organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-r-2,c-6-bis­­(4-meth­oxy­phen­yl)-c-3,t-3-di­methyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India.
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 September 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C23H26ClNO4, the piperidine ring adopts a distorted boat conformation. The two methoxy­phenyl groups at the 2 and 6 positions of the piperidine ring are in axial and equatorial orientations. An intra­molecular C—H⋯Cl inter­action is observed. In the crystal, the mol­ecules are linked into zigzag chains along the b axis by C—H⋯π inter­molecular inter­actions.

Related literature

For general background to piperidine derivatives, see: Bochringer & Soehne (1961[Bochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr. 55, 24796.]); Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.]); Mobio et al. (1990[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1990). Khim. Farm. Zh. Chem. Abstr. 112, 733]); Severs et al. (1965[Severs, W. B., Kinnard, W. J. & Buckely, J. P. (1965). Chem. Abstr. 63, 10538.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26ClNO4

  • Mr = 415.90

  • Monoclinic, P 21 /c

  • a = 12.5928 (4) Å

  • b = 9.4141 (3) Å

  • c = 17.9070 (6) Å

  • β = 90.826 (1)°

  • V = 2122.65 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.18 × 0.17 × 0.16 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.971

  • 28132 measured reflections

  • 6666 independent reflections

  • 4339 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 1.01

  • 6666 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1 0.98 2.80 3.4684 (15) 126
C24—H24BCg1i 0.96 2.78 3.438 (2) 126
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C18–C23 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the intermediate products in agrochemicals, pharmaceuticals, rubber vulcanization accelerators and are widely used as building block molecules in many industries. Several 2,6-disubstituted piperidines are found to be useful as tranquilisers (Bochringer & Soehne, 1961) and possess hyposensitive activity (Severs et al., 1965), and a combination of stimulant and depressant effects on the central nerves system (Ganellin & Spickett, 1965), as well as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1990).

The piperidine ring adopts a distorted boat conformation (Fig. 1). The C2 and C5 atoms deviate by 0.661 (2) Å and 0.449 (2) Å, respectively from the N1/C3/C4/C6 plane. The Cremer and Pople (1975) puckering parameters are Q = 0.673 (2)Å, θ = 82.33 (13)° and φ = 75.53 (12)°, and asymmetry parameters Δs(C2) = Δs(C5) = 17.65 (13)° (Nardelli, 1983). The methoxyphenyl rings A(C9-C14) and B(C18-C23) are in axial [C9–C2–C3–C4 = -67.26 (15)°] and equatorial [C4–C5–C6–C18 = 169.34 (12)°] orientations, respectively. The methyl groups at C3 position of the piperidine ring are in equatorial and axial orientations, as can be seen from the torsion angles N1–C2–C3–C16 of -174.25 (13)° and N1–C2–C3–C17 of -54.95 (16)°. The sum of bond angles around atom N1 [359.0°] of the piperidine ring is in accordance with sp2 hybridization (Beddoes et al., 1986). The CO and C–Cl bonds of the chloroacetyl group are twisted with respect to the C–C bond by an angle of 97.54 (16)°. An intramolecular C–H···Cl interaction is observed.

The crystal packing is controlled by weak C–H···π intermolecular interactions. Atom C24 at (x,y,z) acts as a donar to the C18-C23 phenyl ring (centroid Cg1) of the molecule at (-x,-1/2+y,1/2-z) through H24B, with a H···Cg1 separation of 2.78Å. The C–H···π interactions form a zig-zag chain along the b axis, as shown in Fig. 2.

Related literature top

For general background to piperidine derivatives, see: Bochringer & Soehne (1961); Ganellin & Spickett (1965); Mobio et al. (1990); Severs et al. (1965). For hybridization, see: Beddoes et al. (1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). Cg1 is the centroid of the C18–C23 ring.

Experimental top

r-2,c-6-Bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one (2 g) was dissolved in benzene (30 ml). To this solution triethylamine (2 ml) and chloroacetylchloride (0.90 ml) were added and the reaction mixture was allowed to reflux on a water bath for 8 h. The organic layer was dried over anhydrous sodium sulphate, and concentrated. The resulting mass was purified by recrystallisation from petroleum ether (60-80°C).

Refinement top

H atoms were positioned geometrically (C-H = 0.93 - 0.98Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl groups.

Structure description top

Piperidine derivatives are the intermediate products in agrochemicals, pharmaceuticals, rubber vulcanization accelerators and are widely used as building block molecules in many industries. Several 2,6-disubstituted piperidines are found to be useful as tranquilisers (Bochringer & Soehne, 1961) and possess hyposensitive activity (Severs et al., 1965), and a combination of stimulant and depressant effects on the central nerves system (Ganellin & Spickett, 1965), as well as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1990).

The piperidine ring adopts a distorted boat conformation (Fig. 1). The C2 and C5 atoms deviate by 0.661 (2) Å and 0.449 (2) Å, respectively from the N1/C3/C4/C6 plane. The Cremer and Pople (1975) puckering parameters are Q = 0.673 (2)Å, θ = 82.33 (13)° and φ = 75.53 (12)°, and asymmetry parameters Δs(C2) = Δs(C5) = 17.65 (13)° (Nardelli, 1983). The methoxyphenyl rings A(C9-C14) and B(C18-C23) are in axial [C9–C2–C3–C4 = -67.26 (15)°] and equatorial [C4–C5–C6–C18 = 169.34 (12)°] orientations, respectively. The methyl groups at C3 position of the piperidine ring are in equatorial and axial orientations, as can be seen from the torsion angles N1–C2–C3–C16 of -174.25 (13)° and N1–C2–C3–C17 of -54.95 (16)°. The sum of bond angles around atom N1 [359.0°] of the piperidine ring is in accordance with sp2 hybridization (Beddoes et al., 1986). The CO and C–Cl bonds of the chloroacetyl group are twisted with respect to the C–C bond by an angle of 97.54 (16)°. An intramolecular C–H···Cl interaction is observed.

The crystal packing is controlled by weak C–H···π intermolecular interactions. Atom C24 at (x,y,z) acts as a donar to the C18-C23 phenyl ring (centroid Cg1) of the molecule at (-x,-1/2+y,1/2-z) through H24B, with a H···Cg1 separation of 2.78Å. The C–H···π interactions form a zig-zag chain along the b axis, as shown in Fig. 2.

For general background to piperidine derivatives, see: Bochringer & Soehne (1961); Ganellin & Spickett (1965); Mobio et al. (1990); Severs et al. (1965). For hybridization, see: Beddoes et al. (1986). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). Cg1 is the centroid of the C18–C23 ring.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately along the c axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
1-Chloroacetyl-r-2,c-6-bis(4-methoxyphenyl)- c-3,t-3-dimethylpiperidin-4-one top
Crystal data top
C23H26ClNO4F(000) = 880
Mr = 415.90Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6666 reflections
a = 12.5928 (4) Åθ = 1.6–30.9°
b = 9.4141 (3) ŵ = 0.21 mm1
c = 17.9070 (6) ÅT = 293 K
β = 90.826 (1)°Block, colourless
V = 2122.65 (12) Å30.18 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6666 independent reflections
Radiation source: fine-focus sealed tube4339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 30.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1818
Tmin = 0.967, Tmax = 0.971k = 813
28132 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.6368P]
where P = (Fo2 + 2Fc2)/3
6666 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C23H26ClNO4V = 2122.65 (12) Å3
Mr = 415.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5928 (4) ŵ = 0.21 mm1
b = 9.4141 (3) ÅT = 293 K
c = 17.9070 (6) Å0.18 × 0.17 × 0.16 mm
β = 90.826 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6666 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4339 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.971Rint = 0.030
28132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
6666 reflectionsΔρmin = 0.47 e Å3
266 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.67796 (11)0.51678 (14)0.45686 (8)0.0334 (3)
H20.61250.52480.48550.040*
C30.75746 (12)0.62207 (15)0.49301 (8)0.0384 (3)
C40.86517 (12)0.60541 (15)0.45768 (8)0.0379 (3)
C50.88574 (11)0.46526 (15)0.41983 (9)0.0365 (3)
H5A0.96170.44780.42110.044*
H5B0.86420.47360.36780.044*
C60.82990 (10)0.33570 (14)0.45296 (8)0.0311 (3)
H60.86600.31140.50010.037*
C70.65532 (12)0.27982 (16)0.50811 (8)0.0383 (3)
C80.70342 (13)0.14302 (16)0.53726 (9)0.0449 (4)
H8A0.75150.10440.50060.054*
H8B0.64760.07390.54540.054*
C90.64596 (11)0.53902 (15)0.37535 (8)0.0349 (3)
C100.69598 (13)0.62843 (17)0.32557 (9)0.0437 (4)
H100.75340.68260.34200.052*
C110.66241 (14)0.63895 (19)0.25190 (10)0.0510 (4)
H110.69710.70000.21950.061*
C120.57764 (14)0.5591 (2)0.22634 (9)0.0480 (4)
C130.52617 (13)0.4698 (2)0.27464 (10)0.0512 (4)
H130.46890.41560.25790.061*
C140.56023 (12)0.46113 (18)0.34841 (9)0.0439 (4)
H140.52450.40120.38080.053*
C150.46636 (16)0.4921 (3)0.12384 (11)0.0795 (7)
H15A0.48260.39330.13100.119*
H15B0.45660.51090.07150.119*
H15C0.40240.51520.14970.119*
C160.71693 (16)0.77524 (17)0.48942 (11)0.0560 (5)
H16A0.76690.83680.51420.084*
H16B0.64950.78130.51360.084*
H16C0.70890.80370.43820.084*
C170.77419 (16)0.5830 (2)0.57605 (9)0.0532 (4)
H17A0.80680.49110.57970.080*
H17B0.70680.58130.60040.080*
H17C0.81930.65240.59960.080*
C180.84238 (11)0.21143 (14)0.39983 (8)0.0316 (3)
C190.92043 (12)0.11115 (16)0.41388 (8)0.0375 (3)
H190.96280.11960.45660.045*
C200.93692 (12)0.00147 (16)0.36576 (9)0.0398 (3)
H200.98990.06770.37600.048*
C210.87401 (12)0.01445 (16)0.30252 (8)0.0396 (3)
C220.79620 (12)0.08571 (18)0.28752 (9)0.0426 (3)
H220.75400.07730.24470.051*
C230.78075 (11)0.19756 (16)0.33546 (8)0.0383 (3)
H230.72850.26460.32460.046*
C240.96836 (19)0.2174 (2)0.25982 (12)0.0725 (6)
H24A1.03400.16570.25860.109*
H24B0.96640.28510.21980.109*
H24C0.96300.26620.30670.109*
Cl10.77329 (5)0.17452 (7)0.62195 (3)0.0835 (2)
N10.71792 (9)0.36987 (12)0.46958 (6)0.0315 (2)
O10.56230 (9)0.30440 (14)0.52104 (8)0.0578 (3)
O20.55150 (11)0.57620 (17)0.15243 (7)0.0681 (4)
O30.93212 (10)0.69712 (12)0.45950 (7)0.0550 (3)
O40.88237 (11)0.12170 (14)0.25156 (7)0.0596 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0350 (7)0.0274 (7)0.0379 (7)0.0050 (5)0.0009 (5)0.0015 (5)
C30.0464 (8)0.0270 (7)0.0417 (8)0.0035 (6)0.0056 (6)0.0044 (6)
C40.0418 (8)0.0291 (7)0.0423 (8)0.0017 (6)0.0119 (6)0.0027 (6)
C50.0327 (7)0.0304 (7)0.0465 (8)0.0016 (5)0.0016 (6)0.0003 (6)
C60.0308 (6)0.0267 (6)0.0357 (7)0.0028 (5)0.0001 (5)0.0001 (5)
C70.0402 (8)0.0332 (7)0.0416 (8)0.0004 (6)0.0064 (6)0.0003 (6)
C80.0522 (9)0.0340 (8)0.0487 (9)0.0010 (7)0.0108 (7)0.0069 (7)
C90.0337 (7)0.0306 (7)0.0403 (7)0.0056 (5)0.0024 (6)0.0017 (6)
C100.0457 (9)0.0375 (8)0.0477 (9)0.0046 (7)0.0070 (7)0.0052 (7)
C110.0558 (10)0.0503 (10)0.0469 (9)0.0004 (8)0.0009 (7)0.0113 (7)
C120.0490 (9)0.0542 (10)0.0404 (8)0.0116 (8)0.0067 (7)0.0022 (7)
C130.0422 (9)0.0585 (11)0.0526 (10)0.0019 (8)0.0102 (7)0.0074 (8)
C140.0379 (8)0.0472 (9)0.0465 (9)0.0026 (7)0.0017 (6)0.0023 (7)
C150.0526 (11)0.136 (2)0.0490 (11)0.0212 (13)0.0153 (9)0.0217 (12)
C160.0656 (11)0.0311 (8)0.0710 (12)0.0096 (8)0.0080 (9)0.0120 (8)
C170.0717 (12)0.0488 (10)0.0389 (8)0.0001 (9)0.0053 (8)0.0079 (7)
C180.0323 (7)0.0264 (6)0.0361 (7)0.0001 (5)0.0051 (5)0.0008 (5)
C190.0417 (8)0.0329 (7)0.0379 (7)0.0053 (6)0.0003 (6)0.0012 (6)
C200.0442 (8)0.0311 (7)0.0444 (8)0.0096 (6)0.0068 (6)0.0012 (6)
C210.0458 (8)0.0329 (7)0.0403 (8)0.0009 (6)0.0113 (6)0.0060 (6)
C220.0423 (8)0.0461 (9)0.0395 (8)0.0011 (7)0.0011 (6)0.0084 (7)
C230.0351 (7)0.0376 (8)0.0422 (8)0.0055 (6)0.0010 (6)0.0029 (6)
C240.0957 (16)0.0581 (12)0.0642 (13)0.0275 (11)0.0172 (11)0.0180 (10)
Cl10.1001 (5)0.0783 (4)0.0713 (4)0.0053 (3)0.0267 (3)0.0256 (3)
N10.0323 (6)0.0261 (5)0.0361 (6)0.0023 (4)0.0033 (4)0.0003 (4)
O10.0417 (6)0.0531 (8)0.0791 (9)0.0033 (5)0.0185 (6)0.0133 (6)
O20.0717 (9)0.0898 (11)0.0424 (7)0.0092 (8)0.0137 (6)0.0000 (7)
O30.0534 (7)0.0374 (6)0.0738 (8)0.0140 (5)0.0131 (6)0.0006 (6)
O40.0735 (9)0.0494 (7)0.0559 (7)0.0119 (6)0.0033 (6)0.0223 (6)
Geometric parameters (Å, º) top
C2—N11.4881 (17)C13—C141.385 (2)
C2—C91.5231 (19)C13—H130.93
C2—C31.544 (2)C14—H140.93
C2—H20.98C15—O21.422 (3)
C3—C41.513 (2)C15—H15A0.96
C3—C161.531 (2)C15—H15B0.96
C3—C171.543 (2)C15—H15C0.96
C4—O31.2068 (18)C16—H16A0.96
C4—C51.507 (2)C16—H16B0.96
C5—C61.5317 (19)C16—H16C0.96
C5—H5A0.97C17—H17A0.96
C5—H5B0.97C17—H17B0.96
C6—N11.4808 (17)C17—H17C0.96
C6—C181.5174 (19)C18—C191.3832 (19)
C6—H60.98C18—C231.386 (2)
C7—O11.2195 (18)C19—C201.384 (2)
C7—N11.3534 (18)C19—H190.93
C7—C81.513 (2)C20—C211.378 (2)
C8—Cl11.7672 (18)C20—H200.93
C8—H8A0.97C21—O41.3659 (18)
C8—H8B0.97C21—C221.383 (2)
C9—C101.384 (2)C22—C231.374 (2)
C9—C141.386 (2)C22—H220.93
C10—C111.383 (2)C23—H230.93
C10—H100.93C24—O41.414 (2)
C11—C121.378 (2)C24—H24A0.96
C11—H110.93C24—H24B0.96
C12—O21.3688 (19)C24—H24C0.96
C12—C131.375 (3)
N1—C2—C9111.02 (11)C13—C14—C9121.97 (16)
N1—C2—C3108.46 (11)C13—C14—H14119.0
C9—C2—C3118.32 (12)C9—C14—H14119.0
N1—C2—H2106.1O2—C15—H15A109.5
C9—C2—H2106.1O2—C15—H15B109.5
C3—C2—H2106.1H15A—C15—H15B109.5
C4—C3—C16112.36 (14)O2—C15—H15C109.5
C4—C3—C17105.51 (12)H15A—C15—H15C109.5
C16—C3—C17107.79 (13)H15B—C15—H15C109.5
C4—C3—C2109.75 (11)C3—C16—H16A109.5
C16—C3—C2111.92 (12)C3—C16—H16B109.5
C17—C3—C2109.24 (13)H16A—C16—H16B109.5
O3—C4—C5120.92 (15)C3—C16—H16C109.5
O3—C4—C3123.00 (14)H16A—C16—H16C109.5
C5—C4—C3116.08 (12)H16B—C16—H16C109.5
C4—C5—C6116.10 (12)C3—C17—H17A109.5
C4—C5—H5A108.3C3—C17—H17B109.5
C6—C5—H5A108.3H17A—C17—H17B109.5
C4—C5—H5B108.3C3—C17—H17C109.5
C6—C5—H5B108.3H17A—C17—H17C109.5
H5A—C5—H5B107.4H17B—C17—H17C109.5
N1—C6—C18113.65 (11)C19—C18—C23118.34 (13)
N1—C6—C5110.41 (11)C19—C18—C6119.47 (12)
C18—C6—C5108.59 (11)C23—C18—C6122.14 (12)
N1—C6—H6108.0C18—C19—C20121.49 (14)
C18—C6—H6108.0C18—C19—H19119.3
C5—C6—H6108.0C20—C19—H19119.3
O1—C7—N1123.10 (14)C21—C20—C19119.34 (13)
O1—C7—C8118.48 (14)C21—C20—H20120.3
N1—C7—C8118.41 (13)C19—C20—H20120.3
C7—C8—Cl1110.19 (11)O4—C21—C20124.44 (14)
C7—C8—H8A109.6O4—C21—C22115.81 (14)
Cl1—C8—H8A109.6C20—C21—C22119.75 (13)
C7—C8—H8B109.6C23—C22—C21120.48 (14)
Cl1—C8—H8B109.6C23—C22—H22119.8
H8A—C8—H8B108.1C21—C22—H22119.8
C10—C9—C14117.19 (14)C22—C23—C18120.59 (14)
C10—C9—C2125.75 (13)C22—C23—H23119.7
C14—C9—C2117.05 (13)C18—C23—H23119.7
C11—C10—C9121.48 (15)O4—C24—H24A109.5
C11—C10—H10119.3O4—C24—H24B109.5
C9—C10—H10119.3H24A—C24—H24B109.5
C12—C11—C10120.16 (16)O4—C24—H24C109.5
C12—C11—H11119.9H24A—C24—H24C109.5
C10—C11—H11119.9H24B—C24—H24C109.5
O2—C12—C13124.82 (16)C7—N1—C6121.99 (11)
O2—C12—C11115.56 (17)C7—N1—C2117.51 (11)
C13—C12—C11119.62 (15)C6—N1—C2119.47 (11)
C12—C13—C14119.57 (16)C12—O2—C15116.88 (17)
C12—C13—H13120.2C21—O4—C24117.84 (15)
C14—C13—H13120.2
N1—C2—C3—C460.28 (14)C2—C9—C14—C13178.09 (14)
C9—C2—C3—C467.26 (15)N1—C6—C18—C19137.78 (13)
N1—C2—C3—C16174.25 (13)C5—C6—C18—C1998.93 (15)
C9—C2—C3—C1658.21 (18)N1—C6—C18—C2344.94 (18)
N1—C2—C3—C1754.95 (16)C5—C6—C18—C2378.35 (16)
C9—C2—C3—C17177.50 (12)C23—C18—C19—C200.6 (2)
C16—C3—C4—O333.4 (2)C6—C18—C19—C20177.94 (13)
C17—C3—C4—O383.83 (17)C18—C19—C20—C210.2 (2)
C2—C3—C4—O3158.58 (14)C19—C20—C21—O4179.33 (14)
C16—C3—C4—C5147.13 (13)C19—C20—C21—C220.7 (2)
C17—C3—C4—C595.66 (15)O4—C21—C22—C23179.63 (14)
C2—C3—C4—C521.92 (16)C20—C21—C22—C230.4 (2)
O3—C4—C5—C6148.60 (14)C21—C22—C23—C180.4 (2)
C3—C4—C5—C630.90 (17)C19—C18—C23—C220.9 (2)
C4—C5—C6—N144.12 (16)C6—C18—C23—C22178.18 (14)
C4—C5—C6—C18169.34 (12)O1—C7—N1—C6178.38 (14)
O1—C7—C8—Cl197.54 (16)C8—C7—N1—C62.4 (2)
N1—C7—C8—Cl181.75 (15)O1—C7—N1—C213.2 (2)
N1—C2—C9—C10113.18 (16)C8—C7—N1—C2166.01 (12)
C3—C2—C9—C1013.1 (2)C18—C6—N1—C766.53 (17)
N1—C2—C9—C1465.74 (16)C5—C6—N1—C7171.18 (12)
C3—C2—C9—C14167.94 (13)C18—C6—N1—C2125.32 (13)
C14—C9—C10—C110.5 (2)C5—C6—N1—C23.03 (16)
C2—C9—C10—C11178.46 (15)C9—C2—N1—C7108.37 (14)
C9—C10—C11—C120.2 (3)C3—C2—N1—C7120.03 (14)
C10—C11—C12—O2179.32 (16)C9—C2—N1—C682.95 (14)
C10—C11—C12—C130.5 (3)C3—C2—N1—C648.65 (16)
O2—C12—C13—C14179.75 (16)C13—C12—O2—C151.6 (3)
C11—C12—C13—C140.0 (3)C11—C12—O2—C15178.17 (17)
C12—C13—C14—C90.7 (3)C20—C21—O4—C247.1 (2)
C10—C9—C14—C130.9 (2)C22—C21—O4—C24172.90 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.982.803.4684 (15)126
C24—H24B···Cg1i0.962.783.438 (2)126
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H26ClNO4
Mr415.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.5928 (4), 9.4141 (3), 17.9070 (6)
β (°) 90.826 (1)
V3)2122.65 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.18 × 0.17 × 0.16
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.967, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
28132, 6666, 4339
Rint0.030
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.01
No. of reflections6666
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.982.803.4684 (15)126
C24—H24B···Cg1i0.962.783.438 (2)126
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr. 55, 24796.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1990). Khim. Farm. Zh. Chem. Abstr. 112, 733  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSevers, W. B., Kinnard, W. J. & Buckely, J. P. (1965). Chem. Abstr. 63, 10538.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds