organic compounds
1,3-Bis(hydroxymethyl)benzimidazolin-2-one
aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com
The title compound, C9H10N2O3, crystallizes with one and a half molecules in the one lying on a general position and the other on a twofold rotation axis. The dihedral angle between the two independent benzimidazole ring systems is 18.96 (5)°. In the crystal, molecules are linked into a three-dimensional network by O—H⋯O hydrogen bonding involving N-hydroxymethyl and carbonyl groups, and C—H⋯O hydrogen bonds.
Related literature
For general background to 2-benzimidazolones, see: Raghu et al. (2005); Porret & Hebermeier (1974); Habermeier (1976); Trask-Morrel et al. (1988); Hammach et al. (2006); Bansal et al. (1981). For related structures, see: Anklekar & Kulkarni (1995); Schwiebert et al. (1996). For the synthesis, see: Zinner & Spangenberg (1958).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809040963/ci2925sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040963/ci2925Isup2.hkl
The title compound was prepared by following a literature method (Zinner et al., 1958). A mixture of 2-hydroxy benzimidazole (13.4 g, 0.01 M) and 37% formalin (30 ml, 1M) was refluxed for 30 minutes in presence of 100 ml water. The solid product formed was filtered and single crystals were grown by slow evaporation in water (yield 92%, m.p. 433 K). Spectral data IRνCO = 1700 cm-1, νOH = 3300 cm-1. 1H NMR -(CDCl3+DMSO-d6)δ p.p.m. - 5.3(4H, d, CH2) appeared as singlet on D2O exchange, 6.2(2H, t, OH) vanished on D2O exchange, 7.4–7.8 (4H, m, Ar-H). Mass m/z = 134 (100%).
H atoms were positioned at calculated positions [O-H = 0.82 Å and C-H = 0.93–0.97 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).
1,3-Bishydroxyalkylated benzimidazolones are an important class of functionalized benzimidazoles which have been found to be useful as polymer intermediates (Raghu et al., 2005; Porret et al., 1974), fire retardants (Habermeier, 1976), and in curing process in textile industry (Trask-Morrel et al., 1988). Solid state chemistry of hydroxy methylated benzimidazole derivatives leading to thermal extrusion of formaldehyde has been reported (Anklekar et al., 1995) by our group. Design and synthesis of benzimidazolone p38 MAP kinase inhibitors (Hammach et al., 2006) is based on the analysis of their
data. Benzimidazolones have been reported to crystallize as hydrogen bonded molecular tapes (Schwiebert et al., 1996) which has been used to engineer structures of organic solids. In view of the therapeutic importance of aromatic and hetero aromatic compounds (Bansal et al., 1981) containing N-hydroxymethyl group, we report here the of title compound.The
of the title compound contains one and a half molecules, one lying on a general position and and the other on a twofold rotation axis (Fig.1). Atoms O4 and C13 lie on the twofold rotation axis. The two independent benzimidazole ring systems form a dihedral angle of 18.96 (5)°. There are no intramolecular hydrogen bonding between N-hydroxymethyl and carbonyl groups.In the crystal, O—H···O hydrogen bonding involving N-hydroxymethyl and carbonyl groups results in the formation of three-dimensional network (Fig.2). In addition, C—H···O hydrogen bonds (Table 1) are observed. This type of intermolecular association is similar to that observed in the structure of benzimidazolone (Schwiebert et al., 1996).
For general background to 2-benzimidazolones, see: Raghu et al. (2005); Porret et al. (1974); Habermeier (1976); Trask-Morrel et al. (1988); Hammach et al. (2006); Bansal et al. (1981). For related structures, see: Anklekar et al. (1995); Schwiebert et al. (1996). For the synthesis, see: Zinner et al. (1958).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H10N2O3 | F(000) = 1224 |
Mr = 194.19 | Dx = 1.465 Mg m−3 |
Monoclinic, C2/c | Melting point: 433 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5515 (14) Å | Cell parameters from 2684 reflections |
b = 11.0848 (12) Å | θ = 2.3–26.4° |
c = 17.6253 (19) Å | µ = 0.11 mm−1 |
β = 94.216 (2)° | T = 273 K |
V = 2640.4 (5) Å3 | Plate, white |
Z = 12 | 0.22 × 0.20 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 2684 independent reflections |
Radiation source: fine-focus sealed tube | 2395 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and φ scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −16→16 |
Tmin = 0.976, Tmax = 0.986 | k = −13→13 |
13521 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0486P)2 + 1.5821P] where P = (Fo2 + 2Fc2)/3 |
2684 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C9H10N2O3 | V = 2640.4 (5) Å3 |
Mr = 194.19 | Z = 12 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.5515 (14) Å | µ = 0.11 mm−1 |
b = 11.0848 (12) Å | T = 273 K |
c = 17.6253 (19) Å | 0.22 × 0.20 × 0.10 mm |
β = 94.216 (2)° |
Bruker SMART CCD area-detector diffractometer | 2684 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2395 reflections with I > 2σ(I) |
Tmin = 0.976, Tmax = 0.986 | Rint = 0.025 |
13521 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.16 e Å−3 |
2684 reflections | Δρmin = −0.24 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.36019 (9) | 0.44213 (11) | 0.19000 (7) | 0.0555 (3) | |
H1A | 0.4009 | 0.3984 | 0.2131 | 0.083* | |
O2 | 0.51268 (9) | 0.85515 (11) | −0.04107 (7) | 0.0560 (3) | |
H2A | 0.4597 | 0.8565 | −0.0667 | 0.084* | |
O3 | 0.32846 (8) | 0.69395 (11) | 0.07135 (7) | 0.0525 (3) | |
N1 | 0.44553 (9) | 0.54147 (11) | 0.09507 (7) | 0.0390 (3) | |
N2 | 0.49663 (9) | 0.72131 (11) | 0.06132 (7) | 0.0420 (3) | |
C1 | 0.61458 (12) | 0.44272 (15) | 0.11034 (9) | 0.0469 (4) | |
H1 | 0.5932 | 0.3665 | 0.1238 | 0.056* | |
C2 | 0.71420 (13) | 0.46756 (18) | 0.10526 (10) | 0.0568 (5) | |
H2 | 0.7604 | 0.4063 | 0.1146 | 0.068* | |
C3 | 0.74639 (13) | 0.5819 (2) | 0.08647 (10) | 0.0582 (5) | |
H3 | 0.8138 | 0.5963 | 0.0847 | 0.070* | |
C4 | 0.67978 (12) | 0.67501 (17) | 0.07028 (9) | 0.0499 (4) | |
H4 | 0.7012 | 0.7516 | 0.0576 | 0.060* | |
C5 | 0.58057 (11) | 0.64950 (13) | 0.07380 (8) | 0.0388 (3) | |
C6 | 0.54853 (11) | 0.53545 (13) | 0.09463 (8) | 0.0372 (3) | |
C7 | 0.41401 (11) | 0.65604 (14) | 0.07545 (8) | 0.0398 (3) | |
C8 | 0.49544 (14) | 0.84582 (14) | 0.03582 (10) | 0.0511 (4) | |
H8A | 0.4317 | 0.8813 | 0.0440 | 0.061* | |
H8B | 0.5458 | 0.8909 | 0.0658 | 0.061* | |
C9 | 0.37880 (12) | 0.44495 (14) | 0.11304 (9) | 0.0456 (4) | |
H9A | 0.3166 | 0.4549 | 0.0827 | 0.055* | |
H9B | 0.4072 | 0.3684 | 0.0993 | 0.055* | |
O4 | 0.5000 | 0.27510 (13) | 0.2500 | 0.0467 (4) | |
O5 | 0.33811 (9) | 0.12882 (13) | 0.36950 (7) | 0.0628 (4) | |
H5A | 0.2848 | 0.1462 | 0.3858 | 0.094* | |
N3 | 0.42148 (9) | 0.09011 (11) | 0.26254 (7) | 0.0396 (3) | |
C10 | 0.45046 (15) | −0.24348 (15) | 0.25741 (9) | 0.0553 (5) | |
H10 | 0.4179 | −0.3167 | 0.2617 | 0.066* | |
C11 | 0.39872 (13) | −0.13699 (15) | 0.26601 (9) | 0.0487 (4) | |
H11 | 0.3325 | −0.1370 | 0.2765 | 0.058* | |
C12 | 0.45049 (11) | −0.03066 (13) | 0.25817 (8) | 0.0385 (3) | |
C13 | 0.5000 | 0.16353 (19) | 0.2500 | 0.0379 (4) | |
C14 | 0.32941 (11) | 0.13248 (16) | 0.28957 (9) | 0.0468 (4) | |
H14A | 0.3162 | 0.2143 | 0.2722 | 0.056* | |
H14B | 0.2752 | 0.0814 | 0.2701 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0523 (7) | 0.0567 (7) | 0.0602 (7) | 0.0107 (6) | 0.0216 (5) | 0.0184 (6) |
O2 | 0.0488 (7) | 0.0629 (8) | 0.0571 (7) | 0.0001 (6) | 0.0090 (5) | 0.0226 (6) |
O3 | 0.0415 (6) | 0.0568 (7) | 0.0603 (7) | 0.0122 (5) | 0.0109 (5) | 0.0124 (5) |
N1 | 0.0370 (6) | 0.0371 (6) | 0.0436 (7) | 0.0016 (5) | 0.0077 (5) | 0.0042 (5) |
N2 | 0.0454 (7) | 0.0366 (7) | 0.0451 (7) | 0.0036 (5) | 0.0122 (5) | 0.0077 (5) |
C1 | 0.0514 (9) | 0.0423 (8) | 0.0477 (9) | 0.0097 (7) | 0.0092 (7) | 0.0043 (7) |
C2 | 0.0463 (10) | 0.0675 (12) | 0.0574 (10) | 0.0190 (8) | 0.0094 (8) | 0.0066 (9) |
C3 | 0.0382 (9) | 0.0814 (13) | 0.0561 (10) | 0.0022 (8) | 0.0110 (7) | 0.0020 (9) |
C4 | 0.0479 (9) | 0.0547 (10) | 0.0486 (9) | −0.0070 (7) | 0.0143 (7) | 0.0017 (7) |
C5 | 0.0424 (8) | 0.0402 (8) | 0.0349 (7) | 0.0031 (6) | 0.0095 (6) | 0.0012 (6) |
C6 | 0.0392 (8) | 0.0397 (8) | 0.0335 (7) | 0.0020 (6) | 0.0079 (5) | −0.0001 (6) |
C7 | 0.0419 (8) | 0.0417 (8) | 0.0366 (7) | 0.0048 (6) | 0.0084 (6) | 0.0045 (6) |
C8 | 0.0629 (11) | 0.0366 (8) | 0.0547 (10) | 0.0025 (7) | 0.0103 (8) | 0.0081 (7) |
C9 | 0.0437 (8) | 0.0404 (8) | 0.0528 (9) | −0.0040 (7) | 0.0052 (7) | 0.0027 (7) |
O4 | 0.0426 (8) | 0.0344 (8) | 0.0635 (10) | 0.000 | 0.0068 (7) | 0.000 |
O5 | 0.0400 (6) | 0.0918 (10) | 0.0575 (7) | 0.0004 (6) | 0.0105 (5) | −0.0143 (7) |
N3 | 0.0328 (6) | 0.0377 (7) | 0.0490 (7) | −0.0017 (5) | 0.0069 (5) | −0.0008 (5) |
C10 | 0.0860 (13) | 0.0370 (8) | 0.0426 (9) | −0.0116 (8) | 0.0021 (8) | 0.0014 (7) |
C11 | 0.0562 (10) | 0.0459 (9) | 0.0439 (8) | −0.0124 (7) | 0.0032 (7) | 0.0019 (7) |
C12 | 0.0416 (8) | 0.0376 (8) | 0.0363 (7) | −0.0008 (6) | 0.0020 (6) | 0.0000 (6) |
C13 | 0.0346 (10) | 0.0381 (11) | 0.0410 (11) | 0.000 | 0.0025 (8) | 0.000 |
C14 | 0.0329 (8) | 0.0504 (9) | 0.0575 (10) | 0.0001 (7) | 0.0052 (6) | −0.0001 (7) |
O1—C9 | 1.3981 (19) | C5—C6 | 1.395 (2) |
O1—H1A | 0.82 | C8—H8A | 0.97 |
O2—C8 | 1.396 (2) | C8—H8B | 0.97 |
O2—H2A | 0.82 | C9—H9A | 0.97 |
O3—C7 | 1.2304 (18) | C9—H9B | 0.97 |
N1—C7 | 1.3759 (19) | O4—C13 | 1.237 (3) |
N1—C6 | 1.3980 (19) | O5—C14 | 1.406 (2) |
N1—C9 | 1.4509 (19) | O5—H5A | 0.82 |
N2—C7 | 1.371 (2) | N3—C13 | 1.3704 (17) |
N2—C5 | 1.3925 (19) | N3—C12 | 1.3990 (19) |
N2—C8 | 1.451 (2) | N3—C14 | 1.4462 (19) |
C1—C6 | 1.378 (2) | C10—C10i | 1.387 (4) |
C1—C2 | 1.387 (2) | C10—C11 | 1.387 (3) |
C1—H1 | 0.93 | C11—C12 | 1.384 (2) |
C2—C3 | 1.388 (3) | C11—H11 | 0.93 |
C2—H2 | 0.93 | C12—C12i | 1.393 (3) |
C3—C4 | 1.387 (3) | C13—N3i | 1.3704 (17) |
C3—H3 | 0.93 | C14—H14A | 0.97 |
C4—C5 | 1.380 (2) | C14—H14B | 0.97 |
C4—H4 | 0.93 | ||
C9—O1—H1A | 109.4 | O2—C8—H8B | 109.2 |
C8—O2—H2A | 109.5 | N2—C8—H8B | 109.2 |
C7—N1—C6 | 109.53 (12) | H8A—C8—H8B | 107.9 |
C7—N1—C9 | 123.27 (13) | O1—C9—N1 | 112.84 (13) |
C6—N1—C9 | 127.20 (12) | O1—C9—H9A | 109.0 |
C7—N2—C5 | 109.76 (12) | N1—C9—H9A | 109.0 |
C7—N2—C8 | 124.58 (14) | O1—C9—H9B | 109.0 |
C5—N2—C8 | 125.66 (13) | N1—C9—H9B | 109.0 |
C6—C1—C2 | 117.39 (16) | H9A—C9—H9B | 107.8 |
C6—C1—H1 | 121.3 | C14—O5—H5A | 109.5 |
C2—C1—H1 | 121.3 | C13—N3—C12 | 109.55 (12) |
C1—C2—C3 | 121.40 (16) | C13—N3—C14 | 124.00 (13) |
C1—C2—H2 | 119.3 | C12—N3—C14 | 125.57 (13) |
C3—C2—H2 | 119.3 | C10i—C10—C11 | 121.66 (10) |
C4—C3—C2 | 121.16 (16) | C10i—C10—H10 | 119.2 |
C4—C3—H3 | 119.4 | C11—C10—H10 | 119.2 |
C2—C3—H3 | 119.4 | C12—C11—C10 | 116.74 (16) |
C5—C4—C3 | 117.36 (16) | C12—C11—H11 | 121.6 |
C5—C4—H4 | 121.3 | C10—C11—H11 | 121.6 |
C3—C4—H4 | 121.3 | C11—C12—C12i | 121.59 (10) |
C4—C5—N2 | 131.54 (15) | C11—C12—N3 | 131.53 (14) |
C4—C5—C6 | 121.39 (14) | C12i—C12—N3 | 106.88 (8) |
N2—C5—C6 | 107.05 (13) | O4—C13—N3 | 126.43 (9) |
C1—C6—C5 | 121.26 (14) | O4—C13—N3i | 126.43 (9) |
C1—C6—N1 | 131.97 (14) | N3—C13—N3i | 107.14 (18) |
C5—C6—N1 | 106.76 (12) | O5—C14—N3 | 108.05 (13) |
O3—C7—N2 | 125.99 (14) | O5—C14—H14A | 110.1 |
O3—C7—N1 | 127.14 (14) | N3—C14—H14A | 110.1 |
N2—C7—N1 | 106.87 (12) | O5—C14—H14B | 110.1 |
O2—C8—N2 | 111.86 (14) | N3—C14—H14B | 110.1 |
O2—C8—H8A | 109.2 | H14A—C14—H14B | 108.4 |
N2—C8—H8A | 109.2 | ||
C6—C1—C2—C3 | 1.2 (3) | C8—N2—C7—N1 | 177.40 (14) |
C1—C2—C3—C4 | −1.5 (3) | C6—N1—C7—O3 | −178.71 (15) |
C2—C3—C4—C5 | 0.1 (3) | C9—N1—C7—O3 | 1.2 (2) |
C3—C4—C5—N2 | 179.76 (16) | C6—N1—C7—N2 | 1.10 (16) |
C3—C4—C5—C6 | 1.6 (2) | C9—N1—C7—N2 | −178.97 (13) |
C7—N2—C5—C4 | −177.04 (16) | C7—N2—C8—O2 | −105.28 (17) |
C8—N2—C5—C4 | 4.1 (3) | C5—N2—C8—O2 | 73.5 (2) |
C7—N2—C5—C6 | 1.36 (16) | C7—N1—C9—O1 | −88.27 (17) |
C8—N2—C5—C6 | −177.55 (14) | C6—N1—C9—O1 | 91.64 (17) |
C2—C1—C6—C5 | 0.5 (2) | C10i—C10—C11—C12 | 0.8 (3) |
C2—C1—C6—N1 | −179.32 (15) | C10—C11—C12—C12i | 0.5 (3) |
C4—C5—C6—C1 | −1.9 (2) | C10—C11—C12—N3 | 179.38 (15) |
N2—C5—C6—C1 | 179.46 (14) | C13—N3—C12—C11 | −179.51 (14) |
C4—C5—C6—N1 | 177.94 (13) | C14—N3—C12—C11 | 10.9 (3) |
N2—C5—C6—N1 | −0.65 (16) | C13—N3—C12—C12i | −0.50 (18) |
C7—N1—C6—C1 | 179.60 (16) | C14—N3—C12—C12i | −170.07 (15) |
C9—N1—C6—C1 | −0.3 (3) | C12—N3—C13—O4 | −179.81 (7) |
C7—N1—C6—C5 | −0.27 (16) | C14—N3—C13—O4 | −10.04 (16) |
C9—N1—C6—C5 | 179.81 (14) | C12—N3—C13—N3i | 0.19 (7) |
C5—N2—C7—O3 | 178.30 (15) | C14—N3—C13—N3i | 169.96 (16) |
C8—N2—C7—O3 | −2.8 (2) | C13—N3—C14—O5 | −89.75 (16) |
C5—N2—C7—N1 | −1.52 (16) | C12—N3—C14—O5 | 78.38 (18) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4 | 0.82 | 1.99 | 2.8003 (16) | 169 |
O2—H2A···O5ii | 0.82 | 1.93 | 2.7503 (18) | 176 |
O5—H5A···O3iii | 0.82 | 1.84 | 2.6551 (17) | 175 |
C3—H3···O2iv | 0.93 | 2.58 | 3.489 (2) | 164 |
C14—H14B···O1iii | 0.97 | 2.54 | 3.364 (2) | 143 |
Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+3/2, −y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C9H10N2O3 |
Mr | 194.19 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 273 |
a, b, c (Å) | 13.5515 (14), 11.0848 (12), 17.6253 (19) |
β (°) | 94.216 (2) |
V (Å3) | 2640.4 (5) |
Z | 12 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.22 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.976, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13521, 2684, 2395 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.110, 1.10 |
No. of reflections | 2684 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.24 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O4 | 0.82 | 1.99 | 2.8003 (16) | 169 |
O2—H2A···O5i | 0.82 | 1.93 | 2.7503 (18) | 176 |
O5—H5A···O3ii | 0.82 | 1.84 | 2.6551 (17) | 175 |
C3—H3···O2iii | 0.93 | 2.58 | 3.489 (2) | 164 |
C14—H14B···O1ii | 0.97 | 2.54 | 3.364 (2) | 143 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+3/2, −y+3/2, −z. |
Acknowledgements
The authors thank Professor T. N. Guru Row and Miss Brinda Selvaraj, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.
References
Anklekar, K. Y. & Kulkarni, M. V. (1995). Indian J. Chem. Sect. B, 34, 677–678. Google Scholar
Bansal, P. C., Ian, H., Pitman, I. H. & Higuchi, T. (1981). J. Pharm. Sci. 70, 855–857. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Habermeier, J. (1976). Ger. Offen. 2 453 450. Google Scholar
Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316–6320. Web of Science CrossRef PubMed CAS Google Scholar
Porret, D. & Hebermeier, J. (1974). Ger. Offen. 2 342 432. Google Scholar
Raghu, A. V., Gadaginamath, G. S. & Amminabhavi, T. M. (2005). J. Appl. Polym. Sci. 98, 2236–2244. Web of Science CrossRef CAS Google Scholar
Schwiebert, K. E., Chin, D. N., MacDonald, J. C. & Whitesides, G. M. (1996). J. Am. Chem. Soc. 118, 4018–4029. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trask-Morrel, B. J., Franklin, W. E. & Liu, R. H. (1988). Text. Chem. Color, pp. 20–21. Google Scholar
Zinner, H. & Spangenberg, B. (1958). Chem. Ber. 91, 1432–1437. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3-Bishydroxyalkylated benzimidazolones are an important class of functionalized benzimidazoles which have been found to be useful as polymer intermediates (Raghu et al., 2005; Porret et al., 1974), fire retardants (Habermeier, 1976), and in curing process in textile industry (Trask-Morrel et al., 1988). Solid state chemistry of hydroxy methylated benzimidazole derivatives leading to thermal extrusion of formaldehyde has been reported (Anklekar et al., 1995) by our group. Design and synthesis of benzimidazolone p38 MAP kinase inhibitors (Hammach et al., 2006) is based on the analysis of their crystal structure data. Benzimidazolones have been reported to crystallize as hydrogen bonded molecular tapes (Schwiebert et al., 1996) which has been used to engineer structures of organic solids. In view of the therapeutic importance of aromatic and hetero aromatic compounds (Bansal et al., 1981) containing N-hydroxymethyl group, we report here the crystal structure of title compound.
The asymmetric unit of the title compound contains one and a half molecules, one lying on a general position and and the other on a twofold rotation axis (Fig.1). Atoms O4 and C13 lie on the twofold rotation axis. The two independent benzimidazole ring systems form a dihedral angle of 18.96 (5)°. There are no intramolecular hydrogen bonding between N-hydroxymethyl and carbonyl groups.
In the crystal, O—H···O hydrogen bonding involving N-hydroxymethyl and carbonyl groups results in the formation of three-dimensional network (Fig.2). In addition, C—H···O hydrogen bonds (Table 1) are observed. This type of intermolecular association is similar to that observed in the structure of benzimidazolone (Schwiebert et al., 1996).