organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-1H-benzimidazole

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: leigang307@yahoo.com.cn

(Received 25 September 2009; accepted 25 September 2009; online 3 October 2009)

In the title mol­ecule, C14H12N2, the benzimidazole ring system is essentially planar (r.m.s. deviation = 0.024 Å). The dihedral angle between the imidazole ring and the benzyl ring is 85.77 (4)°. In the crystal, mol­ecules are linked into chains along the a axis by C—H⋯N hydrogen bonds. In addition, the packing is stabilized by C—H⋯π inter­actions involving both six-membered rings.

Related literature

For general background to benzimidazole derivatives, see: Ansari & Lal (2009[Ansari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 4028-4033.]). For the synthesis, see: Hayat et al. (2001[Hayat, S., Atta-ur-Rahman, Choudhary, M. I., Khan, K. M., Schumann, W. & Bayer, E. (2001). Tetrahedron, 57, 9951-9957.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2

  • Mr = 208.26

  • Monoclinic, P 21 /n

  • a = 6.2265 (10) Å

  • b = 8.1740 (13) Å

  • c = 20.975 (4) Å

  • β = 97.839 (2)°

  • V = 1057.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.57 × 0.50 × 0.37 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 8358 measured reflections

  • 2412 independent reflections

  • 2198 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.00

  • 2412 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯N2i 0.99 2.50 3.4890 (14) 173
C7—H7⋯Cg1ii 0.95 2.66 3.5220 (1) 151
C13—H13⋯Cg2iii 0.95 2.80 3.5660 (3) 139
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y-1, -z+1; (iii) x, y+1, z. Cg1 and Cg2 are the centroids of the C11–C16 and C4–C9 rings, respectively.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole derivatives are a class of important compounds which exhibit antimicrobial activity (Ansari & Lal, 2009). Here, we report the crystal structure of the title compound.

Bond lengths and angles in the title molecule are normal. The benzimidazole ring system is planar, with a maximum deviation of 0.035 (2)Å for atom C4. The imidazole ring and benzene ring in benzyl group are almost mutually perpendicular, with a dihedral angle of 85.77 (4)% (Fig. 1). The crystal packing is stabilized by C—H···N hydrogen bonds and C—H···π interactions (Cg1 is the centroid of the C11-C16 ring and Cg2 is the centroid of the C4—C9 ring) (Table 1).

Related literature top

For general background to benzimidazole derivatives, see: Ansari & Lal (2009). For the synthesis, see: Hayat et al. (2001). Cg1 and Cg2 are the centroids of the C11–C16 and C4–C9 rings, respectively.

Experimental top

The title compound was synthesized according to the method reported in the literature (Hayat et al., 2001). Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.95 or 0.99 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzimidazole derivatives are a class of important compounds which exhibit antimicrobial activity (Ansari & Lal, 2009). Here, we report the crystal structure of the title compound.

Bond lengths and angles in the title molecule are normal. The benzimidazole ring system is planar, with a maximum deviation of 0.035 (2)Å for atom C4. The imidazole ring and benzene ring in benzyl group are almost mutually perpendicular, with a dihedral angle of 85.77 (4)% (Fig. 1). The crystal packing is stabilized by C—H···N hydrogen bonds and C—H···π interactions (Cg1 is the centroid of the C11-C16 ring and Cg2 is the centroid of the C4—C9 ring) (Table 1).

For general background to benzimidazole derivatives, see: Ansari & Lal (2009). For the synthesis, see: Hayat et al. (2001). Cg1 and Cg2 are the centroids of the C11–C16 and C4–C9 rings, respectively.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
1-Benzyl-1H-benzimidazole top
Crystal data top
C14H12N2F(000) = 440
Mr = 208.26Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3307 reflections
a = 6.2265 (10) Åθ = 3.2–27.5°
b = 8.1740 (13) ŵ = 0.08 mm1
c = 20.975 (4) ÅT = 93 K
β = 97.839 (2)°Block, colourless
V = 1057.5 (3) Å30.57 × 0.50 × 0.37 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
2198 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 88
8358 measured reflectionsk = 1010
2412 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.296P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H12N2V = 1057.5 (3) Å3
Mr = 208.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2265 (10) ŵ = 0.08 mm1
b = 8.1740 (13) ÅT = 93 K
c = 20.975 (4) Å0.57 × 0.50 × 0.37 mm
β = 97.839 (2)°
Data collection top
Rigaku SPIDER
diffractometer
2198 reflections with I > 2σ(I)
8358 measured reflectionsRint = 0.022
2412 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2412 reflectionsΔρmin = 0.25 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41468 (13)0.11825 (10)0.58340 (4)0.0151 (2)
N20.08985 (14)0.00680 (11)0.59213 (4)0.0184 (2)
C20.21067 (16)0.08189 (12)0.55458 (5)0.0164 (2)
H20.16020.10860.51100.020*
C40.22460 (16)0.00841 (12)0.65071 (5)0.0164 (2)
C50.18809 (18)0.08552 (13)0.70781 (5)0.0206 (2)
H50.05160.13290.71220.025*
C60.35775 (19)0.09021 (14)0.75762 (5)0.0234 (3)
H60.33740.14340.79660.028*
C70.55957 (19)0.01845 (14)0.75220 (5)0.0230 (3)
H70.67200.02410.78760.028*
C80.59841 (17)0.06012 (13)0.69652 (5)0.0190 (2)
H80.73380.11030.69290.023*
C90.42797 (16)0.06166 (12)0.64598 (5)0.0153 (2)
C100.58686 (16)0.19667 (13)0.55403 (5)0.0163 (2)
H10A0.54880.19270.50670.020*
H10B0.72230.13340.56530.020*
C110.62877 (16)0.37280 (13)0.57428 (5)0.0148 (2)
C120.47606 (16)0.46721 (13)0.59998 (5)0.0175 (2)
H120.34140.42010.60660.021*
C130.51869 (18)0.63021 (13)0.61606 (5)0.0198 (2)
H130.41380.69360.63390.024*
C140.71437 (17)0.70020 (13)0.60598 (5)0.0187 (2)
H140.74290.81190.61650.022*
C150.86811 (17)0.60677 (13)0.58054 (5)0.0185 (2)
H151.00230.65440.57380.022*
C160.82598 (16)0.44380 (13)0.56497 (5)0.0171 (2)
H160.93220.38010.54780.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0142 (4)0.0141 (4)0.0168 (4)0.0009 (3)0.0017 (3)0.0012 (3)
N20.0160 (4)0.0162 (4)0.0226 (5)0.0005 (3)0.0016 (3)0.0004 (4)
C20.0155 (5)0.0136 (5)0.0195 (5)0.0007 (4)0.0002 (4)0.0013 (4)
C40.0162 (5)0.0131 (5)0.0201 (5)0.0014 (4)0.0030 (4)0.0028 (4)
C50.0211 (5)0.0181 (5)0.0239 (5)0.0002 (4)0.0084 (4)0.0008 (4)
C60.0305 (6)0.0229 (6)0.0178 (5)0.0026 (5)0.0074 (4)0.0005 (4)
C70.0256 (6)0.0248 (6)0.0176 (5)0.0029 (5)0.0006 (4)0.0033 (4)
C80.0171 (5)0.0193 (5)0.0205 (5)0.0003 (4)0.0015 (4)0.0040 (4)
C90.0174 (5)0.0119 (5)0.0172 (5)0.0017 (4)0.0037 (4)0.0028 (4)
C100.0140 (5)0.0167 (5)0.0188 (5)0.0008 (4)0.0043 (4)0.0016 (4)
C110.0154 (5)0.0159 (5)0.0129 (5)0.0001 (4)0.0009 (4)0.0012 (4)
C120.0143 (5)0.0187 (5)0.0201 (5)0.0008 (4)0.0039 (4)0.0000 (4)
C130.0198 (5)0.0173 (5)0.0227 (5)0.0031 (4)0.0048 (4)0.0009 (4)
C140.0223 (5)0.0143 (5)0.0189 (5)0.0009 (4)0.0010 (4)0.0005 (4)
C150.0165 (5)0.0198 (5)0.0192 (5)0.0036 (4)0.0027 (4)0.0019 (4)
C160.0154 (5)0.0196 (5)0.0170 (5)0.0009 (4)0.0044 (4)0.0001 (4)
Geometric parameters (Å, º) top
N1—C21.3630 (13)C8—H80.95
N1—C91.3835 (13)C10—C111.5137 (15)
N1—C101.4560 (13)C10—H10A0.99
N2—C21.3132 (14)C10—H10B0.99
N2—C41.3956 (13)C11—C121.3892 (14)
C2—H20.95C11—C161.3958 (14)
C4—C51.3992 (15)C12—C131.3910 (15)
C4—C91.4055 (14)C12—H120.95
C5—C61.3812 (16)C13—C141.3881 (15)
C5—H50.95C13—H130.95
C6—C71.4053 (17)C14—C151.3870 (15)
C6—H60.95C14—H140.95
C7—C81.3826 (16)C15—C161.3881 (16)
C7—H70.95C15—H150.95
C8—C91.3940 (14)C16—H160.95
C2—N1—C9106.23 (9)N1—C10—C11114.12 (8)
C2—N1—C10127.14 (9)N1—C10—H10A108.7
C9—N1—C10126.61 (8)C11—C10—H10A108.7
C2—N2—C4104.17 (9)N1—C10—H10B108.7
N2—C2—N1114.29 (9)C11—C10—H10B108.7
N2—C2—H2122.9H10A—C10—H10B107.6
N1—C2—H2122.9C12—C11—C16119.02 (10)
N2—C4—C5130.19 (10)C12—C11—C10122.43 (9)
N2—C4—C9109.93 (9)C16—C11—C10118.52 (9)
C5—C4—C9119.80 (10)C11—C12—C13120.53 (10)
C6—C5—C4117.59 (10)C11—C12—H12119.7
C6—C5—H5121.2C13—C12—H12119.7
C4—C5—H5121.2C14—C13—C12120.02 (10)
C5—C6—C7121.82 (10)C14—C13—H13120.0
C5—C6—H6119.1C12—C13—H13120.0
C7—C6—H6119.1C15—C14—C13119.86 (10)
C8—C7—C6121.57 (10)C15—C14—H14120.1
C8—C7—H7119.2C13—C14—H14120.1
C6—C7—H7119.2C14—C15—C16120.05 (10)
C7—C8—C9116.34 (10)C14—C15—H15120.0
C7—C8—H8121.8C16—C15—H15120.0
C9—C8—H8121.8C15—C16—C11120.51 (10)
N1—C9—C8131.71 (10)C15—C16—H16119.7
N1—C9—C4105.38 (9)C11—C16—H16119.7
C8—C9—C4122.85 (10)
C4—N2—C2—N10.14 (12)N2—C4—C9—N10.51 (11)
C9—N1—C2—N20.17 (12)C5—C4—C9—N1176.66 (9)
C10—N1—C2—N2178.24 (9)N2—C4—C9—C8177.95 (9)
C2—N2—C4—C5176.38 (11)C5—C4—C9—C80.78 (15)
C2—N2—C4—C90.40 (11)C2—N1—C10—C11105.93 (11)
N2—C4—C5—C6176.02 (10)C9—N1—C10—C1175.97 (12)
C9—C4—C5—C60.49 (15)N1—C10—C11—C1220.55 (13)
C4—C5—C6—C70.97 (16)N1—C10—C11—C16161.34 (9)
C5—C6—C7—C80.20 (17)C16—C11—C12—C130.16 (15)
C6—C7—C8—C91.03 (16)C10—C11—C12—C13177.95 (10)
C2—N1—C9—C8177.52 (11)C11—C12—C13—C140.52 (16)
C10—N1—C9—C80.91 (17)C12—C13—C14—C150.72 (16)
C2—N1—C9—C40.41 (11)C13—C14—C15—C160.24 (16)
C10—N1—C9—C4178.02 (9)C14—C15—C16—C110.45 (15)
C7—C8—C9—N1175.17 (10)C12—C11—C16—C150.64 (15)
C7—C8—C9—C41.52 (15)C10—C11—C16—C15177.54 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N2i0.992.503.4890 (14)173
C7—H7···Cg1ii0.952.663.5220 (1)151
C13—H13···Cg2iii0.952.803.5660 (3)139
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12N2
Mr208.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)6.2265 (10), 8.1740 (13), 20.975 (4)
β (°) 97.839 (2)
V3)1057.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.50 × 0.37
Data collection
DiffractometerRigaku SPIDER
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8358, 2412, 2198
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.00
No. of reflections2412
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N2i0.992.503.4890 (14)173
C7—H7···Cg1ii0.952.663.5220 (1)151
C13—H13···Cg2iii0.952.803.5660 (3)139
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Centre for Testing and Analysis, Cheng Du Branch of the Chinese Academy of Sciences, for analytical support.

References

First citationAnsari, K. F. & Lal, C. (2009). Eur. J. Med. Chem. 44, 4028–4033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHayat, S., Atta-ur-Rahman, Choudhary, M. I., Khan, K. M., Schumann, W. & Bayer, E. (2001). Tetrahedron, 57, 9951–9957.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds