organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­allyl 5-[(4-hexyl­oxyphen­yl)imino­meth­yl]-m-phenyl­ene dicarbonate

aCentro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del estado de Hidalgo, Carretera Pachuca Tulancingo Km 4.5, 42184 Mineral de la Reforma, Hgo., Mexico, bFacultad de Ciencias Químicas, Universidad Autónoma de Puebla, Boulevard 14 Sur, Col. San Manuel, 72570 Puebla, Pue., Mexico, and cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 24 September 2009; accepted 8 October 2009; online 23 October 2009)

The title mol­ecule, C27H31NO7, an imine derivative bearing both carbonate and allyl functionalities, was synthesized in the hope of obtaining a mesogenic polymerizable material. The allyl­carbonate arms are fully disordered over two sets of sites, reflecting a large degree of rotational freedom about σ bonds [occupancies: 0.665 (9)/0.335 (9) for one substituent, 0.564 (9)/0.436 (9) for the other]. In contrast, the hexyl chain is ordered, and presents the common all-trans extended conformation. The benzene rings connected via the imine group make a dihedral angle of 9.64 (11)°. In the crystal, the Y-shaped mol­ecules are weakly associated into centrosymmetric dimers through pairs of C—H⋯O(hex­yl) contacts. The resulting layers of dimers, approximately parallel to (2[\overline{2}]5), are closely packed in the crystal, allowing ππ inter­actions between benzene rings of neighboring layers: the separation between the centroid of the benzene ring substituted by allyl­carbonate and the centroid of the benzene ring bearing the hex­yloxy group in the adjacent layer is 3.895 (1) Å.

Related literature

For the crystal structure of 4-(hex­yloxy)aniline, used as a starting material, see: Herrera et al. (2005[Herrera, A. M., Bernès, S. & López, D. (2005). Acta Cryst. E61, o3212-o3213.]). For the crystal structures of mol­ecules with allycarbonate functionality, see: Michelet et al. (2003[Michelet, V., Adiey, K., Tanier, S., Dujardin, G. & Genêt, J. P. (2003). Eur. J. Org. Chem. pp. 2947-2958.]); Burns & Forsyth (2008[Burns, A. C. & Forsyth, C. J. (2008). Org. Lett. 10, 97-100.]); Flores Ahuactzin et al. (2009[Flores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603.]). For applications of the above mol­ecules as polymerizable monomers, see: Herrera (2006[Herrera, A. M. (2006). PhD Thesis, Universidad Autónoma de Puebla, Mexico.]).

[Scheme 1]

Experimental

Crystal data
  • C27H31NO7

  • Mr = 481.53

  • Triclinic, [P \overline 1]

  • a = 8.6407 (11) Å

  • b = 10.9711 (14) Å

  • c = 15.014 (2) Å

  • α = 102.756 (11)°

  • β = 103.368 (12)°

  • γ = 101.092 (12)°

  • V = 1305.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.6 × 0.6 × 0.2 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 8105 measured reflections

  • 5927 independent reflections

  • 3505 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.165

  • S = 1.04

  • 5927 reflections

  • 409 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O15i 0.93 2.60 3.511 (2) 166
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are involved in a general project dealing with the synthesis of new allyl carbonate compounds, with the hope to obtain suitable monomers for the preparation of glasses with designed properties (Herrera, 2006). The previous report in this series was about allyl 4-hydroxyphenyl carbonate (Flores Ahuactzin et al., 2009), which was found to display a disordered allyl functionality in the solid-state.

The title molecule, (I), is based on a benzene core di-substituted by allyl carbonate groups. The molecule is completed by a third substituent, derived from 4-(hexyloxy)aniline, for which the X-ray structure has been also reported (Herrera et al., 2005). The whole molecule is a Schiff base including chemical features expected to give a mesogenic behavior to the material. This compound can be prepared following two routes, starting from 3,5-dihydroxybenzaldehyde. The two steps route (Fig. 1 and experimental) consists of the functionalization of 3,5-dihydroxybenzaldehyde using allylchloroformate, followed by condensation with 4-(hexyloxy)aniline, to form the Schiff base. The alternative route (Herrera, 2006) is to prepare the Schiff base prior to functionalize with allylchloroformate.

The resulting compound (Fig. 2) is characterized by strongly disordered allylcarbonate substituents: five of the seven atoms in each substituent are disordered over two sites (Fig. 2, inset), with occupancies being 0.564 (9) and 0.436 (9) for one arm, and 0.665 (9) and 0.335 (9) in the other. A remarkable arrangement is observed in the first substituent (O22···C28), where disordered final CCH2 groups are placed almost perpendicular, reflecting a high degree of free rotation about σ bonds in these substituents. This behavior, resulting in a variety of stable conformations for the allylcarbonate functional groups, has been also observed in related structures (Michelet et al., 2003; Burns & Forsyth, 2008; Flores Ahuactzin et al., 2009). In (I), the observed disorder may be related to the rather low melting point of this material, 318 K (45° C).

The imine component is ordered, and the hexyl chain presents the common all-trans conformation. The complete molecule is Y-shaped, with a small dihedral angle of 9.64 (11)° between the benzene rings.

The crystal structure (Fig. 3) contains centrosymmetric dimers, formed through weak CH···O(hexyl) contacts. Dimers are arranged in planes, approximately parallel to the (225) in the crystal. Two neighboring layers are in close contact via π···π interactions between benzene rings (Fig. 3, inset). The centroid of the benzene ring substituted by allylcarbonate and the centroid of the benzene ring bearing the hexyloxy group in the following layer (symmetry code: x - 1, y, z), are separated by 3.895 (1) Å.

Related literature top

For the crystal structure of 4-(hexyloxy)aniline, used as a starting material, see: Herrera et al. (2005). For the crystal structures of molecules with allycarbonate functionality, see: Michelet et al. (2003); Burns & Forsyth (2008); Flores Ahuactzin et al. (2009). For applications of the above molecules as polymerizable monomers, see: Herrera (2006).

Experimental top

A solution of 3,5-dihydroxybenzaldehyde (0.5 g, 3.6 mmol) in CH2Cl2 and pyridine as catalyst was cooled in an ice bath, and allylchloroformate (0.95 g, 7.8 mmol) was added dropwise under stirring at 278 K. The mixture was stirred for 4 h under an atmosphere of Ar. The reaction was then treated with a solution of HCl at 5%, and concentrated under reduced pressure, yielding the crude aldehyde (3) as a liquid (Fig. 1). This intermediate was purified by column chromatography on silica, eluting with CH2Cl2. Yield 91%. To a solution of (3) (0.5 g, 1.6 mmol) in dry ethanol (30 ml) was added 4-(hexyloxy)aniline (0.33 g, 1.6 mmol) under an atmosphere of Ar. The reaction mixture was then heated to 325 K for 18 h. The reaction mixture was cooled to room temperature and solvent eliminated under reduced pressure, affording (I), which was purified by column chromatography on silica, eluting with CH2Cl2 and then recrystallized from methanol (93% yield; brown crystals).

Refinement top

Both allycarbonate groups are disordered over two positions. Atoms O24, O25, C26, C27 and C28 are disordered over two sites (O241/O251/C261/C271/C281 and O242/O252/C262/C272/C282), with refined occupancies of 0.564 (9) and 0.436 (9). In the same way, atoms O31, O32, C33, C34 and C35 are disordered over two positions (O311/O321/C331/C341/C351 and O312/O322/C332/C342/C352), with occupancies of 0.665 (9) and 0.335 (9). Bond lengths in these disordered fragments were restrained using target values afforded by Mogul; for the first disordered part, restraints are as follows: C23—O241 = 1.21 (1) Å; C23—O251 = 1.33 (1) Å; O251—C261 = 1.46 (1) Å; C261—C271 = 1.47 (1) Å; C271—C281 = 1.27 (1) Å. Similar restraints were used in other disordered parts. All H atoms were placed in calculated positions and refined as riding to their parent atoms. C—H bond lengths were fixed to 0.96 (methyl), 0.97 (methylene), or 0.93 Å (all other H toms). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier atom), except for methyl C21, for which Uiso(H) = 1.5Ueq(C21).

Structure description top

We are involved in a general project dealing with the synthesis of new allyl carbonate compounds, with the hope to obtain suitable monomers for the preparation of glasses with designed properties (Herrera, 2006). The previous report in this series was about allyl 4-hydroxyphenyl carbonate (Flores Ahuactzin et al., 2009), which was found to display a disordered allyl functionality in the solid-state.

The title molecule, (I), is based on a benzene core di-substituted by allyl carbonate groups. The molecule is completed by a third substituent, derived from 4-(hexyloxy)aniline, for which the X-ray structure has been also reported (Herrera et al., 2005). The whole molecule is a Schiff base including chemical features expected to give a mesogenic behavior to the material. This compound can be prepared following two routes, starting from 3,5-dihydroxybenzaldehyde. The two steps route (Fig. 1 and experimental) consists of the functionalization of 3,5-dihydroxybenzaldehyde using allylchloroformate, followed by condensation with 4-(hexyloxy)aniline, to form the Schiff base. The alternative route (Herrera, 2006) is to prepare the Schiff base prior to functionalize with allylchloroformate.

The resulting compound (Fig. 2) is characterized by strongly disordered allylcarbonate substituents: five of the seven atoms in each substituent are disordered over two sites (Fig. 2, inset), with occupancies being 0.564 (9) and 0.436 (9) for one arm, and 0.665 (9) and 0.335 (9) in the other. A remarkable arrangement is observed in the first substituent (O22···C28), where disordered final CCH2 groups are placed almost perpendicular, reflecting a high degree of free rotation about σ bonds in these substituents. This behavior, resulting in a variety of stable conformations for the allylcarbonate functional groups, has been also observed in related structures (Michelet et al., 2003; Burns & Forsyth, 2008; Flores Ahuactzin et al., 2009). In (I), the observed disorder may be related to the rather low melting point of this material, 318 K (45° C).

The imine component is ordered, and the hexyl chain presents the common all-trans conformation. The complete molecule is Y-shaped, with a small dihedral angle of 9.64 (11)° between the benzene rings.

The crystal structure (Fig. 3) contains centrosymmetric dimers, formed through weak CH···O(hexyl) contacts. Dimers are arranged in planes, approximately parallel to the (225) in the crystal. Two neighboring layers are in close contact via π···π interactions between benzene rings (Fig. 3, inset). The centroid of the benzene ring substituted by allylcarbonate and the centroid of the benzene ring bearing the hexyloxy group in the following layer (symmetry code: x - 1, y, z), are separated by 3.895 (1) Å.

For the crystal structure of 4-(hexyloxy)aniline, used as a starting material, see: Herrera et al. (2005). For the crystal structures of molecules with allycarbonate functionality, see: Michelet et al. (2003); Burns & Forsyth (2008); Flores Ahuactzin et al. (2009). For applications of the above molecules as polymerizable monomers, see: Herrera (2006).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthetic route used for the preparation of (I).
[Figure 2] Fig. 2. The molecular structure of (I), with displacement ellipsoids shown at the 30% probability level. Only major disorder components are shown. The inset represents the central benzene ring with disordered allylcarbonate groups: the major disorder component is shown in red and the minor component in blue; site occupation factors are quoted.
[Figure 3] Fig. 3. A part of the crystal structure of (I), with C—H···O contacts represented as dashed lines. The four represented molecules lie in a layer, and colors scheme is related to symmetry codes; green: -x, 1 - y, 2 - z; gold: asymmetric unit; blue: -1 - x, -y, 2 - z; grey: -1 + x, -1 + y, z. The inset represents two layers (red and blue) with π···π interactions represented as dashed lines.
Diallyl 5-[(4-hexyloxyphenyl)iminomethyl]-m-phenylene dicarbonate top
Crystal data top
C27H31NO7Z = 2
Mr = 481.53F(000) = 512
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -P 1Melting point: 318 K
a = 8.6407 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9711 (14) ÅCell parameters from 70 reflections
c = 15.014 (2) Åθ = 4.5–12.5°
α = 102.756 (11)°µ = 0.09 mm1
β = 103.368 (12)°T = 298 K
γ = 101.092 (12)°Plate, brown
V = 1305.4 (3) Å30.6 × 0.6 × 0.2 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.0°
Graphite monochromatorh = 113
2θ/ω scansk = 1313
8105 measured reflectionsl = 1919
5927 independent reflections3 standard reflections every 97 reflections
3505 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.1545P]
where P = (Fo2 + 2Fc2)/3
5927 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.14 e Å3
20 restraintsΔρmin = 0.15 e Å3
0 constraints
Crystal data top
C27H31NO7γ = 101.092 (12)°
Mr = 481.53V = 1305.4 (3) Å3
Triclinic, P1Z = 2
a = 8.6407 (11) ÅMo Kα radiation
b = 10.9711 (14) ŵ = 0.09 mm1
c = 15.014 (2) ÅT = 298 K
α = 102.756 (11)°0.6 × 0.6 × 0.2 mm
β = 103.368 (12)°
Data collection top
Bruker P4
diffractometer
Rint = 0.027
8105 measured reflections3 standard reflections every 97 reflections
5927 independent reflections intensity decay: 1%
3505 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05320 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
5927 reflectionsΔρmin = 0.15 e Å3
409 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8795 (2)0.36570 (18)0.72744 (13)0.0647 (4)
C20.8794 (2)0.2444 (2)0.67888 (14)0.0715 (5)
H2A0.95420.23230.64420.086*
C30.7648 (2)0.14046 (19)0.68288 (15)0.0704 (5)
C40.6528 (2)0.15553 (18)0.73416 (14)0.0648 (4)
H4A0.57690.08410.73610.078*
C50.6560 (2)0.28065 (17)0.78313 (12)0.0602 (4)
C60.7713 (2)0.38578 (18)0.78032 (13)0.0645 (4)
H6A0.77560.46910.81380.077*
C70.5327 (2)0.30287 (18)0.83354 (13)0.0646 (4)
H7A0.54470.38600.87060.078*
N80.41161 (18)0.21453 (14)0.82888 (11)0.0642 (4)
C90.2901 (2)0.24258 (16)0.87404 (12)0.0593 (4)
C100.1795 (2)0.13913 (17)0.88151 (14)0.0692 (5)
H10A0.18770.05580.85690.083*
C110.0566 (2)0.15580 (17)0.92465 (14)0.0706 (5)
H11A0.01600.08450.92920.085*
C120.0425 (2)0.27938 (16)0.96082 (12)0.0606 (4)
C130.1498 (2)0.38393 (17)0.95118 (14)0.0667 (5)
H13A0.13940.46710.97390.080*
C140.2712 (2)0.36611 (17)0.90851 (14)0.0666 (5)
H14A0.34190.43740.90250.080*
O150.07085 (16)0.30948 (12)1.00565 (10)0.0730 (4)
C160.1880 (2)0.20872 (17)1.01915 (14)0.0683 (5)
H16A0.13190.15891.05540.082*
H16B0.25650.15090.95810.082*
C170.2914 (2)0.27331 (17)1.07262 (13)0.0666 (5)
H17A0.34490.32311.03520.080*
H17B0.21950.33331.13200.080*
C180.4212 (2)0.18124 (18)1.09486 (16)0.0740 (5)
H18A0.36780.13381.13460.089*
H18B0.49120.11921.03590.089*
C190.5273 (2)0.24900 (19)1.14540 (15)0.0734 (5)
H19A0.45670.31081.20430.088*
H19B0.57900.29721.10570.088*
C200.6588 (3)0.1610 (2)1.1682 (2)0.0974 (7)
H20A0.60730.11441.20930.117*
H20B0.72830.09791.10950.117*
C210.7661 (3)0.2299 (3)1.2164 (2)0.1085 (8)
H21A0.84540.16811.23020.163*
H21B0.82220.27281.17490.163*
H21C0.69860.29251.27470.163*
O220.77632 (17)0.01980 (14)0.63440 (13)0.1008 (5)
C230.6461 (3)0.0735 (2)0.58199 (16)0.0801 (6)
O2410.5208 (7)0.0956 (6)0.6034 (6)0.149 (3)0.564 (9)
O2510.6943 (11)0.1715 (7)0.5473 (7)0.102 (3)0.564 (9)
C2610.5708 (9)0.2733 (8)0.4693 (6)0.097 (3)0.564 (9)
H26A0.52330.34150.49400.116*0.564 (9)
H26B0.48320.23800.44100.116*0.564 (9)
C2710.6431 (10)0.3250 (7)0.3991 (4)0.094 (2)0.564 (9)
H27A0.68820.26860.36840.113*0.564 (9)
C2810.6523 (11)0.4432 (6)0.3737 (7)0.116 (2)0.564 (9)
H28A0.60880.50310.40240.140*0.564 (9)
H28B0.70240.46830.32660.140*0.564 (9)
O2420.5239 (9)0.0401 (7)0.5506 (6)0.130 (3)0.436 (9)
O2520.6795 (12)0.1657 (9)0.5220 (9)0.080 (2)0.436 (9)
C2620.5589 (18)0.2909 (11)0.4839 (11)0.122 (5)0.436 (9)
H26C0.54540.32630.53620.147*0.436 (9)
H26D0.45370.27870.45290.147*0.436 (9)
C2720.6050 (10)0.3823 (10)0.4167 (7)0.116 (4)0.436 (9)
H27B0.55670.46870.40910.139*0.436 (9)
C2820.7030 (11)0.3623 (17)0.3657 (8)0.126 (4)0.436 (9)
H28C0.75590.27820.36950.151*0.436 (9)
H28D0.72100.43190.32490.151*0.436 (9)
O290.99760 (15)0.47296 (13)0.72656 (10)0.0782 (4)
C300.9509 (3)0.5274 (2)0.65583 (16)0.0760 (5)
O3110.8370 (8)0.4836 (9)0.5878 (5)0.125 (3)0.665 (9)
O3211.0645 (7)0.6334 (6)0.6683 (5)0.0712 (12)0.665 (9)
C3311.0261 (6)0.6997 (5)0.5963 (3)0.0784 (13)0.665 (9)
H33A0.92950.73130.59940.094*0.665 (9)
H33B1.00430.64160.53330.094*0.665 (9)
C3411.1697 (5)0.8080 (5)0.6154 (4)0.0931 (16)0.665 (9)
H34A1.27290.79150.62310.112*0.665 (9)
C3511.1595 (16)0.9217 (10)0.6217 (10)0.176 (5)0.665 (9)
H35A1.05750.94040.61420.212*0.665 (9)
H35B1.25380.98740.63390.212*0.665 (9)
O3120.8084 (8)0.5001 (13)0.6096 (7)0.074 (2)0.335 (9)
O3221.0978 (15)0.6155 (15)0.6718 (12)0.110 (5)0.335 (9)
C3321.122 (2)0.6920 (11)0.6036 (9)0.119 (4)0.335 (9)
H33C1.23530.70730.60240.143*0.335 (9)
H33D1.05290.64230.54020.143*0.335 (9)
C3421.081 (2)0.8163 (11)0.6282 (10)0.173 (9)0.335 (9)
H34B0.98410.81170.64590.207*0.335 (9)
C3521.1533 (14)0.9284 (7)0.6298 (11)0.086 (4)0.335 (9)
H35C1.25110.94190.61320.103*0.335 (9)
H35D1.10880.99750.64760.103*0.335 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0521 (9)0.0710 (11)0.0688 (11)0.0102 (8)0.0160 (8)0.0214 (9)
C20.0545 (10)0.0824 (13)0.0786 (12)0.0185 (9)0.0254 (9)0.0167 (10)
C30.0586 (10)0.0677 (11)0.0853 (13)0.0237 (9)0.0239 (9)0.0124 (9)
C40.0578 (10)0.0609 (10)0.0805 (12)0.0187 (8)0.0254 (9)0.0204 (9)
C50.0568 (9)0.0638 (10)0.0621 (10)0.0184 (8)0.0190 (8)0.0169 (8)
C60.0636 (10)0.0618 (10)0.0663 (10)0.0164 (8)0.0186 (9)0.0138 (8)
C70.0687 (11)0.0609 (10)0.0660 (11)0.0207 (9)0.0237 (9)0.0131 (8)
N80.0632 (9)0.0596 (8)0.0754 (10)0.0200 (7)0.0285 (7)0.0173 (7)
C90.0613 (10)0.0559 (9)0.0634 (10)0.0191 (8)0.0223 (8)0.0135 (8)
C100.0741 (11)0.0516 (9)0.0873 (13)0.0194 (9)0.0363 (10)0.0133 (9)
C110.0737 (11)0.0525 (10)0.0928 (13)0.0144 (9)0.0406 (11)0.0184 (9)
C120.0641 (10)0.0575 (10)0.0646 (10)0.0197 (8)0.0264 (8)0.0137 (8)
C130.0725 (11)0.0501 (9)0.0821 (12)0.0192 (8)0.0324 (10)0.0137 (8)
C140.0701 (11)0.0514 (9)0.0852 (12)0.0158 (8)0.0341 (10)0.0199 (9)
O150.0790 (8)0.0577 (7)0.0936 (9)0.0184 (6)0.0497 (7)0.0167 (6)
C160.0694 (11)0.0599 (10)0.0797 (12)0.0155 (9)0.0315 (10)0.0182 (9)
C170.0684 (11)0.0619 (10)0.0660 (11)0.0122 (8)0.0259 (9)0.0075 (8)
C180.0776 (12)0.0634 (11)0.0877 (13)0.0185 (9)0.0389 (11)0.0180 (10)
C190.0775 (12)0.0646 (11)0.0777 (12)0.0128 (9)0.0338 (10)0.0116 (9)
C200.1057 (17)0.0846 (15)0.1256 (19)0.0259 (13)0.0658 (16)0.0412 (14)
C210.1053 (18)0.121 (2)0.122 (2)0.0332 (16)0.0684 (16)0.0377 (17)
O220.0640 (8)0.0730 (9)0.1537 (15)0.0224 (7)0.0389 (9)0.0042 (9)
C230.0691 (13)0.0855 (14)0.0833 (14)0.0292 (12)0.0259 (11)0.0064 (11)
O2410.098 (3)0.123 (4)0.194 (6)0.009 (2)0.094 (4)0.043 (3)
O2510.092 (3)0.075 (3)0.110 (6)0.035 (2)0.003 (3)0.017 (3)
C2610.072 (4)0.091 (5)0.099 (5)0.030 (4)0.006 (3)0.020 (4)
C2710.080 (4)0.110 (5)0.075 (3)0.021 (4)0.005 (3)0.011 (3)
C2810.118 (5)0.098 (4)0.114 (5)0.033 (4)0.030 (4)0.009 (4)
O2420.097 (4)0.118 (5)0.129 (5)0.062 (4)0.029 (3)0.025 (3)
O2520.066 (4)0.093 (4)0.089 (5)0.039 (3)0.031 (4)0.018 (3)
C2620.145 (9)0.091 (7)0.105 (7)0.019 (6)0.051 (7)0.001 (6)
C2720.099 (5)0.061 (5)0.186 (9)0.012 (4)0.065 (5)0.013 (5)
C2820.101 (6)0.177 (13)0.118 (6)0.065 (7)0.048 (5)0.036 (8)
O290.0621 (7)0.0825 (9)0.0840 (9)0.0036 (7)0.0179 (7)0.0274 (7)
C300.0905 (16)0.0677 (12)0.0688 (13)0.0123 (11)0.0321 (12)0.0140 (10)
O3110.169 (5)0.101 (3)0.071 (3)0.008 (3)0.009 (3)0.022 (2)
O3210.0649 (15)0.070 (2)0.077 (2)0.0065 (18)0.0211 (15)0.0249 (17)
C3310.083 (3)0.078 (2)0.077 (2)0.014 (2)0.024 (2)0.0321 (18)
C3410.072 (2)0.086 (4)0.137 (4)0.016 (2)0.046 (2)0.050 (3)
C3510.166 (9)0.168 (11)0.214 (12)0.034 (8)0.094 (8)0.058 (8)
O3120.043 (3)0.097 (5)0.060 (4)0.009 (2)0.009 (3)0.025 (4)
O3220.156 (11)0.089 (5)0.118 (7)0.038 (6)0.080 (7)0.044 (4)
C3320.140 (11)0.120 (9)0.094 (7)0.018 (8)0.050 (8)0.019 (5)
C3420.185 (17)0.26 (3)0.197 (14)0.139 (19)0.122 (13)0.161 (16)
C3520.072 (6)0.038 (4)0.128 (9)0.000 (4)0.004 (6)0.023 (5)
Geometric parameters (Å, º) top
C1—C21.369 (3)C21—H21C0.96
C1—C61.378 (2)O22—C231.313 (2)
C1—O291.406 (2)C23—O2411.195 (4)
C2—C31.381 (3)C23—O2421.211 (4)
C2—H2A0.93C23—O2511.275 (6)
C3—C41.381 (3)C23—O2521.322 (7)
C3—O221.397 (2)O251—C2611.464 (7)
C4—C51.399 (2)C261—C2711.414 (8)
C4—H4A0.93C261—H26A0.97
C5—C61.387 (2)C261—H26B0.97
C5—C71.469 (2)C271—C2811.291 (7)
C6—H6A0.93C271—H27A0.93
C7—N81.259 (2)C281—H28A0.93
C7—H7A0.93C281—H28B0.93
N8—C91.421 (2)O252—C2621.458 (9)
C9—C101.379 (2)C262—C2721.440 (9)
C9—C141.395 (2)C262—H26C0.97
C10—C111.387 (2)C262—H26D0.97
C10—H10A0.93C272—C2821.287 (9)
C11—C121.384 (2)C272—H27B0.93
C11—H11A0.93C282—H28C0.93
C12—O151.361 (2)C282—H28D0.93
C12—C131.387 (2)O29—C301.350 (3)
C13—C141.373 (2)C30—O3111.174 (5)
C13—H13A0.93C30—O3121.208 (6)
C14—H14A0.93C30—O3211.315 (5)
O15—C161.432 (2)C30—O3221.374 (9)
C16—C171.506 (2)O321—C3311.444 (6)
C16—H16A0.97C331—C3411.467 (5)
C16—H16B0.97C331—H33A0.97
C17—C181.508 (3)C331—H33B0.97
C17—H17A0.97C341—C3511.251 (8)
C17—H17B0.97C341—H34A0.93
C18—C191.518 (3)C351—H35A0.93
C18—H18A0.97C351—H35B0.93
C18—H18B0.97O322—C3321.484 (9)
C19—C201.498 (3)C332—C3421.463 (10)
C19—H19A0.97C332—H33C0.97
C19—H19B0.97C332—H33D0.97
C20—C211.514 (3)C342—C3521.261 (10)
C20—H20A0.97C342—H34B0.93
C20—H20B0.97C352—H35C0.93
C21—H21A0.96C352—H35D0.93
C21—H21B0.96
C2—C1—C6121.97 (17)C20—C21—H21C109.5
C2—C1—O29119.21 (16)H21A—C21—H21C109.5
C6—C1—O29118.77 (17)H21B—C21—H21C109.5
C1—C2—C3118.05 (17)C23—O22—C3122.43 (15)
C1—C2—H2A121.0O241—C23—O251116.3 (6)
C3—C2—H2A121.0O242—C23—O251129.8 (5)
C2—C3—C4122.21 (17)O241—C23—O22123.4 (3)
C2—C3—O22114.62 (16)O242—C23—O22116.0 (4)
C4—C3—O22123.13 (18)O251—C23—O22108.3 (4)
C3—C4—C5118.46 (17)O241—C23—O252119.5 (5)
C3—C4—H4A120.8O242—C23—O252115.9 (7)
C5—C4—H4A120.8O22—C23—O252113.6 (5)
C6—C5—C4119.89 (16)C23—O251—C261115.8 (7)
C6—C5—C7119.33 (16)C271—C261—O251110.4 (7)
C4—C5—C7120.70 (16)C271—C261—H26A109.6
C1—C6—C5119.40 (17)O251—C261—H26A109.6
C1—C6—H6A120.3C271—C261—H26B109.6
C5—C6—H6A120.3O251—C261—H26B109.6
N8—C7—C5123.01 (17)H26A—C261—H26B108.1
N8—C7—H7A118.5C281—C271—C261126.2 (11)
C5—C7—H7A118.5C281—C271—H27A116.9
C7—N8—C9120.81 (15)C261—C271—H27A116.9
C10—C9—C14117.79 (15)C271—C281—H28A120.0
C10—C9—N8117.22 (15)C271—C281—H28B120.0
C14—C9—N8124.95 (16)H28A—C281—H28B120.0
C9—C10—C11121.88 (16)C23—O252—C262117.8 (8)
C9—C10—H10A119.1C272—C262—O252113.0 (10)
C11—C10—H10A119.1C272—C262—H26C109.0
C12—C11—C10119.52 (16)O252—C262—H26C109.0
C12—C11—H11A120.2C272—C262—H26D109.0
C10—C11—H11A120.2O252—C262—H26D109.0
O15—C12—C11125.58 (16)H26C—C262—H26D107.8
O15—C12—C13115.30 (15)C282—C272—C262129.7 (16)
C11—C12—C13119.12 (15)C282—C272—H27B115.1
C14—C13—C12120.75 (16)C262—C272—H27B115.1
C14—C13—H13A119.6C272—C282—H28C120.0
C12—C13—H13A119.6C272—C282—H28D120.0
C13—C14—C9120.87 (16)H28C—C282—H28D120.0
C13—C14—H14A119.6C30—O29—C1115.14 (15)
C9—C14—H14A119.6O311—C30—O321123.3 (5)
C12—O15—C16119.90 (13)O312—C30—O321126.9 (7)
O15—C16—C17106.86 (14)O311—C30—O29127.1 (5)
O15—C16—H16A110.4O312—C30—O29120.5 (6)
C17—C16—H16A110.4O321—C30—O29109.2 (3)
O15—C16—H16B110.4O311—C30—O322131.1 (8)
C17—C16—H16B110.4O312—C30—O322140.5 (9)
H16A—C16—H16B108.6O29—C30—O32298.3 (6)
C16—C17—C18114.36 (15)C30—O321—C331113.6 (4)
C16—C17—H17A108.7O321—C331—C341106.9 (4)
C18—C17—H17A108.7O321—C331—H33A110.3
C16—C17—H17B108.7C341—C331—H33A110.3
C18—C17—H17B108.7O321—C331—H33B110.3
H17A—C17—H17B107.6C341—C331—H33B110.3
C17—C18—C19113.01 (16)H33A—C331—H33B108.6
C17—C18—H18A109.0C351—C341—C331122.8 (9)
C19—C18—H18A109.0C351—C341—H34A118.6
C17—C18—H18B109.0C331—C341—H34A118.6
C19—C18—H18B109.0C341—C351—H35A120.0
H18A—C18—H18B107.8C341—C351—H35B120.0
C20—C19—C18114.79 (17)H35A—C351—H35B120.0
C20—C19—H19A108.6C30—O322—C332120.9 (11)
C18—C19—H19A108.6C342—C332—O322112.6 (11)
C20—C19—H19B108.6C342—C332—H33C109.1
C18—C19—H19B108.6O322—C332—H33C109.1
H19A—C19—H19B107.5C342—C332—H33D109.1
C19—C20—C21114.1 (2)O322—C332—H33D109.1
C19—C20—H20A108.7H33C—C332—H33D107.8
C21—C20—H20A108.7C352—C342—C332131.7 (15)
C19—C20—H20B108.7C352—C342—H34B114.2
C21—C20—H20B108.7C332—C342—H34B114.2
H20A—C20—H20B107.6C342—C352—H35C120.0
C20—C21—H21A109.5C342—C352—H35D120.0
C20—C21—H21B109.5H35C—C352—H35D120.0
H21A—C21—H21B109.5
C6—C1—C2—C30.9 (3)C4—C3—O22—C2344.3 (3)
O29—C1—C2—C3178.39 (17)C3—O22—C23—O24138.6 (7)
C1—C2—C3—C40.3 (3)C3—O22—C23—O24224.6 (7)
C1—C2—C3—O22177.81 (17)C3—O22—C23—O251179.7 (6)
C2—C3—C4—C50.3 (3)C3—O22—C23—O252162.6 (7)
O22—C3—C4—C5177.54 (18)O241—C23—O251—C26150.0 (14)
C3—C4—C5—C60.8 (3)O242—C23—O251—C26114.5 (18)
C3—C4—C5—C7175.94 (17)O22—C23—O251—C261165.8 (8)
C2—C1—C6—C51.4 (3)O252—C23—O251—C26155 (2)
O29—C1—C6—C5178.93 (15)C23—O251—C261—C271141.0 (8)
C4—C5—C6—C11.4 (3)O251—C261—C271—C281117.9 (9)
C7—C5—C6—C1175.40 (16)O241—C23—O252—C2620.7 (17)
C6—C5—C7—N8170.43 (18)O242—C23—O252—C26261.5 (16)
C4—C5—C7—N86.3 (3)O251—C23—O252—C26285 (3)
C5—C7—N8—C9175.94 (15)O22—C23—O252—C262160.4 (10)
C7—N8—C9—C10167.86 (18)C23—O252—C262—C272177.8 (12)
C7—N8—C9—C1414.3 (3)O252—C262—C272—C28223 (2)
C14—C9—C10—C112.2 (3)C2—C1—O29—C3091.0 (2)
N8—C9—C10—C11179.72 (17)C6—C1—O29—C3091.5 (2)
C9—C10—C11—C120.5 (3)C1—O29—C30—O31113.5 (6)
C10—C11—C12—O15179.23 (18)C1—O29—C30—O31213.3 (8)
C10—C11—C12—C131.4 (3)C1—O29—C30—O321173.9 (4)
O15—C12—C13—C14178.99 (17)C1—O29—C30—O322174.0 (9)
C11—C12—C13—C141.6 (3)O311—C30—O321—C3317.2 (10)
C12—C13—C14—C90.2 (3)O312—C30—O321—C33120.8 (11)
C10—C9—C14—C132.1 (3)O29—C30—O321—C331179.8 (5)
N8—C9—C14—C13179.94 (17)O322—C30—O321—C331131 (4)
C11—C12—O15—C160.5 (3)C30—O321—C331—C341175.1 (6)
C13—C12—O15—C16179.83 (16)O321—C331—C341—C351128.8 (9)
C12—O15—C16—C17178.47 (15)O311—C30—O322—C33212 (2)
O15—C16—C17—C18179.06 (16)O312—C30—O322—C33218 (3)
C16—C17—C18—C19177.82 (17)O321—C30—O322—C33254 (3)
C17—C18—C19—C20179.53 (19)O29—C30—O322—C332171.8 (14)
C18—C19—C20—C21178.6 (2)C30—O322—C332—C34292 (2)
C2—C3—O22—C23138.2 (2)O322—C332—C342—C352136.0 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O15i0.932.603.511 (2)166
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC27H31NO7
Mr481.53
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.6407 (11), 10.9711 (14), 15.014 (2)
α, β, γ (°)102.756 (11), 103.368 (12), 101.092 (12)
V3)1305.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.6 × 0.2
Data collection
DiffractometerBruker P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8105, 5927, 3505
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.165, 1.04
No. of reflections5927
No. of parameters409
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O15i0.932.603.511 (2)166
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

AMH is indebted to PROMEP (Mexico) for providing a research grant. Partial support from VIEP-BUAP (project Nos. 7/I/NAT/05 and 36/NA/06–1) is gratefully acknowledged.

References

First citationBurns, A. C. & Forsyth, C. J. (2008). Org. Lett. 10, 97–100.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlores Ahuactzin, V. H., López, D. & Bernès, S. (2009). Acta Cryst. E65, o1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerrera, A. M. (2006). PhD Thesis, Universidad Autónoma de Puebla, Mexico.  Google Scholar
First citationHerrera, A. M., Bernès, S. & López, D. (2005). Acta Cryst. E61, o3212–o3213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMichelet, V., Adiey, K., Tanier, S., Dujardin, G. & Genêt, J. P. (2003). Eur. J. Org. Chem. pp. 2947–2958.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds