metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[μ-4-(methyl­amino)­benzoato-κ2O:O′]bis­­[(N,N-di­ethyl­nicotinamide-N1)zinc(II)] dihydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Physics, Faculty of Science, Anadolu University, Department of Chemistry, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 16 September 2009; accepted 4 October 2009; online 10 October 2009)

The title mol­ecule, [Zn2(C8H8NO2)4(C10H14N2O)2]·2H2O, is a centrosymmetric binuclear complex, with two ZnII ions [Zn⋯Zn' = 2.9301 (4) Å] bridged by four methyl­amino­benzoate (MAB) ligands. The four nearest O atoms around each ZnII ion form a distorted square-planar arrangement with the distorted square-pyramidal coordination completed by the pyridine N atom of the N,N-diethyl­nicotinamide (DENA) ligand. Each ZnII ion is displaced by 0.3519 (2) Å from the plane of the four O atoms, with an average Zn—O distance of 2.030 Å. The dihedral angles between carboxyl­ate groups and adjacent benzene rings are 10.57 (10) and 16.63 (12)°, while the benzene rings are oriented at a dihedral angle of 81.84 (5)°. The pyridine ring is oriented at dihedral angles of 40.49 (6) and 51.25 (6)° with respect to the benzene rings. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. The ππ contact between the inversion-related pyridine rings [centroid–centroid distance = 3.633 (1) Å] may further stabilize the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 2009[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m955-m956.]); Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]); Usubaliev et al. (1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C8H8NO2)4(C10H14N2O)2]·2H2O

  • Mr = 1123.89

  • Monoclinic, P 21 /n

  • a = 10.1384 (2) Å

  • b = 25.6931 (3) Å

  • c = 10.5170 (4) Å

  • β = 103.061 (2)°

  • V = 2668.67 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 100 K

  • 0.52 × 0.52 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.609, Tmax = 0.905

  • 23512 measured reflections

  • 6638 independent reflections

  • 5562 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.02

  • 6638 reflections

  • 346 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0224 (13)
Zn1—O2 2.0207 (13)
Zn1—O3 2.0819 (14)
Zn1—O4 2.0459 (13)
Zn1—N1 2.0516 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O6i 0.86 2.50 3.105 (3) 128
N4—H4A⋯O6ii 0.86 2.07 2.922 (3) 171
O6—H61⋯O4iii 0.93 (4) 2.07 (4) 2.875 (2) 143 (3)
O6—H61⋯O2iii 0.93 (4) 2.37 (4) 3.117 (2) 137 (3)
O6—H62⋯O5iv 0.96 (4) 1.81 (4) 2.741 (2) 162 (3)
Symmetry codes: (i) x-2, y, z-1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four methylaminobenzoate (MAB) ligands. The crystal structures of similar complexes of Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980), [Cu(C6H5CO2)2(py)]2 (Speier & Fulop, 1989), [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) and [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009) have also been reported. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Zn2(MAB)4(DENA)2].H2O, has a centre of symmetry and the two ZnII ions are surrounded by four MAB groups and two DENA ligands. The DENA ligands are coordinated to ZnII ions through pyridine N atoms only. The MAB groups act as bridging ligands. The Zn···Zn' distance is 2.9301 (4) Å. The average Zn—O distance is 2.0297 (13) Å (Table 1), and four O atoms of the bridging MAB ligands around each ZnII ion form a distorted square plane. The ZnII ion lies 0.3519 (2) Å below the least-squares plane. The average O—Zn—O bond angle is 88.30 (6)°. A distorted square-pyramidal arrangement around each ZnII ion is completed by the pyridine N atom of DENA ligand at 2.0516 (14) Å (Table 1) from the Zn atom. The N1—Zn1···Zn1' angle is 159.67 (4)° and the dihedral angle between plane through atoms Zn1, O1, O2, C1, Zn1', O1', O2'and C1' and the plane through Zn1, O3, O4, C8, Zn1', O3', O4', and C8' atoms is 89.00 (7)°. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 10.57 (10)° and 16.63 (12)°, respectively, while that between rings A and B is A/B = 81.84 (5)°. Ring C (N1/C15-C19) is oriented with respect to rings A and B at dihedral angles A/C = 40.49 (6) and B/C = 51.25 (6) °.

In the crystal structure, intermolecular O—H···O and N—H···O interactions (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine rings, Cg1—Cg1i, [symmetry code (i): 2 - x, -y, 1 - z, where Cg1 is centroid of the ring C (N1/C15—C19)] may further stabilize the structure, with centroid-centroid distance of 3.633 (1) Å.

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamidegeneral background, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1995, 2009); Speier & Fulop (1989); Usubaliev et al. (1980).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.9 g, 5 mmol) in H2O (30 ml) and DENA (1.78 g, 10 mmol) in H2O (20 ml) with sodium p-methylaminobenzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

Refinement top

Atoms H61 and H62 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with N-H = 0.86 Å and C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two DENA and four methylaminobenzoate (MAB) ligands. The crystal structures of similar complexes of Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980), [Cu(C6H5CO2)2(py)]2 (Speier & Fulop, 1989), [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995) and [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009) have also been reported. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Zn2(MAB)4(DENA)2].H2O, has a centre of symmetry and the two ZnII ions are surrounded by four MAB groups and two DENA ligands. The DENA ligands are coordinated to ZnII ions through pyridine N atoms only. The MAB groups act as bridging ligands. The Zn···Zn' distance is 2.9301 (4) Å. The average Zn—O distance is 2.0297 (13) Å (Table 1), and four O atoms of the bridging MAB ligands around each ZnII ion form a distorted square plane. The ZnII ion lies 0.3519 (2) Å below the least-squares plane. The average O—Zn—O bond angle is 88.30 (6)°. A distorted square-pyramidal arrangement around each ZnII ion is completed by the pyridine N atom of DENA ligand at 2.0516 (14) Å (Table 1) from the Zn atom. The N1—Zn1···Zn1' angle is 159.67 (4)° and the dihedral angle between plane through atoms Zn1, O1, O2, C1, Zn1', O1', O2'and C1' and the plane through Zn1, O3, O4, C8, Zn1', O3', O4', and C8' atoms is 89.00 (7)°. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 10.57 (10)° and 16.63 (12)°, respectively, while that between rings A and B is A/B = 81.84 (5)°. Ring C (N1/C15-C19) is oriented with respect to rings A and B at dihedral angles A/C = 40.49 (6) and B/C = 51.25 (6) °.

In the crystal structure, intermolecular O—H···O and N—H···O interactions (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine rings, Cg1—Cg1i, [symmetry code (i): 2 - x, -y, 1 - z, where Cg1 is centroid of the ring C (N1/C15—C19)] may further stabilize the structure, with centroid-centroid distance of 3.633 (1) Å.

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamidegeneral background, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1995, 2009); Speier & Fulop (1989); Usubaliev et al. (1980).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Primed atoms are generated by the symmetry operator: (') 1 - x, -y, -z.
Tetrakis[µ-4-(methylamino)benzoato- κ2O:O']bis[(N,N- diethylnicotinamide-N1)zinc(II)] dihydrate top
Crystal data top
[Zn2(C8H8NO2)4(C10H14N2O)2]·2H2OF(000) = 1176
Mr = 1123.89Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8651 reflections
a = 10.1384 (2) Åθ = 3.0–28.2°
b = 25.6931 (3) ŵ = 0.97 mm1
c = 10.5170 (4) ÅT = 100 K
β = 103.061 (2)°Plate, colorless
V = 2668.67 (12) Å30.52 × 0.52 × 0.10 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6638 independent reflections
Radiation source: fine-focus sealed tube5562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1310
Tmin = 0.609, Tmax = 0.905k = 3034
23512 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0383P)2 + 2.063P]
where P = (Fo2 + 2Fc2)/3
6638 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Zn2(C8H8NO2)4(C10H14N2O)2]·2H2OV = 2668.67 (12) Å3
Mr = 1123.89Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1384 (2) ŵ = 0.97 mm1
b = 25.6931 (3) ÅT = 100 K
c = 10.5170 (4) Å0.52 × 0.52 × 0.10 mm
β = 103.061 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5562 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.905Rint = 0.029
23512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.74 e Å3
6638 reflectionsΔρmin = 0.54 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.04338 (2)0.014479 (8)0.118981 (18)0.01584 (6)
O10.20843 (14)0.01538 (5)0.00434 (12)0.0240 (3)
O20.14508 (13)0.04361 (5)0.18309 (12)0.0202 (3)
O30.03250 (15)0.06111 (5)0.13786 (14)0.0268 (3)
O40.09993 (14)0.08625 (5)0.04128 (12)0.0225 (3)
O50.19322 (15)0.13404 (5)0.50417 (14)0.0281 (3)
O60.95980 (18)0.15202 (7)0.75046 (18)0.0397 (4)
H610.967 (4)0.1239 (15)0.808 (4)0.087 (12)*
H620.904 (4)0.1385 (15)0.671 (4)0.088 (13)*
N10.12123 (15)0.00735 (6)0.28204 (14)0.0166 (3)
N20.39214 (16)0.12268 (6)0.35808 (15)0.0201 (3)
N30.73560 (17)0.14248 (7)0.25237 (16)0.0279 (4)
H3A0.78890.14040.19950.033*
N40.2505 (2)0.28515 (7)0.3274 (2)0.0434 (5)
H4A0.30670.30350.29620.052*
C10.23030 (18)0.03966 (7)0.11144 (16)0.0168 (3)
C20.36417 (18)0.06493 (7)0.15463 (16)0.0162 (3)
C30.39620 (19)0.09599 (7)0.26573 (17)0.0194 (4)
H30.33380.09970.31780.023*
C40.5190 (2)0.12146 (7)0.29995 (17)0.0217 (4)
H40.53820.14210.37440.026*
C50.61546 (19)0.11639 (7)0.22320 (17)0.0204 (4)
C60.58436 (19)0.08385 (7)0.11255 (18)0.0217 (4)
H60.64770.07890.06200.026*
C70.46113 (19)0.05944 (7)0.07914 (17)0.0194 (4)
H70.44130.03880.00470.023*
C80.08144 (18)0.09445 (7)0.07307 (17)0.0196 (4)
C90.1199 (2)0.14569 (7)0.13448 (17)0.0212 (4)
C100.2042 (2)0.17976 (7)0.0866 (2)0.0248 (4)
H100.23280.17130.01120.030*
C110.2458 (2)0.22608 (8)0.1502 (2)0.0298 (4)
H110.30320.24810.11780.036*
C120.2017 (2)0.24024 (8)0.2638 (2)0.0304 (5)
C130.1107 (2)0.20754 (8)0.3067 (2)0.0321 (5)
H130.07550.21730.37760.038*
C140.0728 (2)0.16080 (8)0.24425 (19)0.0274 (4)
H140.01470.13880.27580.033*
C150.10860 (18)0.04226 (7)0.37916 (16)0.0170 (3)
H150.06710.07400.37100.020*
C160.15508 (19)0.03269 (7)0.49092 (17)0.0195 (4)
H160.14740.05800.55550.023*
C170.21321 (18)0.01504 (7)0.50527 (17)0.0189 (3)
H170.24280.02270.58070.023*
C180.22681 (18)0.05145 (7)0.40509 (16)0.0166 (3)
C190.18061 (18)0.03849 (7)0.29495 (16)0.0174 (3)
H190.19110.06250.22720.021*
C200.27156 (19)0.10611 (7)0.42525 (17)0.0190 (4)
C210.4910 (2)0.09017 (8)0.26852 (18)0.0238 (4)
H21A0.44410.06150.23790.029*
H21B0.53420.11080.19330.029*
C220.5985 (2)0.06864 (9)0.3335 (2)0.0320 (5)
H22A0.66400.04950.27070.048*
H22B0.64260.09680.36720.048*
H22C0.55700.04600.40370.048*
C230.4330 (2)0.17653 (7)0.3789 (2)0.0264 (4)
H23A0.39750.18610.46950.032*
H23B0.53100.17840.36160.032*
C240.3819 (3)0.21482 (9)0.2916 (3)0.0398 (6)
H24A0.41390.24910.30500.060*
H24B0.41470.20490.20200.060*
H24C0.28470.21470.31240.060*
C250.7761 (2)0.17342 (9)0.3688 (2)0.0345 (5)
H25A0.86640.18620.37520.052*
H25B0.77400.15240.44380.052*
H25C0.71510.20220.36500.052*
C260.2125 (4)0.30333 (9)0.4443 (2)0.0561 (8)
H26A0.25890.33530.47260.084*
H26B0.23680.27760.51180.084*
H26C0.11650.30910.42610.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01825 (11)0.01770 (11)0.01276 (10)0.00284 (8)0.00601 (7)0.00051 (7)
O10.0237 (7)0.0314 (7)0.0170 (6)0.0086 (6)0.0049 (5)0.0050 (5)
O20.0183 (6)0.0244 (7)0.0186 (6)0.0045 (5)0.0054 (5)0.0017 (5)
O30.0310 (8)0.0206 (7)0.0336 (7)0.0001 (6)0.0176 (6)0.0022 (6)
O40.0273 (7)0.0194 (6)0.0198 (6)0.0003 (5)0.0036 (5)0.0022 (5)
O50.0265 (8)0.0257 (7)0.0314 (7)0.0034 (6)0.0053 (6)0.0094 (6)
O60.0400 (10)0.0393 (9)0.0388 (9)0.0006 (8)0.0065 (8)0.0140 (8)
N10.0162 (7)0.0194 (7)0.0142 (6)0.0017 (6)0.0035 (5)0.0004 (5)
N20.0231 (8)0.0165 (7)0.0222 (7)0.0021 (6)0.0080 (6)0.0000 (6)
N30.0219 (9)0.0358 (10)0.0256 (8)0.0091 (7)0.0048 (7)0.0014 (7)
N40.0683 (15)0.0228 (9)0.0382 (11)0.0077 (9)0.0102 (10)0.0057 (8)
C10.0204 (9)0.0164 (8)0.0134 (7)0.0007 (7)0.0032 (6)0.0038 (6)
C20.0172 (8)0.0170 (8)0.0141 (7)0.0002 (7)0.0031 (6)0.0016 (6)
C30.0222 (9)0.0218 (9)0.0156 (8)0.0010 (7)0.0072 (7)0.0015 (7)
C40.0249 (10)0.0235 (9)0.0161 (8)0.0043 (7)0.0036 (7)0.0021 (7)
C50.0176 (9)0.0221 (9)0.0203 (8)0.0027 (7)0.0017 (7)0.0051 (7)
C60.0189 (9)0.0268 (9)0.0207 (8)0.0022 (7)0.0074 (7)0.0020 (7)
C70.0214 (9)0.0203 (9)0.0167 (8)0.0016 (7)0.0048 (7)0.0010 (6)
C80.0166 (9)0.0202 (9)0.0213 (8)0.0039 (7)0.0026 (7)0.0008 (7)
C90.0240 (10)0.0180 (8)0.0194 (8)0.0033 (7)0.0003 (7)0.0000 (7)
C100.0232 (10)0.0223 (9)0.0278 (9)0.0021 (8)0.0033 (8)0.0008 (7)
C110.0294 (11)0.0216 (10)0.0373 (11)0.0022 (8)0.0050 (9)0.0027 (8)
C120.0376 (12)0.0219 (10)0.0272 (10)0.0044 (9)0.0024 (9)0.0031 (8)
C130.0516 (14)0.0230 (10)0.0230 (10)0.0044 (9)0.0114 (9)0.0005 (8)
C140.0381 (12)0.0209 (9)0.0246 (9)0.0031 (8)0.0100 (8)0.0016 (7)
C150.0177 (9)0.0158 (8)0.0177 (8)0.0011 (7)0.0045 (7)0.0003 (6)
C160.0219 (9)0.0211 (8)0.0163 (8)0.0013 (7)0.0056 (7)0.0021 (7)
C170.0200 (9)0.0234 (9)0.0147 (8)0.0027 (7)0.0067 (7)0.0019 (7)
C180.0144 (8)0.0189 (8)0.0166 (8)0.0002 (7)0.0035 (6)0.0010 (6)
C190.0177 (9)0.0196 (8)0.0152 (8)0.0023 (7)0.0039 (6)0.0017 (6)
C200.0215 (9)0.0198 (8)0.0181 (8)0.0012 (7)0.0098 (7)0.0008 (7)
C210.0232 (10)0.0249 (9)0.0221 (9)0.0059 (8)0.0022 (7)0.0018 (7)
C220.0265 (11)0.0347 (11)0.0333 (11)0.0057 (9)0.0036 (9)0.0037 (9)
C230.0299 (11)0.0181 (9)0.0340 (10)0.0057 (8)0.0134 (9)0.0020 (8)
C240.0483 (15)0.0235 (11)0.0517 (14)0.0038 (10)0.0199 (12)0.0103 (10)
C250.0324 (12)0.0353 (12)0.0332 (11)0.0149 (10)0.0019 (9)0.0003 (9)
C260.113 (3)0.0223 (11)0.0298 (12)0.0021 (14)0.0087 (14)0.0038 (9)
Geometric parameters (Å, º) top
Zn1—Zn1i2.9301 (4)C10—C111.383 (3)
Zn1—O12.0224 (13)C10—H100.93
Zn1—O22.0207 (13)C11—H110.93
Zn1—O42.0459 (13)C12—N41.369 (3)
Zn1—N12.0516 (14)C12—C111.415 (3)
O1—C11.263 (2)C12—C131.396 (3)
O2—C1i1.272 (2)C13—H130.93
O3—Zn12.0819 (14)C14—C131.381 (3)
O3—C81.264 (2)C14—H140.93
O4—C8i1.276 (2)C15—C161.384 (2)
O5—C201.240 (2)C15—H150.93
O6—H610.94 (4)C16—H160.93
O6—H620.96 (4)C17—C161.384 (3)
N1—C151.344 (2)C17—C181.392 (2)
N1—C191.343 (2)C17—H170.93
N2—C201.336 (2)C18—C191.385 (2)
N2—C211.471 (2)C19—H190.93
N2—C231.475 (2)C20—C181.505 (2)
N3—H3A0.86C21—C221.516 (3)
N4—C261.447 (3)C21—H21A0.97
N4—H4A0.86C21—H21B0.97
C1—O2i1.272 (2)C22—H22A0.96
C2—C11.480 (2)C22—H22B0.96
C2—C31.391 (2)C22—H22C0.96
C3—H30.93C23—C241.515 (3)
C4—C31.381 (3)C23—H23A0.97
C4—C51.407 (3)C23—H23B0.97
C4—H40.93C24—H24A0.96
C5—N31.363 (2)C24—H24B0.96
C6—C51.410 (3)C24—H24C0.96
C6—H60.93C25—N31.440 (3)
C7—C21.403 (2)C25—H25A0.96
C7—C61.371 (3)C25—H25B0.96
C7—H70.93C25—H25C0.96
C8—O4i1.276 (2)C26—H26A0.96
C8—C91.479 (2)C26—H26B0.96
C9—C101.394 (3)C26—H26C0.96
C9—C141.400 (3)
O1—Zn1—Zn1i73.77 (4)C12—C11—H11119.7
O1—Zn1—O386.65 (6)N4—C12—C11118.8 (2)
O1—Zn1—O488.23 (6)N4—C12—C13122.8 (2)
O1—Zn1—N194.78 (5)C13—C12—C11118.43 (19)
O2—Zn1—Zn1i86.29 (4)C12—C13—H13119.9
O2—Zn1—O1159.63 (5)C14—C13—C12120.18 (19)
O2—Zn1—O390.72 (6)C14—C13—H13119.9
O2—Zn1—O487.59 (5)C9—C14—H14119.2
O2—Zn1—N1105.52 (5)C13—C14—C9121.57 (19)
O3—Zn1—Zn1i70.66 (4)C13—C14—H14119.2
O4—Zn1—Zn1i89.93 (4)N1—C15—C16122.34 (16)
O4—Zn1—O3160.59 (5)N1—C15—H15118.8
O4—Zn1—N1106.76 (6)C16—C15—H15118.8
N1—Zn1—Zn1i159.67 (4)C15—C16—H16120.5
N1—Zn1—O392.33 (6)C17—C16—C15119.04 (16)
C1—O1—Zn1135.44 (13)C17—C16—H16120.5
C1i—O2—Zn1119.36 (11)C16—C17—C18119.00 (16)
C8—O3—Zn1139.69 (12)C16—C17—H17120.5
C8i—O4—Zn1115.95 (12)C18—C17—H17120.5
H62—O6—H61103 (3)C17—C18—C20120.11 (15)
C15—N1—Zn1125.96 (12)C19—C18—C17118.48 (16)
C19—N1—Zn1115.38 (11)C19—C18—C20120.80 (15)
C19—N1—C15118.45 (15)N1—C19—C18122.65 (16)
C20—N2—C21124.58 (15)N1—C19—H19118.7
C20—N2—C23118.32 (16)C18—C19—H19118.7
C21—N2—C23117.04 (16)O5—C20—N2122.74 (17)
C5—N3—C25122.12 (17)O5—C20—C18117.80 (17)
C5—N3—H3A118.9N2—C20—C18119.45 (16)
C25—N3—H3A118.9N2—C21—C22111.97 (16)
C12—N4—C26123.4 (2)N2—C21—H21A109.2
C12—N4—H4A118.3N2—C21—H21B109.2
C26—N4—H4A118.3C22—C21—H21A109.2
O1—C1—O2i124.19 (17)C22—C21—H21B109.2
O1—C1—C2117.03 (15)H21A—C21—H21B107.9
O2i—C1—C2118.78 (15)C21—C22—H22A109.5
C3—C2—C1122.21 (16)C21—C22—H22B109.5
C3—C2—C7118.19 (16)C21—C22—H22C109.5
C7—C2—C1119.55 (15)H22A—C22—H22B109.5
C2—C3—H3119.5H22A—C22—H22C109.5
C4—C3—C2121.08 (17)H22B—C22—H22C109.5
C4—C3—H3119.5N2—C23—C24111.91 (16)
C3—C4—C5120.62 (17)N2—C23—H23A109.2
C3—C4—H4119.7N2—C23—H23B109.2
C5—C4—H4119.7C24—C23—H23A109.2
N3—C5—C4121.78 (17)C24—C23—H23B109.2
N3—C5—C6119.95 (17)H23A—C23—H23B107.9
C4—C5—C6118.26 (17)C23—C24—H24A109.5
C5—C6—H6119.9C23—C24—H24B109.5
C7—C6—C5120.25 (17)C23—C24—H24C109.5
C7—C6—H6119.9H24A—C24—H24B109.5
C2—C7—H7119.2H24A—C24—H24C109.5
C6—C7—C2121.56 (17)H24B—C24—H24C109.5
C6—C7—H7119.2N3—C25—H25A109.5
O3—C8—O4i123.76 (17)N3—C25—H25B109.5
O3—C8—C9117.69 (16)N3—C25—H25C109.5
O4i—C8—C9118.55 (16)H25A—C25—H25B109.5
C10—C9—C8121.59 (17)H25A—C25—H25C109.5
C10—C9—C14118.31 (18)H25B—C25—H25C109.5
C14—C9—C8120.10 (17)N4—C26—H26A109.5
C9—C10—H10119.6N4—C26—H26B109.5
C11—C10—C9120.71 (19)N4—C26—H26C109.5
C11—C10—H10119.6H26A—C26—H26B109.5
C10—C11—C12120.6 (2)H26A—C26—H26C109.5
C10—C11—H11119.7H26B—C26—H26C109.5
Zn1i—Zn1—O1—C110.58 (16)C20—N2—C23—C2486.7 (2)
O2—Zn1—O1—C122.8 (3)C21—N2—C23—C2496.1 (2)
O3—Zn1—O1—C160.23 (17)C3—C2—C1—O1175.07 (16)
O4—Zn1—O1—C1101.03 (17)C3—C2—C1—O2i4.9 (3)
N1—Zn1—O1—C1152.30 (17)C7—C2—C1—O12.3 (2)
Zn1i—Zn1—O2—C1i1.39 (12)C7—C2—C1—O2i177.77 (16)
O1—Zn1—O2—C1i13.1 (2)C1—C2—C3—C4176.37 (17)
O3—Zn1—O2—C1i69.17 (13)C7—C2—C3—C41.0 (3)
O4—Zn1—O2—C1i91.48 (13)C3—C4—C5—N3177.78 (18)
N1—Zn1—O2—C1i161.79 (12)C5—C4—C3—C20.3 (3)
Zn1i—Zn1—O4—C8i0.04 (12)C3—C4—C5—C61.3 (3)
O1—Zn1—O4—C8i73.72 (13)C4—C5—N3—C255.1 (3)
O2—Zn1—O4—C8i86.33 (13)C6—C5—N3—C25175.77 (19)
O3—Zn1—O4—C8i1.0 (2)C7—C6—C5—N3176.90 (18)
N1—Zn1—O4—C8i168.18 (12)C7—C6—C5—C42.2 (3)
Zn1i—Zn1—N1—C15165.91 (10)C6—C7—C2—C1177.35 (17)
Zn1i—Zn1—N1—C198.7 (2)C6—C7—C2—C30.1 (3)
O1—Zn1—N1—C15139.65 (15)C2—C7—C6—C51.5 (3)
O1—Zn1—N1—C1945.76 (13)O3—C8—C9—C10163.73 (18)
O2—Zn1—N1—C1542.11 (16)O3—C8—C9—C1415.5 (3)
O2—Zn1—N1—C19132.48 (12)O4i—C8—C9—C1015.9 (3)
O3—Zn1—N1—C15133.51 (15)O4i—C8—C9—C14164.81 (18)
O3—Zn1—N1—C1941.08 (13)C8—C9—C10—C11175.97 (18)
O4—Zn1—N1—C1550.06 (15)C14—C9—C10—C113.3 (3)
O4—Zn1—N1—C19135.35 (12)C8—C9—C14—C13177.63 (19)
Zn1—O1—C1—O2i13.4 (3)C10—C9—C14—C131.6 (3)
Zn1—O1—C1—C2166.52 (12)C9—C10—C11—C121.1 (3)
C8—O3—Zn1—Zn1i1.03 (19)C13—C12—N4—C260.3 (4)
C8—O3—Zn1—O172.9 (2)C11—C12—N4—C26180.0 (2)
C8—O3—Zn1—O286.8 (2)N4—C12—C11—C10176.8 (2)
C8—O3—Zn1—O42.1 (3)C13—C12—C11—C102.9 (3)
C8—O3—Zn1—N1167.6 (2)N4—C12—C13—C14175.2 (2)
Zn1—O3—C8—O4i1.4 (3)C11—C12—C13—C144.5 (3)
Zn1—O3—C8—C9178.98 (14)C9—C14—C13—C122.3 (3)
Zn1—N1—C15—C16174.78 (13)N1—C15—C16—C171.9 (3)
C19—N1—C15—C160.3 (3)C18—C17—C16—C151.9 (3)
Zn1—N1—C19—C18173.78 (14)C16—C17—C18—C190.4 (3)
C15—N1—C19—C181.2 (3)C16—C17—C18—C20171.52 (17)
C21—N2—C20—O5176.81 (17)C17—C18—C19—N11.2 (3)
C21—N2—C20—C183.5 (3)C20—C18—C19—N1169.86 (16)
C23—N2—C20—O50.2 (3)O5—C20—C18—C1767.7 (2)
C23—N2—C20—C18179.51 (15)O5—C20—C18—C19103.2 (2)
C20—N2—C21—C2297.4 (2)N2—C20—C18—C17112.63 (19)
C23—N2—C21—C2279.6 (2)N2—C20—C18—C1976.5 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O6ii0.862.503.105 (3)128
N4—H4A···O6iii0.862.072.922 (3)171
O6—H61···O4iv0.93 (4)2.07 (4)2.875 (2)143 (3)
O6—H61···O2iv0.93 (4)2.37 (4)3.117 (2)137 (3)
O6—H62···O5v0.96 (4)1.81 (4)2.741 (2)162 (3)
Symmetry codes: (ii) x2, y, z1; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C8H8NO2)4(C10H14N2O)2]·2H2O
Mr1123.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.1384 (2), 25.6931 (3), 10.5170 (4)
β (°) 103.061 (2)
V3)2668.67 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.52 × 0.52 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.609, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
23512, 6638, 5562
Rint0.029
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.02
No. of reflections6638
No. of parameters346
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O12.0224 (13)Zn1—O42.0459 (13)
Zn1—O22.0207 (13)Zn1—N12.0516 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O6i0.862.503.105 (3)128
N4—H4A···O6ii0.862.072.922 (3)171
O6—H61···O4iii0.93 (4)2.07 (4)2.875 (2)143 (3)
O6—H61···O2iii0.93 (4)2.37 (4)3.117 (2)137 (3)
O6—H62···O5iv0.96 (4)1.81 (4)2.741 (2)162 (3)
Symmetry codes: (i) x2, y, z1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds