organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(9-Anthr­yl)-2-(4-nitro-1H-imidazol-1-yl)-1-p-tolyl­prop-2-en-1-one

aLaboratory of Bioorganic and Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 24 September 2009; accepted 27 September 2009; online 3 October 2009)

In the title mol­ecule, C27H19N3O3, the imidazole and benzene rings make dihedral angles of 64.72 (4) and 64.02 (4)°, respectively, with the anthracene ring system (r.m.s. deviation = 0.043 Å). The nitro group is coplanar with the imidazole ring [dihedral angle = 1.1 (1)°]. The crystal packing is stabilized by weak ππ inter­actions with centroid–centroid distances of 3.7342 (10) and 3.7627 (9) Å.

Related literature

For the crystal structures of the chloro and bromo analogues, see: Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]); Lu et al. (2009[Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.]). For general background to chalcones, see: Vogel et al. (2008[Vogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). Bioorg. Med. Chem. 16, 4286-4293.]). For the synthesis, see: Erhardt et al. (1985[Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.]).

[Scheme 1]

Experimental

Crystal data
  • C27H19N3O3

  • Mr = 433.45

  • Triclinic, [P \overline 1]

  • a = 7.9335 (9) Å

  • b = 11.2626 (13) Å

  • c = 13.0291 (15) Å

  • α = 75.454 (2)°

  • β = 85.763 (2)°

  • γ = 71.059 (2)°

  • V = 1065.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.36 × 0.23 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.991

  • 12116 measured reflections

  • 4621 independent reflections

  • 3646 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.05

  • 4621 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones or 1,3-diaryl-2-propen-1-ones are natural or synthetic compounds belonging to the flavonoid family (Vogel et al., 2008). They exhibit diverse kinds of biological activities. Hence, chalcones are considered as an important class of therapeutic agents. A series of chalcone derivatives containing a imidazole ring have been synthesized in our lab and crystal structues of some of them have been reported (Lu et al., 2009; Wang et al., 2009). We report here the crystal structure of the title compound.

In the molecular structure of the title compound (Fig. 1), the imidazole and benzene ring of the tolyl group form dihedral angles of 64.72 (4)° and 64.02 (4)°, respectively, with the anthracene ring system (r.m.s. deviation 0.043 Å). The nitro group is coplanar with the imidazole ring [dihedral angle 1.1 (1)°].

The crystal structure is stabilized by weak π-π interactions between imidazole and benzene ring of the tolyl group (centroid to centroid distance = 3.7627 (9) Å) and those between the rings of the anthracene ring system (centroid to centroid distance = 3.7342 (10) Å).

Related literature top

For the crystal structures of the chloro and bromo analogues, see: Wang et al. (2009); Lu et al. (2009). For general background to chalcones, see: Vogel et al. (2008). For the synthesis, see: Erhardt et al. (1985).

Experimental top

The title compound was synthesized according to the procedure of Erhardt et al. (1985). Single crystals suitable for X-ray analysis was grown from a chloroform solution by slow evaporation at room temperature.

Refinement top

H atoms were placed at calculated positions with C-H = 0.93 Å (aromatic) and 0.96 Å (methyl). The Uiso(H) values were set equal to 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl).

Structure description top

Chalcones or 1,3-diaryl-2-propen-1-ones are natural or synthetic compounds belonging to the flavonoid family (Vogel et al., 2008). They exhibit diverse kinds of biological activities. Hence, chalcones are considered as an important class of therapeutic agents. A series of chalcone derivatives containing a imidazole ring have been synthesized in our lab and crystal structues of some of them have been reported (Lu et al., 2009; Wang et al., 2009). We report here the crystal structure of the title compound.

In the molecular structure of the title compound (Fig. 1), the imidazole and benzene ring of the tolyl group form dihedral angles of 64.72 (4)° and 64.02 (4)°, respectively, with the anthracene ring system (r.m.s. deviation 0.043 Å). The nitro group is coplanar with the imidazole ring [dihedral angle 1.1 (1)°].

The crystal structure is stabilized by weak π-π interactions between imidazole and benzene ring of the tolyl group (centroid to centroid distance = 3.7627 (9) Å) and those between the rings of the anthracene ring system (centroid to centroid distance = 3.7342 (10) Å).

For the crystal structures of the chloro and bromo analogues, see: Wang et al. (2009); Lu et al. (2009). For general background to chalcones, see: Vogel et al. (2008). For the synthesis, see: Erhardt et al. (1985).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Z)-3-(9-Anthryl)-2-(4-nitro-1H-imidazol-1-yl)-1-p- tolylprop-2-en-1-one top
Crystal data top
C27H19N3O3Z = 2
Mr = 433.45F(000) = 452
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9335 (9) ÅCell parameters from 5053 reflections
b = 11.2626 (13) Åθ = 2.2–28.1°
c = 13.0291 (15) ŵ = 0.09 mm1
α = 75.454 (2)°T = 298 K
β = 85.763 (2)°Plate, yellow
γ = 71.059 (2)°0.36 × 0.23 × 0.10 mm
V = 1065.8 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4621 independent reflections
Radiation source: fine-focus sealed tube3646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.968, Tmax = 0.991k = 1414
12116 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.061P]
where P = (Fo2 + 2Fc2)/3
4621 reflections(Δ/σ)max = 0.012
299 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C27H19N3O3γ = 71.059 (2)°
Mr = 433.45V = 1065.8 (2) Å3
Triclinic, P1Z = 2
a = 7.9335 (9) ÅMo Kα radiation
b = 11.2626 (13) ŵ = 0.09 mm1
c = 13.0291 (15) ÅT = 298 K
α = 75.454 (2)°0.36 × 0.23 × 0.10 mm
β = 85.763 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4621 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3646 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.991Rint = 0.030
12116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
4621 reflectionsΔρmin = 0.23 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8022 (2)0.80103 (14)0.10371 (11)0.0625 (4)
C20.9235 (2)0.68461 (16)0.09495 (12)0.0655 (4)
H21.04430.67600.08950.079*
C30.86855 (18)0.58070 (13)0.09409 (10)0.0542 (3)
H30.95210.50320.08710.065*
C40.68960 (16)0.59098 (11)0.10360 (9)0.0443 (3)
C50.56700 (18)0.70796 (12)0.11149 (10)0.0525 (3)
H50.44640.71640.11760.063*
C60.6231 (2)0.81227 (13)0.11031 (11)0.0604 (4)
H60.53940.89110.11400.073*
C70.8646 (3)0.91345 (19)0.10604 (18)0.1030 (7)
H7A0.98840.89380.08780.155*
H7B0.84860.92880.17590.155*
H7C0.79640.98930.05590.155*
C80.63944 (15)0.47439 (11)0.10306 (9)0.0429 (3)
C90.53578 (15)0.42485 (10)0.19465 (9)0.0401 (3)
C100.51789 (15)0.46279 (11)0.28466 (9)0.0424 (3)
H100.55670.53290.28250.051*
C110.55904 (19)0.21206 (12)0.15682 (10)0.0547 (3)
H110.68000.18790.14130.066*
C120.29544 (19)0.21363 (13)0.18201 (9)0.0522 (3)
C130.29627 (17)0.32641 (12)0.20011 (9)0.0479 (3)
H130.20100.39020.21980.057*
C140.44576 (16)0.41062 (12)0.38765 (9)0.0442 (3)
C150.31154 (16)0.49758 (13)0.43426 (9)0.0497 (3)
C160.23060 (19)0.62857 (14)0.38169 (12)0.0604 (4)
H160.26490.65930.31300.072*
C170.1035 (2)0.71059 (18)0.42967 (15)0.0772 (5)
H170.05280.79650.39360.093*
C180.0482 (2)0.6666 (2)0.53315 (16)0.0844 (6)
H180.03770.72380.56550.101*
C190.1187 (2)0.5429 (2)0.58552 (13)0.0770 (5)
H190.07990.51520.65380.092*
C200.25212 (18)0.45250 (17)0.53893 (10)0.0587 (4)
C210.3253 (2)0.32471 (18)0.59118 (10)0.0668 (4)
H210.28430.29580.65850.080*
C220.4581 (2)0.23721 (15)0.54715 (10)0.0609 (4)
C230.5358 (3)0.10705 (19)0.60296 (13)0.0849 (5)
H230.49340.07760.66980.102*
C240.6697 (3)0.02531 (18)0.56107 (15)0.0961 (6)
H240.71680.06040.59830.115*
C250.7395 (3)0.06850 (16)0.46106 (13)0.0800 (5)
H250.83460.01160.43390.096*
C260.6691 (2)0.19203 (13)0.40416 (11)0.0588 (4)
H260.71750.21900.33860.071*
C270.52314 (18)0.28088 (13)0.44281 (9)0.0495 (3)
N10.46726 (13)0.32578 (9)0.18306 (7)0.0428 (2)
N20.45809 (17)0.14128 (11)0.15594 (9)0.0602 (3)
N40.1423 (2)0.17060 (15)0.18753 (10)0.0718 (4)
O10.69016 (12)0.41643 (9)0.03388 (7)0.0576 (3)
O20.1606 (2)0.06711 (14)0.16772 (11)0.1051 (5)
O30.00028 (18)0.24220 (15)0.21342 (12)0.0975 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0851 (10)0.0617 (9)0.0534 (8)0.0413 (8)0.0181 (7)0.0175 (7)
C20.0631 (9)0.0805 (10)0.0669 (9)0.0393 (8)0.0181 (7)0.0256 (8)
C30.0561 (8)0.0585 (8)0.0523 (7)0.0224 (6)0.0110 (6)0.0185 (6)
C40.0526 (7)0.0487 (7)0.0330 (6)0.0207 (5)0.0039 (5)0.0070 (5)
C50.0549 (7)0.0518 (7)0.0487 (7)0.0175 (6)0.0043 (6)0.0088 (6)
C60.0793 (10)0.0476 (7)0.0520 (8)0.0192 (7)0.0090 (7)0.0113 (6)
C70.1274 (17)0.0883 (13)0.1247 (16)0.0694 (13)0.0351 (14)0.0441 (12)
C80.0430 (6)0.0459 (6)0.0378 (6)0.0122 (5)0.0015 (5)0.0083 (5)
C90.0436 (6)0.0390 (6)0.0385 (6)0.0150 (5)0.0023 (5)0.0078 (5)
C100.0473 (6)0.0432 (6)0.0399 (6)0.0189 (5)0.0012 (5)0.0094 (5)
C110.0663 (8)0.0466 (7)0.0539 (7)0.0195 (6)0.0048 (6)0.0160 (6)
C120.0684 (9)0.0562 (8)0.0393 (6)0.0335 (7)0.0051 (6)0.0049 (5)
C130.0509 (7)0.0533 (7)0.0419 (6)0.0211 (6)0.0030 (5)0.0089 (5)
C140.0501 (7)0.0566 (7)0.0347 (6)0.0276 (6)0.0006 (5)0.0122 (5)
C150.0491 (7)0.0693 (9)0.0428 (6)0.0290 (6)0.0004 (5)0.0216 (6)
C160.0582 (8)0.0705 (9)0.0604 (8)0.0221 (7)0.0010 (6)0.0276 (7)
C170.0632 (9)0.0857 (11)0.0916 (12)0.0160 (8)0.0031 (8)0.0463 (10)
C180.0562 (9)0.1257 (17)0.0902 (13)0.0252 (10)0.0098 (9)0.0667 (13)
C190.0564 (9)0.1382 (17)0.0592 (9)0.0450 (10)0.0129 (7)0.0491 (11)
C200.0508 (7)0.0984 (11)0.0442 (7)0.0399 (7)0.0042 (6)0.0274 (7)
C210.0708 (9)0.1096 (13)0.0367 (7)0.0552 (9)0.0048 (6)0.0134 (8)
C220.0771 (10)0.0761 (9)0.0401 (7)0.0446 (8)0.0072 (6)0.0034 (6)
C230.1265 (16)0.0850 (12)0.0485 (8)0.0569 (12)0.0116 (9)0.0089 (8)
C240.151 (2)0.0634 (10)0.0639 (11)0.0333 (12)0.0260 (12)0.0091 (9)
C250.1040 (13)0.0594 (9)0.0676 (10)0.0148 (9)0.0201 (9)0.0081 (8)
C260.0715 (9)0.0565 (8)0.0480 (7)0.0221 (7)0.0097 (6)0.0065 (6)
C270.0603 (8)0.0576 (8)0.0378 (6)0.0308 (6)0.0062 (5)0.0065 (5)
N10.0501 (6)0.0427 (5)0.0385 (5)0.0179 (4)0.0008 (4)0.0105 (4)
N20.0837 (9)0.0513 (6)0.0546 (7)0.0321 (6)0.0017 (6)0.0150 (5)
N40.0921 (10)0.0831 (9)0.0569 (7)0.0572 (9)0.0091 (7)0.0046 (7)
O10.0656 (6)0.0654 (6)0.0495 (5)0.0253 (5)0.0130 (4)0.0253 (5)
O20.1427 (12)0.1039 (10)0.1091 (10)0.0885 (10)0.0031 (9)0.0309 (8)
O30.0747 (8)0.1167 (11)0.1149 (11)0.0555 (8)0.0020 (7)0.0195 (8)
Geometric parameters (Å, º) top
C1—C21.378 (2)C13—H130.93
C1—C61.383 (2)C14—C271.4085 (18)
C1—C71.509 (2)C14—C151.4099 (17)
C2—C31.3779 (19)C15—C161.414 (2)
C2—H20.93C15—C201.4327 (18)
C3—C41.3852 (18)C16—C171.361 (2)
C3—H30.93C16—H160.93
C4—C51.3835 (18)C17—C181.405 (3)
C4—C81.4923 (16)C17—H170.93
C5—C61.3814 (18)C18—C191.339 (3)
C5—H50.93C18—H180.93
C6—H60.93C19—C201.429 (2)
C7—H7A0.96C19—H190.93
C7—H7B0.96C20—C211.377 (2)
C7—H7C0.96C21—C221.390 (2)
C8—O11.2133 (13)C21—H210.93
C8—C91.4933 (16)C22—C231.415 (2)
C9—C101.3289 (15)C22—C271.4426 (18)
C9—N11.4332 (14)C23—C241.344 (3)
C10—C141.4772 (15)C23—H230.93
C10—H100.93C24—C251.411 (3)
C11—N21.3029 (17)C24—H240.93
C11—N11.3657 (16)C25—C261.355 (2)
C11—H110.93C25—H250.93
C12—C131.3510 (17)C26—C271.418 (2)
C12—N21.3551 (18)C26—H260.93
C12—N41.4381 (18)N4—O21.2174 (17)
C13—N11.3563 (15)N4—O31.2346 (18)
C2—C1—C6118.62 (13)C14—C15—C20119.28 (13)
C2—C1—C7120.37 (15)C16—C15—C20117.91 (12)
C6—C1—C7121.01 (15)C17—C16—C15121.32 (15)
C1—C2—C3120.94 (14)C17—C16—H16119.3
C1—C2—H2119.5C15—C16—H16119.3
C3—C2—H2119.5C16—C17—C18120.57 (18)
C2—C3—C4120.40 (13)C16—C17—H17119.7
C2—C3—H3119.8C18—C17—H17119.7
C4—C3—H3119.8C19—C18—C17120.34 (16)
C5—C4—C3118.92 (12)C19—C18—H18119.8
C5—C4—C8123.45 (11)C17—C18—H18119.8
C3—C4—C8117.62 (11)C18—C19—C20121.48 (16)
C6—C5—C4120.24 (13)C18—C19—H19119.3
C6—C5—H5119.9C20—C19—H19119.3
C4—C5—H5119.9C21—C20—C19122.36 (14)
C5—C6—C1120.85 (13)C21—C20—C15119.29 (13)
C5—C6—H6119.6C19—C20—C15118.35 (15)
C1—C6—H6119.6C20—C21—C22122.53 (12)
C1—C7—H7A109.5C20—C21—H21118.7
C1—C7—H7B109.5C22—C21—H21118.7
H7A—C7—H7B109.5C21—C22—C23121.93 (14)
C1—C7—H7C109.5C21—C22—C27119.26 (13)
H7A—C7—H7C109.5C23—C22—C27118.78 (16)
H7B—C7—H7C109.5C24—C23—C22121.12 (16)
O1—C8—C4121.31 (10)C24—C23—H23119.4
O1—C8—C9120.52 (11)C22—C23—H23119.4
C4—C8—C9118.02 (10)C23—C24—C25120.55 (16)
C10—C9—N1121.36 (10)C23—C24—H24119.7
C10—C9—C8122.61 (10)C25—C24—H24119.7
N1—C9—C8115.87 (9)C26—C25—C24120.61 (18)
C9—C10—C14129.89 (10)C26—C25—H25119.7
C9—C10—H10115.1C24—C25—H25119.7
C14—C10—H10115.1C25—C26—C27121.12 (14)
N2—C11—N1112.40 (13)C25—C26—H26119.4
N2—C11—H11123.8C27—C26—H26119.4
N1—C11—H11123.8C14—C27—C26123.60 (11)
C13—C12—N2112.85 (11)C14—C27—C22118.59 (13)
C13—C12—N4125.76 (14)C26—C27—C22117.70 (12)
N2—C12—N4121.39 (13)C13—N1—C11106.73 (10)
C12—C13—N1104.50 (11)C13—N1—C9125.53 (10)
C12—C13—H13127.7C11—N1—C9127.71 (11)
N1—C13—H13127.7C11—N2—C12103.51 (11)
C27—C14—C15121.01 (11)O2—N4—O3124.53 (15)
C27—C14—C10120.56 (11)O2—N4—C12118.72 (16)
C15—C14—C10118.04 (11)O3—N4—C12116.74 (13)
C14—C15—C16122.80 (11)
C6—C1—C2—C30.8 (2)C14—C15—C20—C19178.69 (11)
C7—C1—C2—C3179.16 (15)C16—C15—C20—C191.83 (17)
C1—C2—C3—C40.9 (2)C19—C20—C21—C22178.42 (12)
C2—C3—C4—C51.47 (19)C15—C20—C21—C221.3 (2)
C2—C3—C4—C8179.46 (11)C20—C21—C22—C23178.14 (14)
C3—C4—C5—C60.28 (18)C20—C21—C22—C270.1 (2)
C8—C4—C5—C6179.29 (11)C21—C22—C23—C24176.94 (16)
C4—C5—C6—C11.5 (2)C27—C22—C23—C241.1 (3)
C2—C1—C6—C52.0 (2)C22—C23—C24—C251.6 (3)
C7—C1—C6—C5177.96 (14)C23—C24—C25—C262.0 (3)
C5—C4—C8—O1127.74 (13)C24—C25—C26—C270.5 (2)
C3—C4—C8—O151.28 (16)C15—C14—C27—C26174.16 (11)
C5—C4—C8—C956.71 (15)C10—C14—C27—C261.40 (18)
C3—C4—C8—C9124.27 (12)C15—C14—C27—C222.01 (17)
O1—C8—C9—C10161.69 (12)C10—C14—C27—C22174.76 (11)
C4—C8—C9—C1013.90 (17)C25—C26—C27—C14179.39 (13)
O1—C8—C9—N113.70 (16)C25—C26—C27—C223.2 (2)
C4—C8—C9—N1170.72 (10)C21—C22—C27—C141.75 (18)
N1—C9—C10—C145.68 (19)C23—C22—C27—C14179.84 (13)
C8—C9—C10—C14169.46 (11)C21—C22—C27—C26174.64 (12)
N2—C12—C13—N10.92 (14)C23—C22—C27—C263.45 (19)
N4—C12—C13—N1178.45 (11)C12—C13—N1—C110.61 (13)
C9—C10—C14—C2759.15 (18)C12—C13—N1—C9178.63 (10)
C9—C10—C14—C15127.88 (14)N2—C11—N1—C130.13 (14)
C27—C14—C15—C16179.91 (11)N2—C11—N1—C9178.09 (10)
C10—C14—C15—C166.98 (17)C10—C9—N1—C1354.97 (16)
C27—C14—C15—C200.64 (17)C8—C9—N1—C13129.58 (11)
C10—C14—C15—C20173.57 (10)C10—C9—N1—C11122.63 (14)
C14—C15—C16—C17178.85 (12)C8—C9—N1—C1152.83 (15)
C20—C15—C16—C171.70 (19)N1—C11—N2—C120.41 (14)
C15—C16—C17—C180.4 (2)C13—C12—N2—C110.83 (14)
C16—C17—C18—C190.7 (2)N4—C12—N2—C11178.56 (11)
C17—C18—C19—C200.5 (2)C13—C12—N4—O2178.97 (13)
C18—C19—C20—C21179.54 (14)N2—C12—N4—O20.34 (19)
C18—C19—C20—C150.8 (2)C13—C12—N4—O31.7 (2)
C14—C15—C20—C211.03 (17)N2—C12—N4—O3178.98 (13)
C16—C15—C20—C21178.45 (12)

Experimental details

Crystal data
Chemical formulaC27H19N3O3
Mr433.45
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9335 (9), 11.2626 (13), 13.0291 (15)
α, β, γ (°)75.454 (2), 85.763 (2), 71.059 (2)
V3)1065.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.23 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.968, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12116, 4621, 3646
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.05
No. of reflections4621
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.  Google Scholar
First citationLu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, S., Ohmayer, S., Brunner, G. & Heilmann, J. (2008). Bioorg. Med. Chem. 16, 4286–4293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds