organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(hy­droxy­meth­yl)benzimidazolin-2-one

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 24 September 2009; accepted 7 October 2009; online 17 October 2009)

The title compound, C9H10N2O3, crystallizes with one and a half mol­ecules in the asymmetric unit, one lying on a general position and the other on a twofold rotation axis. The dihedral angle between the two independent benzimidazole ring systems is 18.96 (5)°. In the crystal, mol­ecules are linked into a three-dimensional network by O—H⋯O hydrogen bonding involving N-hydroxy­methyl and carbonyl groups, and C—H⋯O hydrogen bonds.

Related literature

For general background to 2-benzimidazolones, see: Raghu et al. (2005[Raghu, A. V., Gadaginamath, G. S. & Amminabhavi, T. M. (2005). J. Appl. Polym. Sci. 98, 2236-2244.]); Porret & Hebermeier (1974[Porret, D. & Hebermeier, J. (1974). Ger. Offen. 2 342 432.]); Habermeier (1976[Habermeier, J. (1976). Ger. Offen. 2 453 450.]); Trask-Morrel et al. (1988[Trask-Morrel, B. J., Franklin, W. E. & Liu, R. H. (1988). Text. Chem. Color, pp. 20-21.]); Hammach et al. (2006[Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316-6320.]); Bansal et al. (1981[Bansal, P. C., Ian, H., Pitman, I. H. & Higuchi, T. (1981). J. Pharm. Sci. 70, 855-857.]). For related structures, see: Anklekar & Kulkarni (1995[Anklekar, K. Y. & Kulkarni, M. V. (1995). Indian J. Chem. Sect. B, 34, 677-678.]); Schwiebert et al. (1996[Schwiebert, K. E., Chin, D. N., MacDonald, J. C. & Whitesides, G. M. (1996). J. Am. Chem. Soc. 118, 4018-4029.]). For the synthesis, see: Zinner & Spangenberg (1958[Zinner, H. & Spangenberg, B. (1958). Chem. Ber. 91, 1432-1437.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O3

  • Mr = 194.19

  • Monoclinic, C 2/c

  • a = 13.5515 (14) Å

  • b = 11.0848 (12) Å

  • c = 17.6253 (19) Å

  • β = 94.216 (2)°

  • V = 2640.4 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.986

  • 13521 measured reflections

  • 2684 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.10

  • 2684 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.82 1.99 2.8003 (16) 169
O2—H2A⋯O5i 0.82 1.93 2.7503 (18) 176
O5—H5A⋯O3ii 0.82 1.84 2.6551 (17) 175
C3—H3⋯O2iii 0.93 2.58 3.489 (2) 164
C14—H14B⋯O1ii 0.97 2.54 3.364 (2) 143
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-Bishydroxyalkylated benzimidazolones are an important class of functionalized benzimidazoles which have been found to be useful as polymer intermediates (Raghu et al., 2005; Porret et al., 1974), fire retardants (Habermeier, 1976), and in curing process in textile industry (Trask-Morrel et al., 1988). Solid state chemistry of hydroxy methylated benzimidazole derivatives leading to thermal extrusion of formaldehyde has been reported (Anklekar et al., 1995) by our group. Design and synthesis of benzimidazolone p38 MAP kinase inhibitors (Hammach et al., 2006) is based on the analysis of their crystal structure data. Benzimidazolones have been reported to crystallize as hydrogen bonded molecular tapes (Schwiebert et al., 1996) which has been used to engineer structures of organic solids. In view of the therapeutic importance of aromatic and hetero aromatic compounds (Bansal et al., 1981) containing N-hydroxymethyl group, we report here the crystal structure of title compound.

The asymmetric unit of the title compound contains one and a half molecules, one lying on a general position and and the other on a twofold rotation axis (Fig.1). Atoms O4 and C13 lie on the twofold rotation axis. The two independent benzimidazole ring systems form a dihedral angle of 18.96 (5)°. There are no intramolecular hydrogen bonding between N-hydroxymethyl and carbonyl groups.

In the crystal, O—H···O hydrogen bonding involving N-hydroxymethyl and carbonyl groups results in the formation of three-dimensional network (Fig.2). In addition, C—H···O hydrogen bonds (Table 1) are observed. This type of intermolecular association is similar to that observed in the structure of benzimidazolone (Schwiebert et al., 1996).

Related literature top

For general background to 2-benzimidazolones, see: Raghu et al. (2005); Porret et al. (1974); Habermeier (1976); Trask-Morrel et al. (1988); Hammach et al. (2006); Bansal et al. (1981). For related structures, see: Anklekar et al. (1995); Schwiebert et al. (1996). For the synthesis, see: Zinner et al. (1958).

Experimental top

The title compound was prepared by following a literature method (Zinner et al., 1958). A mixture of 2-hydroxy benzimidazole (13.4 g, 0.01 M) and 37% formalin (30 ml, 1M) was refluxed for 30 minutes in presence of 100 ml water. The solid product formed was filtered and single crystals were grown by slow evaporation in water (yield 92%, m.p. 433 K). Spectral data IRνCO = 1700 cm-1, νOH = 3300 cm-1. 1H NMR -(CDCl3+DMSO-d6)δ p.p.m. - 5.3(4H, d, CH2) appeared as singlet on D2O exchange, 6.2(2H, t, OH) vanished on D2O exchange, 7.4–7.8 (4H, m, Ar-H). Mass m/z = 134 (100%).

Refinement top

H atoms were positioned at calculated positions [O-H = 0.82 Å and C-H = 0.93–0.97 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

1,3-Bishydroxyalkylated benzimidazolones are an important class of functionalized benzimidazoles which have been found to be useful as polymer intermediates (Raghu et al., 2005; Porret et al., 1974), fire retardants (Habermeier, 1976), and in curing process in textile industry (Trask-Morrel et al., 1988). Solid state chemistry of hydroxy methylated benzimidazole derivatives leading to thermal extrusion of formaldehyde has been reported (Anklekar et al., 1995) by our group. Design and synthesis of benzimidazolone p38 MAP kinase inhibitors (Hammach et al., 2006) is based on the analysis of their crystal structure data. Benzimidazolones have been reported to crystallize as hydrogen bonded molecular tapes (Schwiebert et al., 1996) which has been used to engineer structures of organic solids. In view of the therapeutic importance of aromatic and hetero aromatic compounds (Bansal et al., 1981) containing N-hydroxymethyl group, we report here the crystal structure of title compound.

The asymmetric unit of the title compound contains one and a half molecules, one lying on a general position and and the other on a twofold rotation axis (Fig.1). Atoms O4 and C13 lie on the twofold rotation axis. The two independent benzimidazole ring systems form a dihedral angle of 18.96 (5)°. There are no intramolecular hydrogen bonding between N-hydroxymethyl and carbonyl groups.

In the crystal, O—H···O hydrogen bonding involving N-hydroxymethyl and carbonyl groups results in the formation of three-dimensional network (Fig.2). In addition, C—H···O hydrogen bonds (Table 1) are observed. This type of intermolecular association is similar to that observed in the structure of benzimidazolone (Schwiebert et al., 1996).

For general background to 2-benzimidazolones, see: Raghu et al. (2005); Porret et al. (1974); Habermeier (1976); Trask-Morrel et al. (1988); Hammach et al. (2006); Bansal et al. (1981). For related structures, see: Anklekar et al. (1995); Schwiebert et al. (1996). For the synthesis, see: Zinner et al. (1958).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules viewed down the b axis. Hydrogen bonds are shown as dashed lines.
1,3-Bis(hydroxymethyl)benzimidazolin-2-one top
Crystal data top
C9H10N2O3F(000) = 1224
Mr = 194.19Dx = 1.465 Mg m3
Monoclinic, C2/cMelting point: 433 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.5515 (14) ÅCell parameters from 2684 reflections
b = 11.0848 (12) Åθ = 2.3–26.4°
c = 17.6253 (19) ŵ = 0.11 mm1
β = 94.216 (2)°T = 273 K
V = 2640.4 (5) Å3Plate, white
Z = 120.22 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1616
Tmin = 0.976, Tmax = 0.986k = 1313
13521 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.5821P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H10N2O3V = 2640.4 (5) Å3
Mr = 194.19Z = 12
Monoclinic, C2/cMo Kα radiation
a = 13.5515 (14) ŵ = 0.11 mm1
b = 11.0848 (12) ÅT = 273 K
c = 17.6253 (19) Å0.22 × 0.20 × 0.10 mm
β = 94.216 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2684 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2395 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.986Rint = 0.025
13521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.10Δρmax = 0.16 e Å3
2684 reflectionsΔρmin = 0.24 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36019 (9)0.44213 (11)0.19000 (7)0.0555 (3)
H1A0.40090.39840.21310.083*
O20.51268 (9)0.85515 (11)0.04107 (7)0.0560 (3)
H2A0.45970.85650.06670.084*
O30.32846 (8)0.69395 (11)0.07135 (7)0.0525 (3)
N10.44553 (9)0.54147 (11)0.09507 (7)0.0390 (3)
N20.49663 (9)0.72131 (11)0.06132 (7)0.0420 (3)
C10.61458 (12)0.44272 (15)0.11034 (9)0.0469 (4)
H10.59320.36650.12380.056*
C20.71420 (13)0.46756 (18)0.10526 (10)0.0568 (5)
H20.76040.40630.11460.068*
C30.74639 (13)0.5819 (2)0.08647 (10)0.0582 (5)
H30.81380.59630.08470.070*
C40.67978 (12)0.67501 (17)0.07028 (9)0.0499 (4)
H40.70120.75160.05760.060*
C50.58057 (11)0.64950 (13)0.07380 (8)0.0388 (3)
C60.54853 (11)0.53545 (13)0.09463 (8)0.0372 (3)
C70.41401 (11)0.65604 (14)0.07545 (8)0.0398 (3)
C80.49544 (14)0.84582 (14)0.03582 (10)0.0511 (4)
H8A0.43170.88130.04400.061*
H8B0.54580.89090.06580.061*
C90.37880 (12)0.44495 (14)0.11304 (9)0.0456 (4)
H9A0.31660.45490.08270.055*
H9B0.40720.36840.09930.055*
O40.50000.27510 (13)0.25000.0467 (4)
O50.33811 (9)0.12882 (13)0.36950 (7)0.0628 (4)
H5A0.28480.14620.38580.094*
N30.42148 (9)0.09011 (11)0.26254 (7)0.0396 (3)
C100.45046 (15)0.24348 (15)0.25741 (9)0.0553 (5)
H100.41790.31670.26170.066*
C110.39872 (13)0.13699 (15)0.26601 (9)0.0487 (4)
H110.33250.13700.27650.058*
C120.45049 (11)0.03066 (13)0.25817 (8)0.0385 (3)
C130.50000.16353 (19)0.25000.0379 (4)
C140.32941 (11)0.13248 (16)0.28957 (9)0.0468 (4)
H14A0.31620.21430.27220.056*
H14B0.27520.08140.27010.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0523 (7)0.0567 (7)0.0602 (7)0.0107 (6)0.0216 (5)0.0184 (6)
O20.0488 (7)0.0629 (8)0.0571 (7)0.0001 (6)0.0090 (5)0.0226 (6)
O30.0415 (6)0.0568 (7)0.0603 (7)0.0122 (5)0.0109 (5)0.0124 (5)
N10.0370 (6)0.0371 (6)0.0436 (7)0.0016 (5)0.0077 (5)0.0042 (5)
N20.0454 (7)0.0366 (7)0.0451 (7)0.0036 (5)0.0122 (5)0.0077 (5)
C10.0514 (9)0.0423 (8)0.0477 (9)0.0097 (7)0.0092 (7)0.0043 (7)
C20.0463 (10)0.0675 (12)0.0574 (10)0.0190 (8)0.0094 (8)0.0066 (9)
C30.0382 (9)0.0814 (13)0.0561 (10)0.0022 (8)0.0110 (7)0.0020 (9)
C40.0479 (9)0.0547 (10)0.0486 (9)0.0070 (7)0.0143 (7)0.0017 (7)
C50.0424 (8)0.0402 (8)0.0349 (7)0.0031 (6)0.0095 (6)0.0012 (6)
C60.0392 (8)0.0397 (8)0.0335 (7)0.0020 (6)0.0079 (5)0.0001 (6)
C70.0419 (8)0.0417 (8)0.0366 (7)0.0048 (6)0.0084 (6)0.0045 (6)
C80.0629 (11)0.0366 (8)0.0547 (10)0.0025 (7)0.0103 (8)0.0081 (7)
C90.0437 (8)0.0404 (8)0.0528 (9)0.0040 (7)0.0052 (7)0.0027 (7)
O40.0426 (8)0.0344 (8)0.0635 (10)0.0000.0068 (7)0.000
O50.0400 (6)0.0918 (10)0.0575 (7)0.0004 (6)0.0105 (5)0.0143 (7)
N30.0328 (6)0.0377 (7)0.0490 (7)0.0017 (5)0.0069 (5)0.0008 (5)
C100.0860 (13)0.0370 (8)0.0426 (9)0.0116 (8)0.0021 (8)0.0014 (7)
C110.0562 (10)0.0459 (9)0.0439 (8)0.0124 (7)0.0032 (7)0.0019 (7)
C120.0416 (8)0.0376 (8)0.0363 (7)0.0008 (6)0.0020 (6)0.0000 (6)
C130.0346 (10)0.0381 (11)0.0410 (11)0.0000.0025 (8)0.000
C140.0329 (8)0.0504 (9)0.0575 (10)0.0001 (7)0.0052 (6)0.0001 (7)
Geometric parameters (Å, º) top
O1—C91.3981 (19)C5—C61.395 (2)
O1—H1A0.82C8—H8A0.97
O2—C81.396 (2)C8—H8B0.97
O2—H2A0.82C9—H9A0.97
O3—C71.2304 (18)C9—H9B0.97
N1—C71.3759 (19)O4—C131.237 (3)
N1—C61.3980 (19)O5—C141.406 (2)
N1—C91.4509 (19)O5—H5A0.82
N2—C71.371 (2)N3—C131.3704 (17)
N2—C51.3925 (19)N3—C121.3990 (19)
N2—C81.451 (2)N3—C141.4462 (19)
C1—C61.378 (2)C10—C10i1.387 (4)
C1—C21.387 (2)C10—C111.387 (3)
C1—H10.93C11—C121.384 (2)
C2—C31.388 (3)C11—H110.93
C2—H20.93C12—C12i1.393 (3)
C3—C41.387 (3)C13—N3i1.3704 (17)
C3—H30.93C14—H14A0.97
C4—C51.380 (2)C14—H14B0.97
C4—H40.93
C9—O1—H1A109.4O2—C8—H8B109.2
C8—O2—H2A109.5N2—C8—H8B109.2
C7—N1—C6109.53 (12)H8A—C8—H8B107.9
C7—N1—C9123.27 (13)O1—C9—N1112.84 (13)
C6—N1—C9127.20 (12)O1—C9—H9A109.0
C7—N2—C5109.76 (12)N1—C9—H9A109.0
C7—N2—C8124.58 (14)O1—C9—H9B109.0
C5—N2—C8125.66 (13)N1—C9—H9B109.0
C6—C1—C2117.39 (16)H9A—C9—H9B107.8
C6—C1—H1121.3C14—O5—H5A109.5
C2—C1—H1121.3C13—N3—C12109.55 (12)
C1—C2—C3121.40 (16)C13—N3—C14124.00 (13)
C1—C2—H2119.3C12—N3—C14125.57 (13)
C3—C2—H2119.3C10i—C10—C11121.66 (10)
C4—C3—C2121.16 (16)C10i—C10—H10119.2
C4—C3—H3119.4C11—C10—H10119.2
C2—C3—H3119.4C12—C11—C10116.74 (16)
C5—C4—C3117.36 (16)C12—C11—H11121.6
C5—C4—H4121.3C10—C11—H11121.6
C3—C4—H4121.3C11—C12—C12i121.59 (10)
C4—C5—N2131.54 (15)C11—C12—N3131.53 (14)
C4—C5—C6121.39 (14)C12i—C12—N3106.88 (8)
N2—C5—C6107.05 (13)O4—C13—N3126.43 (9)
C1—C6—C5121.26 (14)O4—C13—N3i126.43 (9)
C1—C6—N1131.97 (14)N3—C13—N3i107.14 (18)
C5—C6—N1106.76 (12)O5—C14—N3108.05 (13)
O3—C7—N2125.99 (14)O5—C14—H14A110.1
O3—C7—N1127.14 (14)N3—C14—H14A110.1
N2—C7—N1106.87 (12)O5—C14—H14B110.1
O2—C8—N2111.86 (14)N3—C14—H14B110.1
O2—C8—H8A109.2H14A—C14—H14B108.4
N2—C8—H8A109.2
C6—C1—C2—C31.2 (3)C8—N2—C7—N1177.40 (14)
C1—C2—C3—C41.5 (3)C6—N1—C7—O3178.71 (15)
C2—C3—C4—C50.1 (3)C9—N1—C7—O31.2 (2)
C3—C4—C5—N2179.76 (16)C6—N1—C7—N21.10 (16)
C3—C4—C5—C61.6 (2)C9—N1—C7—N2178.97 (13)
C7—N2—C5—C4177.04 (16)C7—N2—C8—O2105.28 (17)
C8—N2—C5—C44.1 (3)C5—N2—C8—O273.5 (2)
C7—N2—C5—C61.36 (16)C7—N1—C9—O188.27 (17)
C8—N2—C5—C6177.55 (14)C6—N1—C9—O191.64 (17)
C2—C1—C6—C50.5 (2)C10i—C10—C11—C120.8 (3)
C2—C1—C6—N1179.32 (15)C10—C11—C12—C12i0.5 (3)
C4—C5—C6—C11.9 (2)C10—C11—C12—N3179.38 (15)
N2—C5—C6—C1179.46 (14)C13—N3—C12—C11179.51 (14)
C4—C5—C6—N1177.94 (13)C14—N3—C12—C1110.9 (3)
N2—C5—C6—N10.65 (16)C13—N3—C12—C12i0.50 (18)
C7—N1—C6—C1179.60 (16)C14—N3—C12—C12i170.07 (15)
C9—N1—C6—C10.3 (3)C12—N3—C13—O4179.81 (7)
C7—N1—C6—C50.27 (16)C14—N3—C13—O410.04 (16)
C9—N1—C6—C5179.81 (14)C12—N3—C13—N3i0.19 (7)
C5—N2—C7—O3178.30 (15)C14—N3—C13—N3i169.96 (16)
C8—N2—C7—O32.8 (2)C13—N3—C14—O589.75 (16)
C5—N2—C7—N11.52 (16)C12—N3—C14—O578.38 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.821.992.8003 (16)169
O2—H2A···O5ii0.821.932.7503 (18)176
O5—H5A···O3iii0.821.842.6551 (17)175
C3—H3···O2iv0.932.583.489 (2)164
C14—H14B···O1iii0.972.543.364 (2)143
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC9H10N2O3
Mr194.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)13.5515 (14), 11.0848 (12), 17.6253 (19)
β (°) 94.216 (2)
V3)2640.4 (5)
Z12
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.976, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13521, 2684, 2395
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.10
No. of reflections2684
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.821.992.8003 (16)169
O2—H2A···O5i0.821.932.7503 (18)176
O5—H5A···O3ii0.821.842.6551 (17)175
C3—H3···O2iii0.932.583.489 (2)164
C14—H14B···O1ii0.972.543.364 (2)143
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y+3/2, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Miss Brinda Selvaraj, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationAnklekar, K. Y. & Kulkarni, M. V. (1995). Indian J. Chem. Sect. B, 34, 677–678.  Google Scholar
First citationBansal, P. C., Ian, H., Pitman, I. H. & Higuchi, T. (1981). J. Pharm. Sci. 70, 855–857.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHabermeier, J. (1976). Ger. Offen. 2 453 450.  Google Scholar
First citationHammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett. 16, 6316–6320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPorret, D. & Hebermeier, J. (1974). Ger. Offen. 2 342 432.  Google Scholar
First citationRaghu, A. V., Gadaginamath, G. S. & Amminabhavi, T. M. (2005). J. Appl. Polym. Sci. 98, 2236–2244.  Web of Science CrossRef CAS Google Scholar
First citationSchwiebert, K. E., Chin, D. N., MacDonald, J. C. & Whitesides, G. M. (1996). J. Am. Chem. Soc. 118, 4018–4029.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrask-Morrel, B. J., Franklin, W. E. & Liu, R. H. (1988). Text. Chem. Color, pp. 20–21.  Google Scholar
First citationZinner, H. & Spangenberg, B. (1958). Chem. Ber. 91, 1432–1437.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds