metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-imino­methyl-5-meth­oxy­phenolato)nickel(II)

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@126.com

(Received 24 September 2009; accepted 27 September 2009; online 3 October 2009)

The title compound, [Ni(C8H8NO2)2], is a centrosymmetric mononuclear nickel(II) complex. The NiII ion, lying on an inversion centre, is four-coordinated in a square-planar geometry by two phenolate O and two imine N atoms from two symmetry-related 2-imino­methyl-5-methoxy­phenolate ligands. In the crystal, mol­ecules are linked into corrugated layers parallel to (100) by N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Angulo et al. (2001[Angulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem. 40, 2073-2082.]); Dey et al. (2004[Dey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem. 43, 2427-2434.]); Edison et al. (2004[Edison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst. E60, m1930-m1932.]); Ramadevi et al. (2005[Ramadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749-m1751.]); Suh et al. (1996[Suh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc. 118, 777-783.]); Tang (2009[Tang, C. (2009). Acta Cryst. E65, m317.]); Kamenar et al. (1990[Kamenar, B., Kaitner, B., Stefanović, A. & Waters, T. N. (1990). Acta Cryst. C46, 1627-1631.]); Costes et al. (1994[Costes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem. 33, 2738-2742.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8NO2)2]

  • Mr = 359.02

  • Orthorhombic, P b c a

  • a = 7.5704 (16) Å

  • b = 11.331 (2) Å

  • c = 17.227 (4) Å

  • V = 1477.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.795, Tmax = 0.805

  • 7939 measured reflections

  • 1620 independent reflections

  • 1122 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.083

  • S = 1.01

  • 1620 reflections

  • 110 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.8411 (16)
Ni1—N1 1.8529 (18)
O1i—Ni1—O1 180
O1—Ni1—N1i 86.08 (6)
O1—Ni1—N1 93.92 (6)
N1i—Ni1—N1 180
Symmetry code: (i) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.90 (1) 2.391 (18) 3.166 (2) 144 (2)
Symmetry code: (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Dey et al., 2004; Angulo et al., 2001; Ramadevi et al., 2005; Edison et al., 2004). Recently, the author has reported a nickel(II) complex (Tang, 2009). As a continuation of this work, the title mononuclear nickel(II) complex (Fig. 1), is reported in this paper.

The title complex is a centrosymmetric mononuclear nickel(II) complex. The NiII ion, lying on the inversion centre, is four-coordinated in a square-planar geometry, with two phenolate O and two imine N atoms from two 2-(iminomethyl)-5-methoxyphenolate ligands. The coordination bond lengths (Table 1) are comparable to those observed in related complexes (Kamenar et al., 1990; Costes et al., 1994).

In the crytal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 2), forming zigzag layers parallel to the (100) [Fig.2].

Related literature top

For related structures, see: Angulo et al. (2001); Dey et al. (2004); Edison et al. (2004); Ramadevi et al. (2005); Suh et al. (1996); Tang (2009); Kamenar et al. (1990); Costes et al. (1994).

Experimental top

4-Methoxy-2-hydroxybenzaldehyde (0.2 mmol, 30.5 mg) and nickel(II) nitrate hexahydrate (0.1 mmol, 29.1 mg) were mixed in a methanol solution (20 ml) which contains small quantity of ammonia. The mixture was stirred at room temperature for 30 min to give a red solution. The solution was allowed to stand in air for 8 d, yielding red block-shaped crystals of the title complex. The absorption band indicative of the CN double bond formation in the IR spectrum of the complex is at 1617 cm-1.

Refinement top

Atom H1 was located in a difference Fourier map and refined isotropically, with N-H distance restrained to 0.90 (1) Å and Uiso set at 0.08 Å2. Other H atoms were constrained to ideal geometries, with C-H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8).

Structure description top

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Dey et al., 2004; Angulo et al., 2001; Ramadevi et al., 2005; Edison et al., 2004). Recently, the author has reported a nickel(II) complex (Tang, 2009). As a continuation of this work, the title mononuclear nickel(II) complex (Fig. 1), is reported in this paper.

The title complex is a centrosymmetric mononuclear nickel(II) complex. The NiII ion, lying on the inversion centre, is four-coordinated in a square-planar geometry, with two phenolate O and two imine N atoms from two 2-(iminomethyl)-5-methoxyphenolate ligands. The coordination bond lengths (Table 1) are comparable to those observed in related complexes (Kamenar et al., 1990; Costes et al., 1994).

In the crytal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 2), forming zigzag layers parallel to the (100) [Fig.2].

For related structures, see: Angulo et al. (2001); Dey et al. (2004); Edison et al. (2004); Ramadevi et al. (2005); Suh et al. (1996); Tang (2009); Kamenar et al. (1990); Costes et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are at the symmetry position (2-x, -y, 1-z).
[Figure 2] Fig. 2. Packing diagram, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
Bis(2-iminomethyl-5-methoxyphenolato)nickel(II) top
Crystal data top
[Ni(C8H8NO2)2]F(000) = 744
Mr = 359.02Dx = 1.614 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1894 reflections
a = 7.5704 (16) Åθ = 2.3–26.2°
b = 11.331 (2) ŵ = 1.34 mm1
c = 17.227 (4) ÅT = 298 K
V = 1477.7 (5) Å3Block, red
Z = 40.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1620 independent reflections
Radiation source: fine-focus sealed tube1122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 96
Tmin = 0.795, Tmax = 0.805k = 1114
7939 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.384P]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
[Ni(C8H8NO2)2]V = 1477.7 (5) Å3
Mr = 359.02Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.5704 (16) ŵ = 1.34 mm1
b = 11.331 (2) ÅT = 298 K
c = 17.227 (4) Å0.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1620 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1122 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.805Rint = 0.028
7939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
1620 reflectionsΔρmin = 0.29 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.50000.03483 (14)
O10.98642 (18)0.00398 (11)0.39332 (9)0.0407 (4)
O20.8757 (2)0.14990 (13)0.13928 (8)0.0486 (4)
N10.9039 (3)0.14925 (16)0.51213 (9)0.0422 (4)
C10.8581 (3)0.19740 (17)0.37798 (11)0.0366 (5)
C20.9275 (3)0.08998 (17)0.34895 (11)0.0352 (4)
C30.9336 (3)0.07278 (17)0.26800 (11)0.0369 (5)
H30.97830.00260.24800.044*
C40.8738 (3)0.15895 (18)0.21830 (11)0.0380 (5)
C50.8038 (3)0.26481 (18)0.24643 (12)0.0457 (5)
H50.76340.32240.21230.055*
C60.7956 (3)0.28230 (19)0.32452 (12)0.0426 (5)
H60.74730.35220.34330.051*
C70.8489 (3)0.22017 (18)0.45884 (12)0.0423 (5)
H70.79970.29150.47460.051*
C80.9403 (4)0.0435 (2)0.10637 (13)0.0547 (6)
H8A1.06250.03380.11980.082*
H8B0.92860.04670.05090.082*
H8C0.87360.02200.12610.082*
H10.897 (3)0.176 (2)0.5612 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0469 (2)0.0262 (2)0.0314 (2)0.00123 (15)0.00135 (15)0.00138 (14)
O10.0622 (10)0.0268 (8)0.0330 (7)0.0072 (6)0.0022 (6)0.0002 (5)
O20.0658 (10)0.0432 (9)0.0367 (8)0.0046 (7)0.0027 (7)0.0072 (7)
N10.0578 (12)0.0320 (10)0.0367 (10)0.0037 (9)0.0006 (8)0.0044 (7)
C10.0413 (11)0.0290 (10)0.0395 (11)0.0004 (8)0.0032 (8)0.0019 (9)
C20.0384 (11)0.0289 (11)0.0382 (11)0.0038 (9)0.0029 (8)0.0015 (8)
C30.0442 (11)0.0284 (10)0.0381 (11)0.0001 (9)0.0005 (9)0.0001 (8)
C40.0402 (12)0.0361 (11)0.0378 (11)0.0045 (9)0.0036 (8)0.0045 (9)
C50.0532 (12)0.0351 (12)0.0488 (13)0.0023 (10)0.0072 (10)0.0107 (10)
C60.0499 (13)0.0279 (11)0.0500 (13)0.0058 (9)0.0032 (10)0.0007 (10)
C70.0516 (14)0.0281 (11)0.0472 (13)0.0038 (10)0.0018 (10)0.0050 (9)
C80.0743 (16)0.0515 (14)0.0382 (12)0.0055 (13)0.0010 (11)0.0029 (11)
Geometric parameters (Å, º) top
Ni1—O1i1.8411 (16)C2—C31.409 (3)
Ni1—O11.8411 (16)C3—C41.375 (3)
Ni1—N1i1.8529 (18)C3—H30.93
Ni1—N11.8529 (18)C4—C51.398 (3)
O1—C21.316 (2)C5—C61.361 (3)
O2—C41.365 (2)C5—H50.93
O2—C81.419 (3)C6—H60.93
N1—C71.289 (3)C7—H70.93
N1—H10.901 (10)C8—H8A0.96
C1—C61.413 (3)C8—H8B0.96
C1—C21.417 (3)C8—H8C0.96
C1—C71.418 (3)
O1i—Ni1—O1180C2—C3—H3119.8
O1i—Ni1—N1i93.92 (6)O2—C4—C3124.35 (19)
O1—Ni1—N1i86.08 (6)O2—C4—C5114.44 (18)
O1i—Ni1—N186.08 (6)C3—C4—C5121.21 (19)
O1—Ni1—N193.92 (6)C6—C5—C4119.00 (19)
N1i—Ni1—N1180C6—C5—H5120.5
C2—O1—Ni1128.08 (13)C4—C5—H5120.5
C4—O2—C8117.75 (16)C5—C6—C1121.97 (19)
C7—N1—Ni1127.97 (15)C5—C6—H6119.0
C7—N1—H1116.0 (17)C1—C6—H6119.0
Ni1—N1—H1116.0 (17)N1—C7—C1124.78 (19)
C6—C1—C2118.63 (18)N1—C7—H7117.6
C6—C1—C7119.98 (18)C1—C7—H7117.6
C2—C1—C7121.40 (18)O2—C8—H8A109.5
O1—C2—C3117.48 (18)O2—C8—H8B109.5
O1—C2—C1123.82 (17)H8A—C8—H8B109.5
C3—C2—C1118.69 (18)O2—C8—H8C109.5
C4—C3—C2120.50 (19)H8A—C8—H8C109.5
C4—C3—H3119.8H8B—C8—H8C109.5
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.90 (1)2.39 (2)3.166 (2)144 (2)
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H8NO2)2]
Mr359.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.5704 (16), 11.331 (2), 17.227 (4)
V3)1477.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.795, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
7939, 1620, 1122
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.083, 1.01
No. of reflections1620
No. of parameters110
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.8411 (16)Ni1—N11.8529 (18)
O1i—Ni1—O1180O1—Ni1—N193.92 (6)
O1—Ni1—N1i86.08 (6)N1i—Ni1—N1180
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.90 (1)2.391 (18)3.166 (2)144 (2)
Symmetry code: (ii) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAngulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem. 40, 2073–2082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem. 33, 2738–2742.  CrossRef CAS Web of Science Google Scholar
First citationDey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem. 43, 2427–2434.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEdison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst. E60, m1930–m1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamenar, B., Kaitner, B., Stefanović, A. & Waters, T. N. (1990). Acta Cryst. C46, 1627–1631.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749–m1751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc. 118, 777–783.  CSD CrossRef CAS Web of Science Google Scholar
First citationTang, C. (2009). Acta Cryst. E65, m317.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds