0.0673 (10)0.0210 (8)0.0183 (9)0.0075 (8)
Geometric parameters (Å, º) top
O1—C41.2067 (16)C10—C111.380 (2)
O2—C71.182 (3)C10—H100.93
O2'—C71.227 (4)C11—C121.373 (2)
O3—C111.3642 (18)C12—C131.384 (2)
O3—C221.421 (2)C12—H120.93
O4—C191.3665 (16)C13—H130.93
O4—C231.416 (2)C14—H14A0.96
N1—C71.337 (2)C14—H14B0.96
N1—C21.4743 (17)C14—H14C0.96
N1—C61.4803 (17)C15—H15A0.96
C2—C81.5183 (19)C15—H15B0.96
C2—C31.523 (2)C15—H15C0.96
C2—H20.98C16—C171.3787 (18)
C3—C41.509 (2)C16—C211.3865 (18)
C3—C141.533 (2)C17—C181.3840 (19)
C3—H30.98C17—H170.93
C4—C51.5111 (18)C18—C191.3829 (19)
C5—C151.521 (2)C18—H180.93
C5—C61.5302 (18)C19—C201.379 (2)
C5—H50.98C20—C211.372 (2)
C6—C161.5145 (18)C20—H200.93
C6—H60.98C21—H210.93
C7—H70.93C22—H22A0.96
C7—H7'0.96C22—H22B0.96
C8—C131.385 (2)C22—H22C0.96
C8—C91.387 (2)C23—H23A0.96
C9—C101.372 (2)C23—H23B0.96
C9—H90.93C23—H23C0.96
C11—O3—C22117.82 (13)C12—C11—C10118.99 (14)
C19—O4—C23117.70 (12)C11—C12—C13119.53 (14)
C7—N1—C2119.66 (14)C11—C12—H12120.2
C7—N1—C6118.59 (14)C13—C12—H12120.2
C2—N1—C6119.80 (10)C12—C13—C8122.36 (14)
N1—C2—C8112.33 (11)C12—C13—H13118.8
N1—C2—C3108.39 (11)C8—C13—H13118.8
C8—C2—C3115.34 (12)C3—C14—H14A109.5
N1—C2—H2106.8C3—C14—H14B109.5
C8—C2—H2106.8H14A—C14—H14B109.5
C3—C2—H2106.8C3—C14—H14C109.5
C4—C3—C2110.75 (11)H14A—C14—H14C109.5
C4—C3—C14108.56 (12)H14B—C14—H14C109.5
C2—C3—C14112.39 (13)C5—C15—H15A109.5
C4—C3—H3108.3C5—C15—H15B109.5
C2—C3—H3108.3H15A—C15—H15B109.5
C14—C3—H3108.3C5—C15—H15C109.5
O1—C4—C3121.28 (12)H15A—C15—H15C109.5
O1—C4—C5121.92 (13)H15B—C15—H15C109.5
C3—C4—C5116.79 (11)C17—C16—C21117.74 (12)
C4—C5—C15111.63 (11)C17—C16—C6122.14 (11)
C4—C5—C6111.35 (11)C21—C16—C6120.11 (12)
C15—C5—C6111.25 (12)C16—C17—C18121.77 (12)
C4—C5—H5107.5C16—C17—H17119.1
C15—C5—H5107.5C18—C17—H17119.1
C6—C5—H5107.5C19—C18—C17119.31 (12)
N1—C6—C16111.47 (11)C19—C18—H18120.3
N1—C6—C5110.78 (10)C17—C18—H18120.3
C16—C6—C5112.22 (10)O4—C19—C20115.68 (12)
N1—C6—H6107.4O4—C19—C18124.68 (12)
C16—C6—H6107.4C20—C19—C18119.63 (12)
C5—C6—H6107.4C21—C20—C19120.17 (12)
O2—C7—O2'109.5 (3)C21—C20—H20119.9
O2—C7—N1124.4 (3)C19—C20—H20119.9
O2'—C7—N1126.1 (3)C20—C21—C16121.34 (13)
O2—C7—H7117.8C20—C21—H21119.3
N1—C7—H7117.8C16—C21—H21119.3
O2'—C7—H7'116.8O3—C22—H22A109.5
N1—C7—H7'117.2O3—C22—H22B109.5
C13—C8—C9116.86 (13)H22A—C22—H22B109.5
C13—C8—C2120.31 (12)O3—C22—H22C109.5
C9—C8—C2122.79 (12)H22A—C22—H22C109.5
C10—C9—C8121.23 (14)H22B—C22—H22C109.5
C10—C9—H9119.4O4—C23—H23A109.5
C8—C9—H9119.4O4—C23—H23B109.5
C9—C10—C11121.01 (14)H23A—C23—H23B109.5
C9—C10—H10119.5O4—C23—H23C109.5
C11—C10—H10119.5H23A—C23—H23C109.5
O3—C11—C12125.11 (13)H23B—C23—H23C109.5
O3—C11—C10115.89 (13)
C7—N1—C2—C8109.80 (19)N1—C2—C8—C9140.48 (13)
C6—N1—C2—C886.30 (14)C3—C2—C8—C915.60 (18)
C7—N1—C2—C3121.58 (18)C13—C8—C9—C101.5 (2)
C6—N1—C2—C342.33 (16)C2—C8—C9—C10179.28 (14)
N1—C2—C3—C458.59 (14)C8—C9—C10—C110.5 (3)
C8—C2—C3—C468.32 (14)C22—O3—C11—C120.1 (2)
N1—C2—C3—C1463.02 (15)C22—O3—C11—C10178.86 (15)
C8—C2—C3—C14170.07 (11)C9—C10—C11—O3177.91 (14)
C2—C3—C4—O1160.79 (13)C9—C10—C11—C120.9 (2)
C14—C3—C4—O175.37 (17)O3—C11—C12—C13177.39 (14)
C2—C3—C4—C520.74 (16)C10—C11—C12—C131.3 (2)
C14—C3—C4—C5103.09 (14)C11—C12—C13—C80.3 (2)
O1—C4—C5—C1519.05 (19)C9—C8—C13—C121.1 (2)
C3—C4—C5—C15159.40 (12)C2—C8—C13—C12178.93 (13)
O1—C4—C5—C6144.05 (13)N1—C6—C16—C1760.77 (17)
C3—C4—C5—C634.40 (15)C5—C6—C16—C1764.16 (17)
C7—N1—C6—C1657.6 (2)N1—C6—C16—C21120.35 (14)
C2—N1—C6—C16138.34 (12)C5—C6—C16—C21114.73 (15)
C7—N1—C6—C5176.69 (17)C21—C16—C17—C181.7 (2)
C2—N1—C6—C512.62 (16)C6—C16—C17—C18179.42 (13)
C4—C5—C6—N151.38 (14)C16—C17—C18—C190.0 (2)
C15—C5—C6—N1176.60 (11)C23—O4—C19—C20173.65 (15)
C4—C5—C6—C16176.69 (10)C23—O4—C19—C185.9 (2)
C15—C5—C6—C1658.09 (15)C17—C18—C19—O4177.91 (13)
C2—N1—C7—O2150.5 (3)C17—C18—C19—C201.7 (2)
C6—N1—C7—O213.6 (4)O4—C19—C20—C21177.95 (15)
C2—N1—C7—O2'32.2 (4)C18—C19—C20—C211.7 (2)
C6—N1—C7—O2'163.7 (3)C19—C20—C21—C160.0 (3)
N1—C2—C8—C1341.78 (17)C17—C16—C21—C201.7 (2)
C3—C2—C8—C13166.66 (12)C6—C16—C21—C20179.39 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.982.483.429 (2)163
C15—H15C···O2ii0.962.533.240 (4)131
C20—H20···O1iii0.932.513.432 (2)171
Symmetry codes: (i) x+2, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H25NO4
Mr367.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.0954 (4), 14.5407 (3), 12.7050 (4)
β (°) 110.977 (1)
V3)1913.91 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.974, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
24720, 5524, 3703
Rint0.029
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.05
No. of reflections5524
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.982.483.429 (2)163
C15—H15C···O2ii0.962.533.240 (4)131
C20—H20···O1iii0.932.513.432 (2)171
Symmetry codes: (i) x+2, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEscolano, C. & Amat, M. (2006). Chem. Eur. J. 12, 8198–8207.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 1401–1426.  CrossRef Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proc. Int. 24, 585–621.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds