organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Phenyl­enedi­ammonium dinitrate

aDepartment of Chemistry and Biochemistry, 1400 J. R. Lynch St, PO Box 17910, Jackson State University, Jackson, MS 39217-0510, USA, and bDepartment of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA
*Correspondence e-mail: alamgir@chem.jsums.edu

(Received 22 September 2009; accepted 26 September 2009; online 3 October 2009)

In the title compound, C6H10N22+·2NO3, the dication lies on a crystallographic twofold rotation axis. The nitrate ions are linked to the dications though N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to polyamines, see: Bianchi et al. (1997[Bianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley-VCH.]); Ilioudis et al. (2002[Ilioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26-36.]); Hossain (2008[Hossain, M. A. (2008). Curr. Org. Chem. 12, 1231-1256.]). For related structures, see: Anderson et al. (2006[Anderson, K. M., Goeta, K. M., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138-2140.]; Gawlicka-Chruszcz & Stadnicka (2002[Gawlicka-Chruszcz, A. & Stadnicka, K. (2002). Acta Cryst. C58, o416-o420.]); Soumhi & Jouini (1995[Soumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1457-1459.]); Wang et al. (2007[Wang, K.-W., Zhang, H. & Shen, L.-Q. (2007). Acta Cryst. E63, o126-o128.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N22+·2NO3

  • Mr = 234.18

  • Monoclinic, C 2/c

  • a = 16.2548 (12) Å

  • b = 9.6212 (8) Å

  • c = 7.1070 (6) Å

  • β = 115.506 (6)°

  • V = 1003.14 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.22 mm−1

  • T = 100 K

  • 0.53 × 0.50 × 0.24 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.562, Tmax = 0.761

  • 5278 measured reflections

  • 942 independent reflections

  • 882 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.01

  • 942 reflections

  • 84 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1A 0.94 (2) 1.87 (2) 2.7955 (15) 168 (2)
N5—H5B⋯O1Ai 0.92 (2) 1.95 (2) 2.8416 (16) 163 (2)
N5—H5C⋯O3Aii 0.92 (2) 1.96 (2) 2.8626 (16) 167 (2)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple polyammonium ions are known as excellent hydrogen bond donors for a variety of anions in particular for oxoanions, forming supramolecular aggregates with hydrogen bonding networks (Ilioudis et al., 2002). Indeed, a difunctional or trifunctional polyamine is widely used as an essential building block for a macrocyclic based host, and acts as major binding components for a negatively charged anion (Bianchi et al., 1997; Hossain, 2008). In this study, we used a simple 1,3-phenylenediamine to prepare an adduct with nitric acid. We report, herein, the crystal structure of the title compound in which the nitrate anions are connected to the cationic units through hydrogen bonding interactions.

X-ray analysis of the nitrate salt reveals that both amino groups are protonated to form a dication and crystallized with two nitrate anions. In the crystal lattice, each diaction is surrounded by two symmetry related nitrate anions (Fig. 1). Each amino group is engaged in coordinating nitrate anions through N—H ···O bonds ranging from 2.7955 (15) to 2.8626 (16) Å (see Table 1). The crystal structure viewed along the b axis shows that the cations are arranged antiparallel to one another along the c axis in which two adjacent aromatic units are separated at 7.024 Å (Fig. 2). Therefore, there is no π-π stacking involved. The nitrates serve as linkers of the two adjacent aromatic units by hydrogen bonding networks along the b axis.

Related literature top

For general background to polyamines, see: Bianchi et al. (1997); Ilioudis et al. (2002); Hossain (2008). For related structures, see: Anderson et al. (2006; Gawlicka-Chruszcz & Stadnicka (2002); Soumhi & Jouini (1995); Wang et al. (2007).

Experimental top

To a solution of 1,3-phenylenediamine (0.1 g) in CH3OH (2 ml) was added a few drop of nitric acid. The white precipitate formed immediately was filtered and washed with diethyl ether. Yield: 80%. M.P. 150.5°C. 1H NMR (500 MHz, D2O, TSP): δ 7.15 (m, J = 4 Hz,1H, ArH), 6.68 (d, J = 8 Hz, J = 2 Hz, 2H, ArH), 6.62 (t, J= 2 Hz, 1H, ArH). Crystals suitable for X-ray crystallography were obtained by recystallization from a methanolic solution of the salt and isolated after seven days keeping the solution under Et2O diffusion in a desiccator.

Refinement top

H atoms bonded to carbons were positioned geometrically and refined using a riding model, with C-H = 0.99 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms were located in a difference map and their positional parameters were refined, with Uiso(H) = 1.2 Ueq(N).

Structure description top

Simple polyammonium ions are known as excellent hydrogen bond donors for a variety of anions in particular for oxoanions, forming supramolecular aggregates with hydrogen bonding networks (Ilioudis et al., 2002). Indeed, a difunctional or trifunctional polyamine is widely used as an essential building block for a macrocyclic based host, and acts as major binding components for a negatively charged anion (Bianchi et al., 1997; Hossain, 2008). In this study, we used a simple 1,3-phenylenediamine to prepare an adduct with nitric acid. We report, herein, the crystal structure of the title compound in which the nitrate anions are connected to the cationic units through hydrogen bonding interactions.

X-ray analysis of the nitrate salt reveals that both amino groups are protonated to form a dication and crystallized with two nitrate anions. In the crystal lattice, each diaction is surrounded by two symmetry related nitrate anions (Fig. 1). Each amino group is engaged in coordinating nitrate anions through N—H ···O bonds ranging from 2.7955 (15) to 2.8626 (16) Å (see Table 1). The crystal structure viewed along the b axis shows that the cations are arranged antiparallel to one another along the c axis in which two adjacent aromatic units are separated at 7.024 Å (Fig. 2). Therefore, there is no π-π stacking involved. The nitrates serve as linkers of the two adjacent aromatic units by hydrogen bonding networks along the b axis.

For general background to polyamines, see: Bianchi et al. (1997); Ilioudis et al. (2002); Hossain (2008). For related structures, see: Anderson et al. (2006; Gawlicka-Chruszcz & Stadnicka (2002); Soumhi & Jouini (1995); Wang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonding interactions. Symmetry code: (i) -x, y, 1/2 -z.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis.
1,3-Phenylenediammonium dinitrate top
Crystal data top
C6H10N22+·2NO3F(000) = 488
Mr = 234.18Dx = 1.551 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 3468 reflections
a = 16.2548 (12) Åθ = 5.5–69.5°
b = 9.6212 (8) ŵ = 1.22 mm1
c = 7.1070 (6) ÅT = 100 K
β = 115.506 (6)°Block, colorless
V = 1003.14 (14) Å30.53 × 0.50 × 0.24 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
942 independent reflections
Radiation source: fine-focus sealed tube882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 69.5°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1918
Tmin = 0.562, Tmax = 0.761k = 1111
5278 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.054P)2 + 1.07P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
942 reflectionsΔρmax = 0.26 e Å3
84 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (5)
Crystal data top
C6H10N22+·2NO3V = 1003.14 (14) Å3
Mr = 234.18Z = 4
Monoclinic, C2/cCu Kα radiation
a = 16.2548 (12) ŵ = 1.22 mm1
b = 9.6212 (8) ÅT = 100 K
c = 7.1070 (6) Å0.53 × 0.50 × 0.24 mm
β = 115.506 (6)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
942 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
882 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.761Rint = 0.036
5278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
942 reflectionsΔρmin = 0.20 e Å3
84 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.16571 (7)0.19642 (12)1.08086 (17)0.0129 (3)
O1A0.11343 (7)0.11334 (11)0.94063 (14)0.0171 (3)
O2A0.17425 (7)0.31761 (10)1.03487 (16)0.0205 (3)
O3A0.20794 (7)0.15171 (11)1.26369 (14)0.0170 (3)
C10.00000.16909 (19)0.25000.0119 (4)
H10.00000.07030.25000.014*
C20.06684 (9)0.24329 (14)0.40956 (19)0.0125 (3)
C30.06855 (9)0.38745 (15)0.4119 (2)0.0148 (3)
H30.11560.43640.52180.018*
C40.00000.4588 (2)0.25000.0167 (4)
H40.00000.55750.25000.020*
N50.13746 (8)0.16679 (12)0.58086 (17)0.0136 (3)
H5A0.1261 (12)0.1620 (17)0.700 (3)0.016*
H5B0.1409 (11)0.079 (2)0.535 (3)0.016*
H5C0.1918 (13)0.2147 (19)0.624 (3)0.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0125 (6)0.0140 (6)0.0121 (6)0.0001 (4)0.0053 (4)0.0013 (4)
O1A0.0187 (5)0.0179 (5)0.0115 (5)0.0058 (4)0.0034 (4)0.0038 (4)
O2A0.0234 (6)0.0108 (5)0.0243 (6)0.0001 (4)0.0075 (4)0.0016 (4)
O3A0.0154 (5)0.0232 (6)0.0100 (5)0.0005 (4)0.0032 (4)0.0017 (4)
C10.0139 (9)0.0107 (9)0.0117 (9)0.0000.0062 (7)0.000
C20.0122 (7)0.0161 (7)0.0097 (6)0.0005 (5)0.0053 (5)0.0011 (5)
C30.0157 (7)0.0151 (7)0.0138 (7)0.0031 (5)0.0065 (6)0.0034 (5)
C40.0215 (10)0.0119 (9)0.0191 (9)0.0000.0112 (8)0.000
N50.0133 (6)0.0149 (6)0.0098 (6)0.0005 (4)0.0022 (5)0.0005 (4)
Geometric parameters (Å, º) top
N1A—O2A1.2348 (16)C3—C41.3901 (16)
N1A—O3A1.2556 (15)C3—H30.95
N1A—O1A1.2747 (15)C4—H40.95
C1—C21.3838 (16)N5—H5A0.943 (19)
C1—H10.95N5—H5B0.92 (2)
C2—C31.387 (2)N5—H5C0.924 (19)
C2—N51.4621 (16)
O2A—N1A—O3A121.59 (11)C4—C3—H3120.7
O2A—N1A—O1A119.88 (11)C3i—C4—C3120.83 (18)
O3A—N1A—O1A118.53 (11)C3—C4—H4119.6
C2i—C1—C2117.89 (17)C2—N5—H5A112.7 (10)
C2—C1—H1121.1C2—N5—H5B108.4 (11)
C1—C2—C3122.02 (12)H5A—N5—H5B109.8 (14)
C1—C2—N5118.72 (13)C2—N5—H5C108.7 (11)
C3—C2—N5119.26 (11)H5A—N5—H5C104.8 (15)
C2—C3—C4118.62 (12)H5B—N5—H5C112.5 (15)
C2—C3—H3120.7
C2i—C1—C2—C30.49 (9)N5—C2—C3—C4178.80 (10)
C2i—C1—C2—N5179.28 (13)C2—C3—C4—C3i0.47 (8)
C1—C2—C3—C40.97 (17)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1A0.94 (2)1.87 (2)2.7955 (15)168 (2)
N5—H5B···O1Aii0.92 (2)1.95 (2)2.8416 (16)163 (2)
N5—H5C···O3Aiii0.92 (2)1.96 (2)2.8626 (16)167 (2)
Symmetry codes: (ii) x, y, z1/2; (iii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC6H10N22+·2NO3
Mr234.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.2548 (12), 9.6212 (8), 7.1070 (6)
β (°) 115.506 (6)
V3)1003.14 (14)
Z4
Radiation typeCu Kα
µ (mm1)1.22
Crystal size (mm)0.53 × 0.50 × 0.24
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.562, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
5278, 942, 882
Rint0.036
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.01
No. of reflections942
No. of parameters84
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1A0.94 (2)1.87 (2)2.7955 (15)168 (2)
N5—H5B···O1Ai0.92 (2)1.95 (2)2.8416 (16)163 (2)
N5—H5C···O3Aii0.92 (2)1.96 (2)2.8626 (16)167 (2)
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported by the National Center for Research Resources (grant No. G12RR013459) and the National Institutes of Health (NIH) Science Education Partnership Award (SEPA) Program `Recovery Act Administrative Supplements Providing Summer Research Research Experiences for Students and Science Educators' under contract 5R25RR020405–04S1. Funds to purchase the diffractometer used in this study were provided in part by the National Science Foundation (grant No. CHE-0130835).

References

First citationAnderson, K. M., Goeta, K. M., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138–2140.  Web of Science CSD CrossRef Google Scholar
First citationBianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley-VCH.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGawlicka-Chruszcz, A. & Stadnicka, K. (2002). Acta Cryst. C58, o416–o420.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHossain, M. A. (2008). Curr. Org. Chem. 12, 1231–1256.  Web of Science CrossRef CAS Google Scholar
First citationIlioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1457–1459.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, K.-W., Zhang, H. & Shen, L.-Q. (2007). Acta Cryst. E63, o126–o128.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds