organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(3-hy­droxy­phen­yl)-2,7,7-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, bOrganic Chemistry Division, School of Science, VIT University, Vellore 632 014, India, cMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, and dOrganic Chemistry Division, School of Science, VIT University, Vellore 632 014, India
*Correspondence e-mail: vasan692000@yahoo.co.in

(Received 17 September 2009; accepted 30 September 2009; online 7 October 2009)

In the mol­ecular structure of the title compound, C21H25NO4, the dihydro­pyridine ring adopts a flattened boat conformation while the cyclo­hexenone ring is in an envelope conformation. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to (10[\overline{1}]) by N—H⋯O and O—H⋯O hydrogen bonds. The network is generated by R44(30) and R44(34) graph-set motifs.

Related literature

For general background to oxoquinoline derivatives, see: Baba (1997[Baba, M. (1997). Antivir. Res. 33, 141-152.]); Baba et al. (1997[Baba, M., Okamoto, M., Makino, M., Kimura, Y., Ikeuchi, T., Sakaguchi, T. & Okamoto, T. (1997). Antimicrob. Agents Chemother. 41, 1250-1255.],1998[Baba, M., Okamoto, M., Kawamura, M., Makino, M., Higashida, T., Takashi, T., Kimura, Y., Ikeuchi, T., Tetsuka, T. & Okamoto, T. (1998). Mol. Pharm. 53, 1097-1103.]); Koga et al. (1980[Koga, H., Itoh, A., murayama, S., Suzue, S. & Irikura, T. (1980). J. Med. Chem. 23, 1358-1363.]); Qi et al. (2007[Qi, R., Fetzner, S. & Oakley, A. J. (2007). Acta Cryst. F63, 378-381.]). For a related structure, see: Czaun et al. (2002[Czaun, M., Ganszky, I., Speier, G. & Parkanyi, L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 379-380.]); For graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO4

  • Mr = 355.42

  • Monoclinic, P 21 /n

  • a = 10.8721 (4) Å

  • b = 16.1255 (7) Å

  • c = 11.0856 (4) Å

  • β = 100.682 (2)°

  • V = 1909.83 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.93, Tmax = 0.95

  • 14667 measured reflections

  • 3163 independent reflections

  • 2137 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.02

  • 3163 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8C—H8C⋯O9Bi 0.82 2.05 2.835 (2) 162
N1—H1⋯O6Aii 0.86 2.16 2.970 (2) 157
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some oxoquinoline derivatives viz. 8-difluoromethoxy-1-ethyl-6-fluoro-1,4-dihydro-7-[4-(2-methoxyphenyl)- 1-πiperazinyl]- 4-oxoquinoline-3-carboxylic acid (K-12), 7-(3,4-dehydro-4-phenyl-1-piperidinyl)-1,4-dihydro-6-fluoro-1-methyl- 8-trifluoromethyl-4-oxoquinoline-3-carboxylic acid (K-37), 8-difluoromethoxy-1,4-dihydro-6-fluoro-7-(3,4-dehydro-4-phenyl- 1-piperidinyl)-1-[4,(1,2,4-triazol-1-yl)methylphenyl]-4-oxoquinoline- 3-carboxylic acid (K-38) act as potent and selective inhibitor of human immunodeficiency virus type I (HIV-1) transcription (Baba, 1997; Baba et al., 1997,1998). Structure-activity relationships of antibacterial oxoquinolone-3-carboxylic acids have been studied (Koga et al., 1980). In view of the signficicant biological activitiy, precise single crystal structure determinations of these derivatives are expcted to provide insights in their design and function. The crystal structure of 1H-2-phenyl-3-hydroxy-4-oxoquinoline-dimethylsulfoxide has already been reported (Czaun et al., 2002). The expression, purification and crystallization of 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase are reported elsewhere (Qi et al., 2007).

The dihydropyridine ring of the title molecule (Fig.1) adopts a flattened boat conformation. The cyclohexenone ring is in an envelope conformation with atom C4 at the flap. The 4-methoxyphenyl ring and the planar part of the dihydropyridine ring (C2/C7/C9/C10) are nearly perpendicular to each other, with a dihedral angle of 89.37 (6)°.

In the crystal structure, molecules are linked into a two-dimensional network (Fig.2) parallel to the (101) by N—H···O and O—H···O hydrogen bonds (Table 1). The two-deimensional layer, resembiling a corrugated sheet, contains R44(30) and R44(34) graph-set motifs (Etter et al., 1990) as its fundamental repeating units. It is observed that these rings are assembled through centrosymmetrically related pairs of molecules with no direct hydrogen bonding between them.

Related literature top

For general background to oxoquinoline derivatives, see: Baba (1997); Baba et al. (1997,1998); Koga et al. (1980); Qi et al. (2007). For a related structure, see: Czaun et al. (2002); For graph-set motifs, see: Etter et al. (1990).

Experimental top

A 50 ml round-bottomed flask was charged with 3-hydroxybenzaldehyde (1.221 g, 10 mmol), 5,5-dimethyl-1,3-cyclohexanedione (1.402 g, 10 mmol), ethyl acetoacetate (1.265 ml, 10 mmol) and ammonium acetate (0.771 g, 10 mmol) followed by ethanol (10 ml). The mixture was stirred at 343 K for 1.5 h and left aside for a day. The solid separated out was filtered and washed with ethanol-diethyl ether mixture (1:4). It was recrystalyzed from 100% chloroform. Light yellow prismatic crystals of the title compound were obtained by slow evaporation of a methonolic solution. Pale yellow crystals with slab morphology were obtained by slow evaporation of a methonol-chloroform solution.

Refinement top

H atoms were positioned geometrically [O-H = 0.82 Å, N-H = 0.86 Å and C-H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.2Ueq(O and Cmethyl).

Structure description top

Some oxoquinoline derivatives viz. 8-difluoromethoxy-1-ethyl-6-fluoro-1,4-dihydro-7-[4-(2-methoxyphenyl)- 1-πiperazinyl]- 4-oxoquinoline-3-carboxylic acid (K-12), 7-(3,4-dehydro-4-phenyl-1-piperidinyl)-1,4-dihydro-6-fluoro-1-methyl- 8-trifluoromethyl-4-oxoquinoline-3-carboxylic acid (K-37), 8-difluoromethoxy-1,4-dihydro-6-fluoro-7-(3,4-dehydro-4-phenyl- 1-piperidinyl)-1-[4,(1,2,4-triazol-1-yl)methylphenyl]-4-oxoquinoline- 3-carboxylic acid (K-38) act as potent and selective inhibitor of human immunodeficiency virus type I (HIV-1) transcription (Baba, 1997; Baba et al., 1997,1998). Structure-activity relationships of antibacterial oxoquinolone-3-carboxylic acids have been studied (Koga et al., 1980). In view of the signficicant biological activitiy, precise single crystal structure determinations of these derivatives are expcted to provide insights in their design and function. The crystal structure of 1H-2-phenyl-3-hydroxy-4-oxoquinoline-dimethylsulfoxide has already been reported (Czaun et al., 2002). The expression, purification and crystallization of 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase are reported elsewhere (Qi et al., 2007).

The dihydropyridine ring of the title molecule (Fig.1) adopts a flattened boat conformation. The cyclohexenone ring is in an envelope conformation with atom C4 at the flap. The 4-methoxyphenyl ring and the planar part of the dihydropyridine ring (C2/C7/C9/C10) are nearly perpendicular to each other, with a dihedral angle of 89.37 (6)°.

In the crystal structure, molecules are linked into a two-dimensional network (Fig.2) parallel to the (101) by N—H···O and O—H···O hydrogen bonds (Table 1). The two-deimensional layer, resembiling a corrugated sheet, contains R44(30) and R44(34) graph-set motifs (Etter et al., 1990) as its fundamental repeating units. It is observed that these rings are assembled through centrosymmetrically related pairs of molecules with no direct hydrogen bonding between them.

For general background to oxoquinoline derivatives, see: Baba (1997); Baba et al. (1997,1998); Koga et al. (1980); Qi et al. (2007). For a related structure, see: Czaun et al. (2002); For graph-set motifs, see: Etter et al. (1990).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecular aggregation down the a axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the molecular aggregation down the b axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.
Ethyl 4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline- 3-carboxylate top
Crystal data top
C21H25NO4F(000) = 760
Mr = 355.42Dx = 1.236 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5123 reflections
a = 10.8721 (4) Åθ = 2.0–30.0°
b = 16.1255 (7) ŵ = 0.09 mm1
c = 11.0856 (4) ÅT = 296 K
β = 100.682 (2)°Prism, yellow
V = 1909.83 (13) Å30.26 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3163 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and φ scansθmax = 24.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.93, Tmax = 0.95k = 1817
14667 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.048P)2 + 0.4479P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C21H25NO4V = 1909.83 (13) Å3
Mr = 355.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8721 (4) ŵ = 0.09 mm1
b = 16.1255 (7) ÅT = 296 K
c = 11.0856 (4) Å0.26 × 0.15 × 0.12 mm
β = 100.682 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3163 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2137 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.95Rint = 0.041
14667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
3163 reflectionsΔρmin = 0.15 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O9A1.01275 (14)0.04777 (9)0.71484 (12)0.0559 (4)
O6A1.21908 (13)0.29658 (10)0.59297 (11)0.0577 (4)
O9B0.84079 (15)0.01070 (9)0.60571 (13)0.0618 (4)
O8C0.72595 (19)0.37790 (12)0.71929 (17)0.0969 (7)
H8C0.70980.40090.78040.145*
N10.85621 (15)0.18610 (10)0.34959 (13)0.0444 (4)
H10.79900.19330.28570.053*
C71.03735 (16)0.23880 (11)0.47694 (14)0.0346 (4)
C20.95697 (17)0.23874 (11)0.36798 (15)0.0365 (4)
C81.01637 (17)0.18488 (12)0.58296 (15)0.0376 (5)
H81.09620.15830.61760.045*
C90.92188 (17)0.11633 (11)0.53752 (15)0.0368 (4)
C61.14473 (17)0.29327 (12)0.49410 (15)0.0394 (5)
C100.84203 (17)0.12208 (12)0.42851 (15)0.0384 (5)
C9A0.91749 (19)0.04511 (13)0.61867 (17)0.0433 (5)
C41.04698 (18)0.37054 (12)0.29899 (16)0.0435 (5)
C8B0.8704 (2)0.28573 (13)0.65967 (17)0.0509 (6)
H8B0.82600.28930.57960.061*
C30.97318 (19)0.29188 (13)0.26167 (15)0.0471 (5)
H3A0.89130.30680.21590.057*
H3B1.01570.26000.20750.057*
C51.16617 (19)0.34564 (14)0.38772 (17)0.0537 (6)
H5A1.21990.31540.34240.064*
H5B1.21030.39560.41960.064*
C8A0.97467 (19)0.23549 (12)0.68484 (15)0.0421 (5)
C10A0.7372 (2)0.06394 (14)0.37939 (18)0.0536 (6)
H10A0.77070.01010.36750.080*
H10B0.69240.08450.30240.080*
H10C0.68130.06000.43680.080*
C8F1.0398 (2)0.23138 (15)0.80510 (17)0.0608 (6)
H8F1.11110.19860.82410.073*
C8C0.8307 (2)0.33082 (14)0.7515 (2)0.0608 (6)
C9B1.0157 (2)0.01484 (16)0.8081 (2)0.0682 (7)
H91B1.02500.06940.77400.082*
H92B0.93840.01390.84000.082*
C4A1.0813 (2)0.41285 (15)0.18658 (18)0.0673 (7)
H41A1.12790.46250.21150.101*
H42A1.00630.42680.12980.101*
H43A1.13130.37590.14770.101*
C8E0.9988 (3)0.27565 (18)0.8960 (2)0.0777 (8)
H8E1.04220.27140.97630.093*
C8D0.8956 (3)0.32578 (17)0.8710 (2)0.0717 (8)
H8D0.86970.35590.93330.086*
C4B0.9704 (3)0.43009 (15)0.3613 (2)0.0796 (8)
H41B1.01810.47960.38440.119*
H42B0.95020.40430.43320.119*
H43B0.89470.44400.30560.119*
C9C1.1234 (3)0.0034 (2)0.9074 (2)0.0993 (11)
H91C1.12760.03740.97100.149*
H92C1.11300.05740.94070.149*
H93C1.19930.00220.87490.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O9A0.0679 (10)0.0550 (9)0.0430 (7)0.0030 (7)0.0057 (7)0.0178 (7)
O6A0.0501 (9)0.0749 (11)0.0390 (7)0.0106 (8)0.0157 (7)0.0038 (7)
O9B0.0681 (11)0.0521 (10)0.0667 (10)0.0076 (8)0.0164 (8)0.0124 (8)
O8C0.1049 (15)0.1028 (16)0.0858 (13)0.0344 (13)0.0246 (11)0.0337 (11)
N10.0460 (10)0.0493 (10)0.0313 (8)0.0099 (8)0.0099 (7)0.0028 (8)
C70.0365 (10)0.0380 (11)0.0272 (9)0.0017 (8)0.0006 (7)0.0014 (8)
C20.0402 (11)0.0380 (11)0.0286 (9)0.0024 (9)0.0005 (8)0.0028 (8)
C80.0390 (11)0.0427 (11)0.0282 (9)0.0027 (9)0.0011 (8)0.0036 (8)
C90.0438 (11)0.0356 (11)0.0325 (9)0.0021 (9)0.0107 (8)0.0012 (8)
C60.0375 (11)0.0456 (12)0.0312 (9)0.0008 (9)0.0034 (8)0.0018 (9)
C100.0438 (11)0.0374 (11)0.0338 (9)0.0024 (9)0.0068 (8)0.0046 (9)
C9A0.0479 (12)0.0432 (12)0.0418 (11)0.0067 (10)0.0160 (10)0.0002 (9)
C40.0519 (12)0.0440 (12)0.0312 (9)0.0051 (10)0.0009 (9)0.0020 (9)
C8B0.0619 (14)0.0548 (14)0.0351 (10)0.0008 (11)0.0063 (10)0.0091 (10)
C30.0542 (13)0.0540 (13)0.0282 (9)0.0119 (10)0.0052 (9)0.0032 (9)
C50.0508 (13)0.0627 (14)0.0429 (11)0.0151 (11)0.0037 (10)0.0060 (10)
C8A0.0538 (13)0.0429 (12)0.0285 (9)0.0071 (10)0.0046 (8)0.0019 (8)
C10A0.0579 (14)0.0541 (14)0.0472 (11)0.0153 (11)0.0058 (10)0.0075 (10)
C8F0.0772 (16)0.0680 (15)0.0326 (11)0.0053 (13)0.0016 (10)0.0034 (11)
C8C0.0738 (16)0.0540 (15)0.0586 (14)0.0031 (13)0.0229 (12)0.0155 (12)
C9B0.0835 (18)0.0674 (16)0.0571 (13)0.0206 (13)0.0220 (13)0.0296 (12)
C4A0.0850 (18)0.0689 (16)0.0438 (12)0.0258 (14)0.0008 (11)0.0110 (11)
C8E0.109 (2)0.089 (2)0.0303 (11)0.0111 (18)0.0015 (13)0.0135 (12)
C8D0.101 (2)0.0724 (18)0.0468 (13)0.0194 (16)0.0261 (14)0.0260 (13)
C4B0.117 (2)0.0556 (16)0.0675 (15)0.0266 (15)0.0204 (15)0.0067 (13)
C9C0.0805 (19)0.148 (3)0.0679 (16)0.0255 (19)0.0092 (15)0.0560 (19)
Geometric parameters (Å, º) top
O9A—C9A1.342 (2)C3—H3A0.97
O9A—C9B1.442 (2)C3—H3B0.97
O6A—C61.237 (2)C5—H5A0.97
O9B—C9A1.217 (2)C5—H5B0.97
O8C—C8C1.361 (3)C8A—C8F1.390 (3)
O8C—H8C0.82C10A—H10A0.96
N1—C21.371 (2)C10A—H10B0.96
N1—C101.380 (2)C10A—H10C0.96
N1—H10.86C8F—C8E1.374 (3)
C7—C21.353 (2)C8F—H8F0.93
C7—C61.445 (3)C8C—C8D1.383 (3)
C7—C81.513 (2)C9B—C9C1.480 (3)
C2—C31.494 (3)C9B—H91B0.97
C8—C91.529 (3)C9B—H92B0.97
C8—C8A1.529 (3)C4A—H41A0.96
C8—H80.98C4A—H42A0.96
C9—C101.354 (2)C4A—H43A0.96
C9—C9A1.465 (3)C8E—C8D1.369 (4)
C6—C51.503 (3)C8E—H8E0.93
C10—C10A1.498 (3)C8D—H8D0.93
C4—C31.517 (3)C4B—H41B0.96
C4—C4B1.518 (3)C4B—H42B0.96
C4—C4A1.526 (3)C4B—H43B0.96
C4—C51.528 (3)C9C—H91C0.96
C8B—C8A1.379 (3)C9C—H92C0.96
C8B—C8C1.383 (3)C9C—H93C0.96
C8B—H8B0.93
C9A—O9A—C9B117.31 (17)C4—C5—H5B108.6
C8C—O8C—H8C109.5H5A—C5—H5B107.6
C2—N1—C10123.30 (14)C8B—C8A—C8F118.38 (19)
C2—N1—H1118.4C8B—C8A—C8120.62 (15)
C10—N1—H1118.4C8F—C8A—C8120.99 (19)
C2—C7—C6119.35 (16)C10—C10A—H10A109.5
C2—C7—C8121.84 (17)C10—C10A—H10B109.5
C6—C7—C8118.79 (14)H10A—C10A—H10B109.5
C7—C2—N1119.95 (17)C10—C10A—H10C109.5
C7—C2—C3123.56 (17)H10A—C10A—H10C109.5
N1—C2—C3116.47 (14)H10B—C10A—H10C109.5
C7—C8—C9110.38 (14)C8E—C8F—C8A120.1 (2)
C7—C8—C8A112.04 (15)C8E—C8F—H8F120.0
C9—C8—C8A110.86 (15)C8A—C8F—H8F120.0
C7—C8—H8107.8O8C—C8C—C8B117.4 (2)
C9—C8—H8107.8O8C—C8C—C8D122.5 (2)
C8A—C8—H8107.8C8B—C8C—C8D120.1 (2)
C10—C9—C9A120.87 (17)O9A—C9B—C9C107.7 (2)
C10—C9—C8121.66 (16)O9A—C9B—H91B110.2
C9A—C9—C8117.43 (15)C9C—C9B—H91B110.2
O6A—C6—C7121.49 (17)O9A—C9B—H92B110.2
O6A—C6—C5120.01 (17)C9C—C9B—H92B110.2
C7—C6—C5118.50 (14)H91B—C9B—H92B108.5
C9—C10—N1119.23 (16)C4—C4A—H41A109.5
C9—C10—C10A126.89 (18)C4—C4A—H42A109.5
N1—C10—C10A113.86 (15)H41A—C4A—H42A109.5
O9B—C9A—O9A121.89 (18)C4—C4A—H43A109.5
O9B—C9A—C9127.35 (18)H41A—C4A—H43A109.5
O9A—C9A—C9110.76 (17)H42A—C4A—H43A109.5
C3—C4—C4B110.26 (19)C8D—C8E—C8F121.6 (2)
C3—C4—C4A110.37 (15)C8D—C8E—H8E119.2
C4B—C4—C4A109.04 (18)C8F—C8E—H8E119.2
C3—C4—C5107.36 (16)C8E—C8D—C8C118.8 (2)
C4B—C4—C5110.14 (17)C8E—C8D—H8D120.6
C4A—C4—C5109.66 (17)C8C—C8D—H8D120.6
C8A—C8B—C8C121.09 (19)C4—C4B—H41B109.5
C8A—C8B—H8B119.5C4—C4B—H42B109.5
C8C—C8B—H8B119.5H41B—C4B—H42B109.5
C2—C3—C4113.47 (14)C4—C4B—H43B109.5
C2—C3—H3A108.9H41B—C4B—H43B109.5
C4—C3—H3A108.9H42B—C4B—H43B109.5
C2—C3—H3B108.9C9B—C9C—H91C109.5
C4—C3—H3B108.9C9B—C9C—H92C109.5
H3A—C3—H3B107.7H91C—C9C—H92C109.5
C6—C5—C4114.60 (16)C9B—C9C—H93C109.5
C6—C5—H5A108.6H91C—C9C—H93C109.5
C4—C5—H5A108.6H92C—C9C—H93C109.5
C6—C5—H5B108.6
C6—C7—C2—N1178.61 (17)C10—C9—C9A—O9A173.47 (17)
C8—C7—C2—N13.0 (3)C8—C9—C9A—O9A8.8 (2)
C6—C7—C2—C30.7 (3)C7—C2—C3—C426.3 (3)
C8—C7—C2—C3179.07 (17)N1—C2—C3—C4155.73 (17)
C10—N1—C2—C711.5 (3)C4B—C4—C3—C270.4 (2)
C10—N1—C2—C3166.61 (17)C4A—C4—C3—C2169.08 (18)
C2—C7—C8—C917.0 (2)C5—C4—C3—C249.6 (2)
C6—C7—C8—C9164.56 (16)O6A—C6—C5—C4150.90 (19)
C2—C7—C8—C8A107.0 (2)C7—C6—C5—C430.1 (3)
C6—C7—C8—C8A71.4 (2)C3—C4—C5—C652.3 (2)
C7—C8—C9—C1019.7 (2)C4B—C4—C5—C667.8 (2)
C8A—C8—C9—C10105.08 (19)C4A—C4—C5—C6172.20 (18)
C7—C8—C9—C9A162.58 (16)C8C—C8B—C8A—C8F0.2 (3)
C8A—C8—C9—C9A72.7 (2)C8C—C8B—C8A—C8179.03 (19)
C2—C7—C6—O6A178.46 (18)C7—C8—C8A—C8B55.7 (2)
C8—C7—C6—O6A0.0 (3)C9—C8—C8A—C8B68.1 (2)
C2—C7—C6—C52.5 (3)C7—C8—C8A—C8F125.0 (2)
C8—C7—C6—C5179.01 (17)C9—C8—C8A—C8F111.2 (2)
C9A—C9—C10—N1174.18 (17)C8B—C8A—C8F—C8E1.0 (3)
C8—C9—C10—N18.1 (3)C8—C8A—C8F—C8E178.3 (2)
C9A—C9—C10—C10A4.3 (3)C8A—C8B—C8C—O8C179.0 (2)
C8—C9—C10—C10A173.38 (18)C8A—C8B—C8C—C8D0.2 (4)
C2—N1—C10—C98.7 (3)C9A—O9A—C9B—C9C176.61 (19)
C2—N1—C10—C10A169.93 (18)C8A—C8F—C8E—C8D1.3 (4)
C9B—O9A—C9A—O9B4.7 (3)C8F—C8E—C8D—C8C0.8 (4)
C9B—O9A—C9A—C9175.31 (17)O8C—C8C—C8D—C8E178.7 (2)
C10—C9—C9A—O9B6.5 (3)C8B—C8C—C8D—C8E0.0 (4)
C8—C9—C9A—O9B171.30 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8C—H8C···O9Bi0.822.052.835 (2)162
N1—H1···O6Aii0.862.162.970 (2)157
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO4
Mr355.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.8721 (4), 16.1255 (7), 11.0856 (4)
β (°) 100.682 (2)
V3)1909.83 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.93, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
14667, 3163, 2137
Rint0.041
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.02
No. of reflections3163
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8C—H8C···O9Bi0.822.052.835 (2)162
N1—H1···O6Aii0.862.162.970 (2)157
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.
 

References

First citationBaba, M. (1997). Antivir. Res. 33, 141–152.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBaba, M., Okamoto, M., Kawamura, M., Makino, M., Higashida, T., Takashi, T., Kimura, Y., Ikeuchi, T., Tetsuka, T. & Okamoto, T. (1998). Mol. Pharm. 53, 1097–1103.  CAS Google Scholar
First citationBaba, M., Okamoto, M., Makino, M., Kimura, Y., Ikeuchi, T., Sakaguchi, T. & Okamoto, T. (1997). Antimicrob. Agents Chemother. 41, 1250–1255.  CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzaun, M., Ganszky, I., Speier, G. & Parkanyi, L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 379–380.  CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoga, H., Itoh, A., murayama, S., Suzue, S. & Irikura, T. (1980). J. Med. Chem. 23, 1358–1363.  CrossRef CAS PubMed Web of Science Google Scholar
First citationQi, R., Fetzner, S. & Oakley, A. J. (2007). Acta Cryst. F63, 378–381.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds