organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-(cyclo­pentyl­imino­meth­yl)phenol

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 24 September 2009; accepted 26 September 2009; online 3 October 2009)

All atoms of the title mol­ecule, C12H13BrClNO, except the C and H atoms of the cyclo­pentane methyl­ene groups lie on a crystallographic mirror plane. The cyclo­pentane ring adopts an envelope conformation and an intra­molecular O—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are stacked along the b axis by ππ inter­actions [centroid–centroid distance = 3.6424 (11) Å].

Related literature

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For the coordination chemistry of Schiff bases, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For the crystal structures of Schiff base compounds, see: Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13BrClNO

  • Mr = 302.59

  • Orthorhombic, P n m a

  • a = 12.142 (2) Å

  • b = 6.8610 (14) Å

  • c = 15.077 (3) Å

  • V = 1256.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.46 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.544, Tmax = 0.574

  • 10340 measured reflections

  • 1488 independent reflections

  • 1132 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.08

  • 1488 reflections

  • 93 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.89 (6) 1.71 (6) 2.577 (5) 162 (5)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds are a class of important materials used in pharmaceutical and medicinal appications (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, crystal structures of a large number of Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). In this paper, the title new Schiff base compound (Fig. 1) is reported.

All atoms of the title molecule, except the C and H atoms of the four methylene groups lie on a crystallographic mirror plane. The cyclopentane ring adopts a an envelope conformation. An intramolecular O—H···N hydrogen bond (Table 1) is observed. All bond lengths are within normal values (Allen et al., 1987).

In the crystal, molecules are stacked along the b axis with π-π interactions [centroid to centroid distance = 3.6424 (11) Å].

Related literature top

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

3-Bromo-5-chlorosalicylaldehyde (0.1 mmol, 23.5 mg) and cyclopentylamine (0.1 mmol, 8.5 mg) were refluxed in a 30 ml methanol solution for 30 min to give a clear orange solution. Yellow block-shaped single crystals of the title compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

Atom H1 was located from a difference map and its positional parameters were refined. The remaining H atoms were constrained to ideal geometries, with C-H = 0.93–0.98 Å. The Uiso(H) values were set at 1.2Ueq(C) and 1.5Ueq(O). The Uij components of atom C10 were restrained to an approximate isotropic behaviour.

Structure description top

Schiff base compounds are a class of important materials used in pharmaceutical and medicinal appications (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, crystal structures of a large number of Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). In this paper, the title new Schiff base compound (Fig. 1) is reported.

All atoms of the title molecule, except the C and H atoms of the four methylene groups lie on a crystallographic mirror plane. The cyclopentane ring adopts a an envelope conformation. An intramolecular O—H···N hydrogen bond (Table 1) is observed. All bond lengths are within normal values (Allen et al., 1987).

In the crystal, molecules are stacked along the b axis with π-π interactions [centroid to centroid distance = 3.6424 (11) Å].

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids. The dashed line indicates an intramolecular O—H···N hydrogen bond.
2-Bromo-4-chloro-6-(cyclopentyliminomethyl)phenol top
Crystal data top
C12H13BrClNOF(000) = 608
Mr = 302.59Dx = 1.600 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2255 reflections
a = 12.142 (2) Åθ = 2.6–24.5°
b = 6.8610 (14) ŵ = 3.46 mm1
c = 15.077 (3) ÅT = 298 K
V = 1256.0 (4) Å3Block, yellow
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1488 independent reflections
Radiation source: fine-focus sealed tube1132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.544, Tmax = 0.574k = 88
10340 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.5702P]
where P = (Fo2 + 2Fc2)/3
1488 reflections(Δ/σ)max = 0.001
93 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = 0.89 e Å3
Crystal data top
C12H13BrClNOV = 1256.0 (4) Å3
Mr = 302.59Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.142 (2) ŵ = 3.46 mm1
b = 6.8610 (14) ÅT = 298 K
c = 15.077 (3) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1488 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1132 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.574Rint = 0.040
10340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
1488 reflectionsΔρmin = 0.89 e Å3
93 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24144 (4)0.25000.43777 (4)0.0689 (3)
Cl10.17429 (13)0.25000.29606 (9)0.0784 (5)
O10.1127 (2)0.25000.60853 (19)0.0495 (7)
H10.063 (5)0.25000.652 (4)0.074*
N10.0610 (3)0.25000.7067 (2)0.0529 (9)
C10.0712 (3)0.25000.5489 (3)0.0411 (9)
C20.0460 (3)0.25000.5392 (3)0.0401 (9)
C30.0878 (4)0.25000.4537 (3)0.0428 (9)
C40.0210 (4)0.25000.3801 (3)0.0510 (11)
H40.05170.25000.32350.061*
C50.0921 (4)0.25000.3908 (3)0.0515 (11)
C60.1374 (4)0.25000.4740 (3)0.0498 (10)
H60.21360.25000.48040.060*
C70.1190 (4)0.25000.6365 (3)0.0506 (10)
H70.19530.25000.64180.061*
C80.1145 (4)0.25000.7942 (3)0.0627 (14)
H80.19500.25000.78930.075*
C90.0723 (4)0.0775 (6)0.8482 (3)0.0887 (14)
H9A0.06200.03590.81070.106*
H9B0.12370.04470.89520.106*
C100.0323 (5)0.1421 (10)0.8850 (4)0.133 (2)
H10A0.04090.09340.94500.159*
H10B0.09280.09340.84930.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0544 (3)0.0935 (5)0.0588 (4)0.0000.0150 (2)0.000
Cl10.0888 (10)0.0947 (11)0.0517 (7)0.0000.0307 (7)0.000
O10.0437 (16)0.0639 (19)0.0409 (16)0.0000.0048 (13)0.000
N10.048 (2)0.072 (3)0.0388 (19)0.0000.0052 (16)0.000
C10.041 (2)0.040 (2)0.042 (2)0.0000.0002 (16)0.000
C20.049 (2)0.032 (2)0.039 (2)0.0000.0013 (17)0.000
C30.051 (2)0.035 (2)0.042 (2)0.0000.0035 (18)0.000
C40.075 (3)0.043 (2)0.036 (2)0.0000.001 (2)0.000
C50.063 (3)0.049 (3)0.042 (2)0.0000.015 (2)0.000
C60.046 (2)0.049 (2)0.054 (3)0.0000.012 (2)0.000
C70.041 (2)0.061 (3)0.051 (2)0.0000.0026 (19)0.000
C80.043 (2)0.100 (4)0.046 (2)0.0000.010 (2)0.000
C90.134 (4)0.076 (3)0.057 (2)0.008 (3)0.034 (2)0.007 (2)
C100.108 (4)0.180 (6)0.110 (4)0.023 (4)0.015 (3)0.040 (4)
Geometric parameters (Å, º) top
Br1—C31.881 (5)C5—C61.370 (6)
Cl1—C51.743 (4)C6—H60.93
O1—C21.322 (5)C7—H70.93
O1—H10.89 (6)C8—C91.526 (5)
N1—C71.271 (6)C8—C9i1.526 (5)
N1—C81.470 (5)C8—H80.98
C1—C61.385 (6)C9—C101.455 (7)
C1—C21.430 (6)C9—H9A0.97
C1—C71.443 (6)C9—H9B0.97
C2—C31.386 (6)C10—C10i1.480 (14)
C3—C41.374 (6)C10—H10A0.97
C4—C51.383 (7)C10—H10B0.97
C4—H40.93
C2—O1—H199 (4)N1—C7—H7118.7
C7—N1—C8120.1 (4)C1—C7—H7118.7
C6—C1—C2119.6 (4)N1—C8—C9109.3 (3)
C6—C1—C7120.8 (4)N1—C8—C9i109.3 (3)
C2—C1—C7119.5 (4)C9—C8—C9i101.7 (5)
O1—C2—C3120.7 (4)N1—C8—H8112.0
O1—C2—C1121.9 (4)C9—C8—H8112.0
C3—C2—C1117.3 (4)C9i—C8—H8112.0
C4—C3—C2122.3 (4)C10—C9—C8105.1 (4)
C4—C3—Br1118.9 (3)C10—C9—H9A110.7
C2—C3—Br1118.8 (3)C8—C9—H9A110.7
C3—C4—C5119.4 (4)C10—C9—H9B110.7
C3—C4—H4120.3C8—C9—H9B110.7
C5—C4—H4120.3H9A—C9—H9B108.8
C6—C5—C4120.4 (4)C9—C10—C10i107.7 (3)
C6—C5—Cl1121.4 (4)C9—C10—H10A110.2
C4—C5—Cl1118.2 (3)C10i—C10—H10A110.2
C5—C6—C1120.8 (4)C9—C10—H10B110.2
C5—C6—H6119.6C10i—C10—H10B110.2
C1—C6—H6119.6H10A—C10—H10B108.5
N1—C7—C1122.7 (4)
C6—C1—C2—O1180.0C4—C5—C6—C10.0
C7—C1—C2—O10.0Cl1—C5—C6—C1180.0
C6—C1—C2—C30.0C2—C1—C6—C50.0
C7—C1—C2—C3180.0C7—C1—C6—C5180.0
O1—C2—C3—C4180.0C8—N1—C7—C1180.0
C1—C2—C3—C40.0C6—C1—C7—N1180.0
O1—C2—C3—Br10.0C2—C1—C7—N10.000 (1)
C1—C2—C3—Br1180.0C7—N1—C8—C9124.7 (3)
C2—C3—C4—C50.0C7—N1—C8—C9i124.7 (3)
Br1—C3—C4—C5180.0N1—C8—C9—C1081.8 (4)
C3—C4—C5—C60.0C9i—C8—C9—C1033.7 (5)
C3—C4—C5—Cl1180.0C8—C9—C10—C10i21.6 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (6)1.71 (6)2.577 (5)162 (5)

Experimental details

Crystal data
Chemical formulaC12H13BrClNO
Mr302.59
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)12.142 (2), 6.8610 (14), 15.077 (3)
V3)1256.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.46
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.544, 0.574
No. of measured, independent and
observed [I > 2σ(I)] reflections
10340, 1488, 1132
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.08
No. of reflections1488
No. of parameters93
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.89

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (6)1.71 (6)2.577 (5)162 (5)
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds