organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(E)-1-methyl-4-styrylpyridinium] 4-chloro­benzene­sulfonate iodide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 19 September 2009; accepted 25 September 2009; online 3 October 2009)

In the title compound, 2C14H14N+·C6H4ClO3S·I, each cation exists in an E configuration with respect to the ethenyl bond. The dihedral angle between the pyridinium and benzene rings is 3.98 (6)° in one of the cations and 9.88 (7)° in the other. The two cations are arranged in an anti­parallel manner with ππ inter­actions between pyridinium and benzene rings [centroid–centroid distance = 3.5805 (8) Å]. The benzene ring of the anion makes dihedral angles of 61.20 (6) and 64.25 (6)° with the pyridinium rings of the two cations. In the crystal, the cations are stacked in an anti­parallel manner along the a axis, while the anions are linked into chains along the same direction. The ions are linked into a three-dimensional network by C—H⋯I and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. The crystal under investigation was an inversion twin, with a ratio of 61.7 (5):38.3 (5) for the two components.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background to non-linear optical materials, see: Lin et al. (2002[Lin, Y. Y., Rajesh, N. P., Raghavan, P., Ramasamy, P. & Huang, Y. C. (2002). Mater. Lett. 56, 1074-1077.]); Prasad et al. (1991[Prasad, P. N. & Williams, D. J. (1991). Introduction to Nonlinear Optical Effects in Molecules and Polymers. New York: John Wiley.]). For related structures, see: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Chantrapromma et al. (2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.]; 2009[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144-o1145.]); Fun et al. (2009a[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009a). Acta Cryst. E65, o1554-o1555.],b[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009b). Acta Cryst. E65, o1934-o1935.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C14H14N+·C6H4ClO3S·I

  • Mr = 711.04

  • Monoclinic, P 21

  • a = 8.1103 (1) Å

  • b = 20.5054 (3) Å

  • c = 9.5549 (2) Å

  • β = 101.799 (1)°

  • V = 1555.45 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 100 K

  • 0.52 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.569, Tmax = 0.771

  • 30676 measured reflections

  • 13195 independent reflections

  • 12932 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.05

  • 13195 reflections

  • 382 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6221 Friedel pairs

  • Flack parameter: 0.383 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.36 3.2818 (17) 171
C2B—H2BA⋯O1ii 0.93 2.39 3.2829 (17) 161
C10B—H10B⋯O2iii 0.93 2.54 3.4711 (16) 178
C11A—H11A⋯O2ii 0.93 2.55 3.3109 (16) 139
C7B—H7BA⋯O2iii 0.93 2.53 3.4514 (16) 171
C13A—H13A⋯O3iv 0.93 2.42 2.9706 (16) 118
C14A—H14A⋯I1v 0.96 2.93 3.8718 (13) 168
C14A—H14C⋯O1ii 0.96 2.52 3.1591 (16) 124
C14A—H14BCg2i 0.96 2.71 3.5804 (15) 152
C14B—H14ECg1vi 0.96 2.82 3.5551 (16) 134
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z]; (v) [-x+2, y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z. Cg1 and Cg2 are centroids of the C1A--C6A and C1B--C6B rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There is a considerable interest in the synthesis of new materials with large second-order optical nonlinearities. Such materials require molecular first hyperpolarizability and orientation in a noncentrosymmetric arrangement (Lin et al., 2002; Prasad et al. 1991). During the course of our systematic studies of organic NLO materials, we have previously synthesized and reported crystal structures of a number of pyridinium derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2007, 2009; Fun et al., 2009a,b). Herein we report the crystal structure of the title pyridinium derivative which crystallizes in noncentrosymmetric P21 space group and exhibits second-order nonlinear optical properties.

The title molecule consists of two C14H14N+ (A and B) cations, one C6H4ClO3S- anion and one I- ion (Fig. 1); the two cations exist in an E configuration with respect to the C7C8 ethenyl bond, with a C6–C7–C8–C9 torsion angle of 179.94 (12)° in A and 178.99 (12)° in B. One cation [A] is almost planar while the other [B] is slightly twisted; the dihedral angle between the pyridinium and benzene rings is 3.98 (6)° in the cation A and 9.88 (7)° in B. The orientation of the anion with respect to cations A and B is indicated by dihedral angles between the benzene ring of the anion and the pyridinium rings of the cations A and B of 61.20 (6) and 64.25 (6)°, respectively. Bond distances in both cations and anion have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Fun et al., 2009a,b).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations are stacked in an antiparallel manner along the a axis while the anions are linked into chains along the same direction. The cations are linked to the interstitial I- ions by C—H···I weak interactions and are linked to anionic chains through C—H···O weak interactions (Table 1) forming a three-dimensional network. The crystal structure is further stabilized by C—H···π (Table 1) interactions, and ππ interactions with a Cg1···Cg3 distance of 3.5805 (8) Å (Cg1 and Cg3 are centroids of the C1A–C6A and C9B–C13B/N1B rings respectively. In addition, the crystal structure also shows short C···O [2.9706 (16) Å] and Cl···I [3.5917 (3) Å] contacts.

Related literature top

For bond-length data, see: Allen et al. (1987). For general background to non-linear optical materials, see: Lin et al. (2002); Prasad et al. (1991). For related structures, see: Chanawanno et al. (2008); Chantrapromma et al. (2007; 2009); Fun et al. (2009a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986). Cg1 and Cg2 are centroids of the C1A--C6A and C1B--C6B rings, respectively.

Experimental top

(E)-1-Methyl-4-styrylpyridinium iodide (compound A) was prepared by mixing 1:1:1 molar ratio solutions of 1,4-dimethylpyridinium iodide (2 g, 8.5 mmol), benzaldehyde (0.86 ml, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The yellow solid which formed was filtered and washed with diethyl ether. The title compound was prepared by mixing the compound A (2.75 g, 8.5 mmol) and silver(I) 4-chlorobenzenesulfonate (2.54 g, 8.5 mmol) (Chantrapromma et al., 2007) in methanol (100 ml). The mixture solution was stirred for 30 min, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as a yellow solid. Yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from a methanol solution by slow evaporation at room temperature over a few weeks (m.p. 468-469 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.69 Å from I1 and the deepest hole is located at 1.14 Å from I1. The crystal under investigation was an inversion twin, with a ratio of 61.7 (5):38.3 (5) for the two components.

Structure description top

There is a considerable interest in the synthesis of new materials with large second-order optical nonlinearities. Such materials require molecular first hyperpolarizability and orientation in a noncentrosymmetric arrangement (Lin et al., 2002; Prasad et al. 1991). During the course of our systematic studies of organic NLO materials, we have previously synthesized and reported crystal structures of a number of pyridinium derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2007, 2009; Fun et al., 2009a,b). Herein we report the crystal structure of the title pyridinium derivative which crystallizes in noncentrosymmetric P21 space group and exhibits second-order nonlinear optical properties.

The title molecule consists of two C14H14N+ (A and B) cations, one C6H4ClO3S- anion and one I- ion (Fig. 1); the two cations exist in an E configuration with respect to the C7C8 ethenyl bond, with a C6–C7–C8–C9 torsion angle of 179.94 (12)° in A and 178.99 (12)° in B. One cation [A] is almost planar while the other [B] is slightly twisted; the dihedral angle between the pyridinium and benzene rings is 3.98 (6)° in the cation A and 9.88 (7)° in B. The orientation of the anion with respect to cations A and B is indicated by dihedral angles between the benzene ring of the anion and the pyridinium rings of the cations A and B of 61.20 (6) and 64.25 (6)°, respectively. Bond distances in both cations and anion have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Fun et al., 2009a,b).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations are stacked in an antiparallel manner along the a axis while the anions are linked into chains along the same direction. The cations are linked to the interstitial I- ions by C—H···I weak interactions and are linked to anionic chains through C—H···O weak interactions (Table 1) forming a three-dimensional network. The crystal structure is further stabilized by C—H···π (Table 1) interactions, and ππ interactions with a Cg1···Cg3 distance of 3.5805 (8) Å (Cg1 and Cg3 are centroids of the C1A–C6A and C9B–C13B/N1B rings respectively. In addition, the crystal structure also shows short C···O [2.9706 (16) Å] and Cl···I [3.5917 (3) Å] contacts.

For bond-length data, see: Allen et al. (1987). For general background to non-linear optical materials, see: Lin et al. (2002); Prasad et al. (1991). For related structures, see: Chanawanno et al. (2008); Chantrapromma et al. (2007; 2009); Fun et al. (2009a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986). Cg1 and Cg2 are centroids of the C1A--C6A and C1B--C6B rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. C—H···O and C—H···I interactions are shown as dashed lines.
Bis[(E)-1-methyl-4-styrylpyridinium] 4-chlorobenzenesulfonate iodide top
Crystal data top
2C14H14N+·C6H4ClO3S·IF(000) = 720
Mr = 711.04Dx = 1.518 Mg m3
Monoclinic, P21Melting point = 468–469 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.1103 (1) ÅCell parameters from 13195 reflections
b = 20.5054 (3) Åθ = 2.0–35.0°
c = 9.5549 (2) ŵ = 1.22 mm1
β = 101.799 (1)°T = 100 K
V = 1555.45 (4) Å3Needle, yellow
Z = 20.52 × 0.23 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
13195 independent reflections
Radiation source: sealed tube12932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 35.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1113
Tmin = 0.569, Tmax = 0.771k = 3233
30676 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.205P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
13195 reflectionsΔρmax = 1.12 e Å3
382 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 6221 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.383 (5)
Crystal data top
2C14H14N+·C6H4ClO3S·IV = 1555.45 (4) Å3
Mr = 711.04Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.1103 (1) ŵ = 1.22 mm1
b = 20.5054 (3) ÅT = 100 K
c = 9.5549 (2) Å0.52 × 0.23 × 0.22 mm
β = 101.799 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
13195 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
12932 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.771Rint = 0.020
30676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049Δρmax = 1.12 e Å3
S = 1.05Δρmin = 0.44 e Å3
13195 reflectionsAbsolute structure: Flack (1983), 6221 Friedel pairs
382 parametersAbsolute structure parameter: 0.383 (5)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.971569 (9)0.060603 (4)0.651289 (7)0.01701 (2)
Cl10.67341 (4)0.547963 (16)0.28511 (4)0.02196 (6)
S10.03835 (4)0.730613 (14)0.12930 (3)0.01312 (5)
O10.06242 (12)0.77622 (5)0.24883 (10)0.01933 (17)
O20.10740 (12)0.68847 (5)0.12227 (11)0.02079 (18)
O30.04572 (13)0.76183 (5)0.00555 (10)0.02012 (18)
C10.37016 (15)0.69739 (6)0.13653 (14)0.0164 (2)
H1A0.37810.73740.09250.020*
C20.51192 (16)0.65747 (6)0.17238 (14)0.0177 (2)
H2A0.61460.67040.15240.021*
C30.49665 (16)0.59796 (6)0.23854 (13)0.0166 (2)
C40.34485 (16)0.57690 (6)0.26735 (14)0.0178 (2)
H4A0.33710.53670.31040.021*
C50.20354 (15)0.61712 (6)0.23060 (13)0.0162 (2)
H5A0.10060.60360.24890.019*
C60.21641 (14)0.67745 (6)0.16659 (12)0.01420 (19)
N1A1.07500 (13)0.22845 (5)0.46320 (11)0.01458 (17)
C1A0.48773 (16)0.01117 (6)0.08410 (13)0.0167 (2)
H1AA0.50100.02660.03370.020*
C2A0.37605 (13)0.05929 (10)0.02004 (11)0.01769 (17)
H2AA0.31560.05350.07290.021*
C3A0.35455 (17)0.11606 (7)0.09470 (15)0.0190 (2)
H3AA0.27950.14800.05200.023*
C4A0.44606 (18)0.12468 (7)0.23355 (15)0.0204 (2)
H4AA0.43190.16250.28360.024*
C5A0.55848 (17)0.07700 (6)0.29767 (14)0.0182 (2)
H5AA0.61970.08340.39010.022*
C6A0.58075 (15)0.01937 (6)0.22463 (13)0.01479 (19)
C7A0.70002 (15)0.02915 (6)0.29811 (13)0.01519 (19)
H7AA0.75710.01880.39010.018*
C8A0.73513 (15)0.08732 (6)0.24553 (13)0.01525 (19)
H8AA0.67900.09830.15360.018*
C9A0.85493 (14)0.13424 (6)0.32263 (12)0.01350 (18)
C10A0.95355 (16)0.12280 (6)0.45995 (12)0.01550 (19)
H10A0.94690.08290.50490.019*
C11A1.05955 (16)0.17068 (6)0.52732 (13)0.0160 (2)
H11A1.12190.16310.61890.019*
C12A0.98620 (16)0.24042 (6)0.32967 (13)0.0160 (2)
H12A0.99980.27980.28530.019*
C13A0.87579 (15)0.19443 (6)0.25929 (13)0.01551 (19)
H13A0.81410.20350.16820.019*
C14A1.19046 (16)0.27831 (6)0.53982 (14)0.0181 (2)
H14A1.15090.32090.50720.027*
H14B1.30130.27160.52150.027*
H14C1.19430.27480.64060.027*
N1B0.04690 (13)0.05269 (6)0.10397 (12)0.0163 (2)
C1B0.52680 (16)0.20510 (7)0.42045 (13)0.0170 (2)
H1BA0.53330.16690.47380.020*
C2B0.62871 (17)0.25784 (7)0.47254 (14)0.0197 (2)
H2BA0.70300.25470.56040.024*
C3B0.61999 (19)0.31539 (7)0.39368 (16)0.0242 (3)
H3BA0.68790.35070.42890.029*
C4B0.5092 (2)0.31970 (8)0.26224 (18)0.0299 (3)
H4BA0.50330.35800.20930.036*
C5B0.4076 (2)0.26720 (7)0.20969 (16)0.0251 (3)
H5BA0.33410.27060.12150.030*
C6B0.41412 (15)0.20902 (6)0.28785 (13)0.0160 (2)
C7B0.30241 (15)0.15565 (6)0.22664 (13)0.0163 (2)
H7BA0.23870.16200.13510.020*
C8B0.28271 (15)0.09829 (6)0.28959 (13)0.0160 (2)
H8BA0.34670.09070.38060.019*
C9B0.16733 (15)0.04727 (6)0.22408 (13)0.01487 (19)
C10B0.07550 (16)0.05083 (6)0.08199 (13)0.0167 (2)
H10B0.08610.08720.02630.020*
C11B0.02934 (16)0.00070 (6)0.02581 (13)0.0173 (2)
H11B0.08950.00360.06790.021*
C12B0.03766 (14)0.05758 (10)0.24086 (12)0.01881 (19)
H12B0.02370.09440.29410.023*
C13B0.14428 (16)0.00860 (6)0.30211 (13)0.0178 (2)
H13B0.20170.01260.39650.021*
C14B0.15834 (18)0.10610 (7)0.03712 (16)0.0211 (2)
H14D0.12100.12150.04600.032*
H14E0.27170.09020.00980.032*
H14F0.15460.14120.10420.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01966 (3)0.01429 (3)0.01623 (3)0.00068 (3)0.00170 (2)0.00045 (3)
Cl10.01781 (12)0.01998 (13)0.02531 (14)0.00622 (10)0.00208 (10)0.00453 (11)
S10.01285 (11)0.01510 (12)0.01106 (10)0.00126 (9)0.00161 (8)0.00187 (9)
O10.0200 (4)0.0214 (4)0.0153 (4)0.0047 (3)0.0005 (3)0.0054 (3)
O20.0129 (4)0.0241 (5)0.0247 (5)0.0027 (3)0.0023 (3)0.0021 (4)
O30.0232 (4)0.0231 (5)0.0149 (4)0.0065 (4)0.0058 (3)0.0023 (3)
C10.0142 (4)0.0151 (5)0.0202 (5)0.0006 (4)0.0041 (4)0.0008 (4)
C20.0135 (4)0.0182 (5)0.0211 (5)0.0002 (4)0.0028 (4)0.0024 (4)
C30.0152 (5)0.0163 (5)0.0168 (5)0.0029 (4)0.0005 (4)0.0044 (4)
C40.0185 (5)0.0150 (5)0.0189 (5)0.0005 (4)0.0012 (4)0.0005 (4)
C50.0147 (5)0.0157 (5)0.0180 (5)0.0000 (4)0.0030 (4)0.0011 (4)
C60.0120 (4)0.0151 (5)0.0152 (5)0.0007 (3)0.0021 (3)0.0024 (4)
N1A0.0161 (4)0.0126 (4)0.0150 (4)0.0004 (3)0.0032 (3)0.0001 (3)
C1A0.0178 (5)0.0156 (5)0.0163 (5)0.0002 (4)0.0026 (4)0.0013 (4)
C2A0.0180 (4)0.0169 (4)0.0172 (4)0.0002 (6)0.0014 (3)0.0014 (6)
C3A0.0186 (5)0.0161 (5)0.0219 (5)0.0018 (4)0.0028 (4)0.0014 (4)
C4A0.0227 (6)0.0161 (5)0.0220 (6)0.0035 (4)0.0035 (4)0.0028 (4)
C5A0.0196 (5)0.0159 (5)0.0184 (5)0.0002 (4)0.0021 (4)0.0018 (4)
C6A0.0139 (4)0.0141 (5)0.0162 (5)0.0001 (4)0.0028 (4)0.0000 (4)
C7A0.0151 (5)0.0144 (5)0.0157 (5)0.0006 (4)0.0023 (4)0.0002 (4)
C8A0.0147 (4)0.0154 (5)0.0148 (4)0.0002 (4)0.0011 (4)0.0001 (4)
C9A0.0142 (4)0.0140 (5)0.0130 (4)0.0005 (3)0.0046 (3)0.0006 (3)
C10A0.0186 (5)0.0137 (5)0.0139 (4)0.0005 (4)0.0026 (4)0.0015 (4)
C11A0.0200 (5)0.0146 (5)0.0130 (4)0.0004 (4)0.0025 (4)0.0014 (4)
C12A0.0179 (5)0.0148 (5)0.0153 (5)0.0001 (4)0.0037 (4)0.0026 (4)
C13A0.0166 (5)0.0153 (5)0.0144 (4)0.0004 (4)0.0025 (4)0.0030 (4)
C14A0.0182 (5)0.0157 (5)0.0205 (5)0.0032 (4)0.0040 (4)0.0026 (4)
N1B0.0153 (4)0.0137 (6)0.0201 (4)0.0012 (3)0.0042 (3)0.0024 (4)
C1B0.0158 (5)0.0200 (5)0.0145 (5)0.0018 (4)0.0016 (4)0.0005 (4)
C2B0.0157 (5)0.0248 (6)0.0179 (5)0.0003 (4)0.0020 (4)0.0047 (4)
C3B0.0228 (6)0.0229 (6)0.0260 (6)0.0064 (5)0.0032 (5)0.0038 (5)
C4B0.0351 (8)0.0214 (7)0.0297 (7)0.0089 (6)0.0018 (6)0.0058 (5)
C5B0.0270 (7)0.0234 (6)0.0214 (6)0.0048 (5)0.0032 (5)0.0053 (5)
C6B0.0145 (5)0.0178 (5)0.0153 (5)0.0007 (4)0.0021 (4)0.0000 (4)
C7B0.0152 (4)0.0181 (5)0.0146 (4)0.0003 (4)0.0009 (4)0.0004 (4)
C8B0.0149 (5)0.0175 (5)0.0150 (5)0.0007 (4)0.0018 (4)0.0004 (4)
C9B0.0144 (4)0.0149 (5)0.0154 (5)0.0013 (4)0.0033 (4)0.0001 (4)
C10B0.0184 (5)0.0161 (5)0.0153 (5)0.0004 (4)0.0025 (4)0.0004 (4)
C11B0.0185 (5)0.0165 (5)0.0163 (5)0.0004 (4)0.0023 (4)0.0008 (4)
C12B0.0196 (4)0.0164 (5)0.0203 (4)0.0006 (6)0.0038 (3)0.0038 (6)
C13B0.0191 (5)0.0175 (5)0.0163 (5)0.0008 (4)0.0028 (4)0.0015 (4)
C14B0.0206 (5)0.0154 (5)0.0267 (6)0.0006 (4)0.0032 (5)0.0049 (4)
Geometric parameters (Å, º) top
Cl1—C31.7445 (13)C11A—H11A0.93
S1—O31.4509 (10)C12A—C13A1.3775 (18)
S1—O21.4547 (10)C12A—H12A0.93
S1—O11.4581 (10)C13A—H13A0.93
S1—C61.7861 (12)C14A—H14A0.96
C1—C21.3958 (18)C14A—H14B0.96
C1—C61.3968 (17)C14A—H14C0.96
C1—H1A0.93N1B—C11B1.3490 (18)
C2—C31.3914 (19)N1B—C12B1.3507 (15)
C2—H2A0.93N1B—C14B1.4793 (17)
C3—C41.3844 (19)C1B—C2B1.3901 (19)
C4—C51.3972 (18)C1B—C6B1.4047 (16)
C4—H4A0.93C1B—H1BA0.93
C5—C61.3935 (18)C2B—C3B1.394 (2)
C5—H5A0.93C2B—H2BA0.93
N1A—C11A1.3512 (16)C3B—C4B1.389 (2)
N1A—C12A1.3531 (15)C3B—H3BA0.93
N1A—C14A1.4758 (16)C4B—C5B1.386 (2)
C1A—C2A1.394 (2)C4B—H4BA0.93
C1A—C6A1.4093 (17)C5B—C6B1.4026 (19)
C1A—H1AA0.93C5B—H5BA0.93
C2A—C3A1.395 (2)C6B—C7B1.4643 (18)
C2A—H2AA0.93C7B—C8B1.3454 (18)
C3A—C4A1.3927 (19)C7B—H7BA0.93
C3A—H3AA0.93C8B—C9B1.4568 (17)
C4A—C5A1.3907 (18)C8B—H8BA0.93
C4A—H4AA0.93C9B—C13B1.4002 (18)
C5A—C6A1.4027 (18)C9B—C10B1.4105 (17)
C5A—H5AA0.93C10B—C11B1.3716 (18)
C6A—C7A1.4632 (17)C10B—H10B0.93
C7A—C8A1.3470 (17)C11B—H11B0.93
C7A—H7AA0.93C12B—C13B1.375 (2)
C8A—C9A1.4559 (16)C12B—H12B0.93
C8A—H8AA0.93C13B—H13B0.93
C9A—C13A1.4000 (17)C14B—H14D0.96
C9A—C10A1.4096 (16)C14B—H14E0.96
C10A—C11A1.3751 (17)C14B—H14F0.96
C10A—H10A0.93
O3—S1—O2113.69 (6)N1A—C12A—C13A120.24 (11)
O3—S1—O1112.92 (6)N1A—C12A—H12A119.9
O2—S1—O1113.24 (6)C13A—C12A—H12A119.9
O3—S1—C6105.54 (6)C12A—C13A—C9A121.10 (11)
O2—S1—C6105.24 (6)C12A—C13A—H13A119.4
O1—S1—C6105.18 (5)C9A—C13A—H13A119.4
C2—C1—C6120.20 (12)N1A—C14A—H14A109.5
C2—C1—H1A119.9N1A—C14A—H14B109.5
C6—C1—H1A119.9H14A—C14A—H14B109.5
C3—C2—C1118.72 (12)N1A—C14A—H14C109.5
C3—C2—H2A120.6H14A—C14A—H14C109.5
C1—C2—H2A120.6H14B—C14A—H14C109.5
C4—C3—C2121.96 (12)C11B—N1B—C12B120.41 (12)
C4—C3—Cl1118.93 (10)C11B—N1B—C14B119.09 (11)
C2—C3—Cl1119.10 (10)C12B—N1B—C14B120.50 (12)
C3—C4—C5118.88 (12)C2B—C1B—C6B120.52 (12)
C3—C4—H4A120.6C2B—C1B—H1BA119.7
C5—C4—H4A120.6C6B—C1B—H1BA119.7
C6—C5—C4120.21 (12)C1B—C2B—C3B120.29 (12)
C6—C5—H5A119.9C1B—C2B—H2BA119.9
C4—C5—H5A119.9C3B—C2B—H2BA119.9
C5—C6—C1120.01 (11)C4B—C3B—C2B119.62 (13)
C5—C6—S1119.96 (9)C4B—C3B—H3BA120.2
C1—C6—S1119.98 (9)C2B—C3B—H3BA120.2
C11A—N1A—C12A120.38 (11)C5B—C4B—C3B120.32 (14)
C11A—N1A—C14A119.39 (10)C5B—C4B—H4BA119.8
C12A—N1A—C14A120.23 (10)C3B—C4B—H4BA119.8
C2A—C1A—C6A120.48 (12)C4B—C5B—C6B120.84 (13)
C2A—C1A—H1AA119.8C4B—C5B—H5BA119.6
C6A—C1A—H1AA119.8C6B—C5B—H5BA119.6
C1A—C2A—C3A120.29 (10)C5B—C6B—C1B118.41 (12)
C1A—C2A—H2AA119.9C5B—C6B—C7B118.04 (11)
C3A—C2A—H2AA119.9C1B—C6B—C7B123.55 (11)
C4A—C3A—C2A119.68 (12)C8B—C7B—C6B126.53 (11)
C4A—C3A—H3AA120.2C8B—C7B—H7BA116.7
C2A—C3A—H3AA120.2C6B—C7B—H7BA116.7
C5A—C4A—C3A120.27 (12)C7B—C8B—C9B124.07 (11)
C5A—C4A—H4AA119.9C7B—C8B—H8BA118.0
C3A—C4A—H4AA119.9C9B—C8B—H8BA118.0
C4A—C5A—C6A120.84 (12)C13B—C9B—C10B116.95 (11)
C4A—C5A—H5AA119.6C13B—C9B—C8B120.18 (11)
C6A—C5A—H5AA119.6C10B—C9B—C8B122.87 (11)
C5A—C6A—C1A118.44 (11)C11B—C10B—C9B120.06 (12)
C5A—C6A—C7A118.29 (11)C11B—C10B—H10B120.0
C1A—C6A—C7A123.27 (11)C9B—C10B—H10B120.0
C8A—C7A—C6A126.34 (11)N1B—C11B—C10B121.25 (11)
C8A—C7A—H7AA116.8N1B—C11B—H11B119.4
C6A—C7A—H7AA116.8C10B—C11B—H11B119.4
C7A—C8A—C9A124.51 (11)N1B—C12B—C13B120.56 (14)
C7A—C8A—H8AA117.7N1B—C12B—H12B119.7
C9A—C8A—H8AA117.7C13B—C12B—H12B119.7
C13A—C9A—C10A116.96 (11)C12B—C13B—C9B120.77 (12)
C13A—C9A—C8A119.41 (10)C12B—C13B—H13B119.6
C10A—C9A—C8A123.64 (11)C9B—C13B—H13B119.6
C11A—C10A—C9A119.89 (11)N1B—C14B—H14D109.5
C11A—C10A—H10A120.1N1B—C14B—H14E109.5
C9A—C10A—H10A120.1H14D—C14B—H14E109.5
N1A—C11A—C10A121.38 (11)N1B—C14B—H14F109.5
N1A—C11A—H11A119.3H14D—C14B—H14F109.5
C10A—C11A—H11A119.3H14E—C14B—H14F109.5
C6—C1—C2—C30.17 (18)C12A—N1A—C11A—C10A0.33 (19)
C1—C2—C3—C41.13 (19)C14A—N1A—C11A—C10A179.97 (12)
C1—C2—C3—Cl1179.50 (10)C9A—C10A—C11A—N1A1.70 (19)
C2—C3—C4—C50.92 (19)C11A—N1A—C12A—C13A1.72 (18)
Cl1—C3—C4—C5179.71 (9)C14A—N1A—C12A—C13A178.65 (12)
C3—C4—C5—C60.26 (18)N1A—C12A—C13A—C9A1.06 (19)
C4—C5—C6—C11.19 (18)C10A—C9A—C13A—C12A0.91 (18)
C4—C5—C6—S1176.40 (9)C8A—C9A—C13A—C12A179.10 (12)
C2—C1—C6—C50.97 (18)C6B—C1B—C2B—C3B0.1 (2)
C2—C1—C6—S1176.61 (10)C1B—C2B—C3B—C4B0.3 (2)
O3—S1—C6—C5143.17 (10)C2B—C3B—C4B—C5B0.1 (3)
O2—S1—C6—C522.64 (11)C3B—C4B—C5B—C6B0.1 (3)
O1—S1—C6—C597.21 (11)C4B—C5B—C6B—C1B0.3 (2)
O3—S1—C6—C139.25 (11)C4B—C5B—C6B—C7B179.55 (15)
O2—S1—C6—C1159.77 (10)C2B—C1B—C6B—C5B0.2 (2)
O1—S1—C6—C180.38 (11)C2B—C1B—C6B—C7B179.66 (12)
C6A—C1A—C2A—C3A0.28 (19)C5B—C6B—C7B—C8B175.19 (14)
C1A—C2A—C3A—C4A0.4 (2)C1B—C6B—C7B—C8B4.6 (2)
C2A—C3A—C4A—C5A0.0 (2)C6B—C7B—C8B—C9B178.99 (12)
C3A—C4A—C5A—C6A0.5 (2)C7B—C8B—C9B—C13B174.52 (13)
C4A—C5A—C6A—C1A0.63 (19)C7B—C8B—C9B—C10B5.9 (2)
C4A—C5A—C6A—C7A179.60 (12)C13B—C9B—C10B—C11B0.56 (18)
C2A—C1A—C6A—C5A0.22 (19)C8B—C9B—C10B—C11B179.04 (12)
C2A—C1A—C6A—C7A179.98 (12)C12B—N1B—C11B—C10B0.77 (19)
C5A—C6A—C7A—C8A178.90 (13)C14B—N1B—C11B—C10B178.48 (12)
C1A—C6A—C7A—C8A1.3 (2)C9B—C10B—C11B—N1B0.10 (19)
C6A—C7A—C8A—C9A179.94 (12)C11B—N1B—C12B—C13B0.73 (19)
C7A—C8A—C9A—C13A177.28 (12)C14B—N1B—C12B—C13B178.51 (12)
C7A—C8A—C9A—C10A2.7 (2)N1B—C12B—C13B—C9B0.0 (2)
C13A—C9A—C10A—C11A2.25 (18)C10B—C9B—C13B—C12B0.59 (19)
C8A—C9A—C10A—C11A177.76 (12)C8B—C9B—C13B—C12B179.02 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.363.2818 (17)171
C2B—H2BA···O1ii0.932.393.2829 (17)161
C10B—H10B···O2iii0.932.543.4711 (16)178
C11A—H11A···O2ii0.932.553.3109 (16)139
C7B—H7BA···O2iii0.932.533.4514 (16)171
C13A—H13A···O3iv0.932.422.9706 (16)118
C14A—H14A···I1v0.962.933.8718 (13)168
C14A—H14C···O1ii0.962.523.1591 (16)124
C14A—H14B···Cg2i0.962.713.5804 (15)152
C14B—H14E···Cg1vi0.962.823.5551 (16)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z; (iv) x+1, y1/2, z; (v) x+2, y+1/2, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula2C14H14N+·C6H4ClO3S·I
Mr711.04
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.1103 (1), 20.5054 (3), 9.5549 (2)
β (°) 101.799 (1)
V3)1555.45 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.52 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.569, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
30676, 13195, 12932
Rint0.020
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.049, 1.05
No. of reflections13195
No. of parameters382
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.44
Absolute structureFlack (1983), 6221 Friedel pairs
Absolute structure parameter0.383 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.363.2818 (17)171
C2B—H2BA···O1ii0.932.393.2829 (17)161
C10B—H10B···O2iii0.932.543.4711 (16)178
C11A—H11A···O2ii0.932.553.3109 (16)139
C7B—H7BA···O2iii0.932.533.4514 (16)171
C13A—H13A···O3iv0.932.422.9706 (16)118
C14A—H14A···I1v0.962.933.8718 (13)168
C14A—H14C···O1ii0.962.523.1591 (16)124
C14A—H14B···Cg2i0.962.713.5804 (15)152
C14B—H14E···Cg1vi0.962.823.5551 (16)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z; (iv) x+1, y1/2, z; (v) x+2, y+1/2, z+1; (vi) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. The authors also thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009a). Acta Cryst. E65, o1554–o1555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009b). Acta Cryst. E65, o1934–o1935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Y. Y., Rajesh, N. P., Raghavan, P., Ramasamy, P. & Huang, Y. C. (2002). Mater. Lett. 56, 1074–1077.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, P. N. & Williams, D. J. (1991). Introduction to Nonlinear Optical Effects in Molecules and Polymers. New York: John Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds