organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{[1-(tert-but­oxy­carbonyl)­pyrrolidin-2-yl]meth­yl} carbonate

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: jlhjhr@yahoo.com.cn

(Received 27 September 2009; accepted 28 September 2009; online 3 October 2009)

The asymmetric unit of the title compound, C21H36N2O7, consists of two independent half-mol­ecules, the other halves being generated by twofold rotational axes. The two independent half-mol­ecules are related by a pseudo-inversion center. In one, the pyrrolidine ring adopts a twist conformation whereas in the other it is in an envelope conformation. The crystal packing is stabilized by C—H⋯O hydrogen bonds.

Related literature

For the use of proline derivatives in organocatalysis, see: Dalko & Moisan (2004[Dalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138-5175.]). For the synthesis, see: Wiegrebe et al. (1974[Wiegrebe, W., Herrmann, E. G., Schlunegger, U. P. & Budzikiewicz, H. (1974). Helv. Chim. Acta, 57, 301-314.]).

[Scheme 1]

Experimental

Crystal data
  • C21H36N2O7

  • Mr = 428.52

  • Monoclinic, C 2

  • a = 21.995 (5) Å

  • b = 9.9534 (18) Å

  • c = 10.531 (2) Å

  • β = 100.631 (3)°

  • V = 2265.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.43 × 0.40 × 0.33 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: none

  • 9271 measured reflections

  • 2735 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.00

  • 2735 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.99 2.60 3.223 (2) 121
C5—H5A⋯O6ii 0.99 2.50 3.380 (2) 148
C13—H13B⋯O6iii 0.99 2.54 3.231 (2) 127
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Proline derivatives are one of the most important catalysts in organocatalysis (Dalko et al., 2004). Here, we report the crystal structure of the title compound.

The asymmetric unit of the title compound consists of one-half each of two crystallographically independent molecules (Fig. 1). The other halves are generated by crystallographic twofold rotational axes. Bond lengths and angles of these two molecules agree with each other and are normal. In one of the independent unit the pyrrolidine ring (N1/C1-C4) adopts a twist conformation whereas in the other the pyrrolidine ring (N2/C12-C15) adopts an envelope conformation.

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1).

Related literature top

For the use of proline derivatives in organocatalysis, see: Dalko & Moisan (2004). For the synthesis, see: Wiegrebe et al. (1974).

Experimental top

The title compound was synthesized according to the method reported in the literature (Wiegrebe et al., 1974). Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.98-1.00 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Proline derivatives are one of the most important catalysts in organocatalysis (Dalko et al., 2004). Here, we report the crystal structure of the title compound.

The asymmetric unit of the title compound consists of one-half each of two crystallographically independent molecules (Fig. 1). The other halves are generated by crystallographic twofold rotational axes. Bond lengths and angles of these two molecules agree with each other and are normal. In one of the independent unit the pyrrolidine ring (N1/C1-C4) adopts a twist conformation whereas in the other the pyrrolidine ring (N2/C12-C15) adopts an envelope conformation.

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1).

For the use of proline derivatives in organocatalysis, see: Dalko & Moisan (2004). For the synthesis, see: Wiegrebe et al. (1974).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Views of the two independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Atoms labelled with the suffix A are generated by the symmetry operation (1-x, y, 1-z) in one of the molecules (with atom O1) and (2-x, y, 2-z) on the other (with atom O5).
Bis{[1-(tert-butoxycarbonyl)pyrrolidin-2-yl]methyl} carbonate top
Crystal data top
C21H36N2O7F(000) = 928
Mr = 428.52Dx = 1.256 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3700 reflections
a = 21.995 (5) Åθ = 3.1–27.5°
b = 9.9534 (18) ŵ = 0.09 mm1
c = 10.531 (2) ÅT = 93 K
β = 100.631 (3)°Block, colourless
V = 2265.9 (8) Å30.43 × 0.40 × 0.33 mm
Z = 4
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2473 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1h = 2828
multi–scank = 1210
9271 measured reflectionsl = 1213
2735 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.041P)2 + 0.316P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2735 reflectionsΔρmax = 0.20 e Å3
280 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (3)
Crystal data top
C21H36N2O7V = 2265.9 (8) Å3
Mr = 428.52Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.995 (5) ŵ = 0.09 mm1
b = 9.9534 (18) ÅT = 93 K
c = 10.531 (2) Å0.43 × 0.40 × 0.33 mm
β = 100.631 (3)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2473 reflections with I > 2σ(I)
9271 measured reflectionsRint = 0.026
2735 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.073H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2735 reflectionsΔρmin = 0.19 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61523 (6)0.82679 (13)0.77609 (13)0.0210 (3)
O20.70399 (6)0.83717 (14)0.92900 (13)0.0251 (3)
O30.54724 (6)1.15192 (13)0.54879 (13)0.0262 (3)
O40.50000.9521 (2)0.50000.0226 (4)
N10.65682 (7)1.02483 (17)0.83522 (14)0.0178 (4)
C10.70038 (9)1.1193 (2)0.91204 (18)0.0210 (4)
H1A0.74351.10000.90310.025*
H1B0.69731.11581.00460.025*
C20.67903 (8)1.2547 (2)0.85289 (18)0.0219 (4)
H2A0.69781.27410.77630.026*
H2B0.68941.32820.91650.026*
C30.60872 (8)1.23572 (19)0.81495 (18)0.0230 (4)
H3A0.58851.24520.89100.028*
H3B0.59051.30180.74840.028*
C40.60199 (8)1.09260 (18)0.76148 (17)0.0169 (4)
H40.56341.05040.78040.020*
C50.60269 (8)1.0861 (2)0.61761 (17)0.0209 (4)
H5A0.64001.13190.59870.025*
H5B0.60360.99130.58960.025*
C60.50001.0718 (3)0.50000.0188 (6)
C70.66228 (8)0.8903 (2)0.85346 (17)0.0184 (4)
C80.61266 (9)0.6788 (2)0.77050 (18)0.0195 (4)
C90.66997 (10)0.6233 (2)0.7267 (2)0.0275 (5)
H9A0.70630.63760.79470.033*
H9B0.67590.66970.64780.033*
H9C0.66460.52690.70930.033*
C100.60458 (10)0.6224 (2)0.90045 (19)0.0248 (4)
H10A0.57030.66850.92960.030*
H10B0.64270.63610.96380.030*
H10C0.59560.52600.89180.030*
C110.55506 (10)0.6543 (2)0.6687 (2)0.0274 (5)
H11A0.55960.69880.58800.033*
H11B0.51880.69080.69880.033*
H11C0.54960.55760.65360.033*
O50.87815 (6)0.72148 (13)0.73864 (12)0.0195 (3)
O60.79858 (6)0.70687 (14)0.56549 (12)0.0224 (3)
O70.97677 (6)0.38716 (13)0.90069 (11)0.0193 (3)
O81.00000.5876 (2)1.00000.0284 (5)
N20.84043 (7)0.52083 (17)0.67249 (14)0.0172 (4)
C120.79789 (8)0.4284 (2)0.59120 (17)0.0198 (4)
H12A0.79870.44190.49840.024*
H12B0.75500.43930.60570.024*
C130.82406 (10)0.2922 (2)0.63755 (19)0.0240 (5)
H13A0.85830.26590.59350.029*
H13B0.79170.22190.62270.029*
C140.84733 (9)0.31487 (19)0.78185 (18)0.0235 (4)
H14A0.87890.24710.81730.028*
H14B0.81280.31040.83030.028*
C150.87548 (7)0.45583 (18)0.78907 (16)0.0156 (3)
H15A0.86800.50330.86840.019*
C160.94416 (7)0.45378 (19)0.78534 (16)0.0183 (4)
H16A0.95140.40520.70740.022*
H16B0.95970.54680.78150.022*
C171.00000.4671 (3)1.00000.0172 (5)
C180.83557 (8)0.6552 (2)0.65213 (17)0.0171 (4)
C190.88191 (9)0.8700 (2)0.73624 (18)0.0199 (4)
C200.93749 (10)0.8980 (2)0.84211 (19)0.0258 (4)
H20A0.97420.85490.82010.031*
H20B0.92980.86190.92430.031*
H20C0.94430.99510.85020.031*
C210.89438 (10)0.9192 (2)0.60638 (18)0.0270 (5)
H21A0.85770.90350.53950.032*
H21B0.92970.87020.58440.032*
H21C0.90371.01560.61170.032*
C220.82306 (9)0.9276 (2)0.7694 (2)0.0265 (4)
H22A0.81560.88760.85020.032*
H22B0.78820.90730.69970.032*
H22C0.82731.02520.77980.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (7)0.0133 (8)0.0254 (7)0.0019 (5)0.0034 (5)0.0023 (5)
O20.0217 (7)0.0242 (9)0.0260 (7)0.0008 (6)0.0046 (6)0.0067 (6)
O30.0272 (7)0.0192 (7)0.0259 (7)0.0017 (6)0.0118 (6)0.0039 (6)
O40.0231 (9)0.0178 (12)0.0262 (10)0.0000.0024 (8)0.000
N10.0147 (7)0.0170 (9)0.0193 (8)0.0025 (6)0.0027 (6)0.0010 (6)
C10.0165 (9)0.0244 (12)0.0198 (9)0.0046 (8)0.0027 (7)0.0003 (8)
C20.0190 (9)0.0201 (11)0.0242 (10)0.0026 (8)0.0021 (8)0.0018 (8)
C30.0189 (8)0.0226 (10)0.0259 (9)0.0026 (8)0.0000 (7)0.0038 (8)
C40.0120 (7)0.0179 (10)0.0201 (9)0.0004 (7)0.0011 (6)0.0010 (7)
C50.0169 (8)0.0244 (10)0.0197 (9)0.0006 (7)0.0011 (7)0.0013 (7)
C60.0212 (12)0.0211 (16)0.0131 (12)0.0000.0003 (10)0.000
C70.0150 (8)0.0222 (11)0.0174 (8)0.0016 (8)0.0011 (7)0.0006 (8)
C80.0225 (9)0.0136 (10)0.0208 (10)0.0004 (8)0.0002 (8)0.0001 (7)
C90.0298 (10)0.0281 (12)0.0254 (10)0.0028 (9)0.0070 (8)0.0013 (9)
C100.0323 (11)0.0189 (11)0.0241 (10)0.0016 (8)0.0077 (8)0.0016 (8)
C110.0307 (11)0.0189 (11)0.0286 (11)0.0009 (9)0.0053 (9)0.0011 (9)
O50.0218 (6)0.0140 (8)0.0201 (6)0.0001 (5)0.0032 (5)0.0006 (5)
O60.0211 (7)0.0220 (8)0.0215 (7)0.0048 (6)0.0028 (6)0.0028 (6)
O70.0184 (6)0.0175 (7)0.0187 (6)0.0002 (5)0.0049 (5)0.0004 (5)
O80.0403 (12)0.0182 (12)0.0235 (10)0.0000.0028 (9)0.000
N20.0160 (8)0.0170 (9)0.0160 (7)0.0004 (6)0.0041 (6)0.0005 (6)
C120.0184 (9)0.0193 (11)0.0192 (9)0.0021 (8)0.0031 (7)0.0018 (8)
C130.0250 (10)0.0184 (12)0.0244 (10)0.0052 (8)0.0062 (8)0.0005 (8)
C140.0230 (9)0.0212 (10)0.0236 (9)0.0057 (8)0.0029 (7)0.0043 (8)
C150.0150 (7)0.0159 (9)0.0147 (8)0.0012 (7)0.0003 (6)0.0006 (7)
C160.0155 (8)0.0223 (10)0.0157 (8)0.0007 (7)0.0008 (6)0.0010 (7)
C170.0122 (11)0.0201 (16)0.0189 (12)0.0000.0017 (10)0.000
C180.0165 (8)0.0178 (11)0.0169 (9)0.0013 (7)0.0030 (7)0.0001 (7)
C190.0248 (10)0.0127 (11)0.0215 (9)0.0014 (8)0.0030 (8)0.0015 (8)
C200.0296 (10)0.0191 (11)0.0268 (10)0.0037 (8)0.0003 (8)0.0023 (8)
C210.0345 (11)0.0222 (12)0.0246 (10)0.0019 (9)0.0065 (9)0.0017 (8)
C220.0286 (10)0.0189 (11)0.0331 (10)0.0022 (8)0.0086 (9)0.0040 (9)
Geometric parameters (Å, º) top
O1—C71.350 (2)O5—C181.352 (2)
O1—C81.475 (2)O5—C191.482 (2)
O2—C71.219 (2)O6—C181.219 (2)
O3—C61.335 (2)O7—C171.338 (2)
O3—C51.455 (2)O7—C161.4519 (19)
O4—C61.191 (4)O8—C171.200 (4)
N1—C71.355 (3)N2—C181.355 (3)
N1—C41.472 (2)N2—C121.469 (2)
N1—C11.473 (2)N2—C151.473 (2)
C1—C21.522 (3)C12—C131.518 (3)
C1—H1A0.99C12—H12A0.99
C1—H1B0.99C12—H12B0.99
C2—C31.536 (2)C13—C141.528 (3)
C2—H2A0.99C13—H13A0.99
C2—H2B0.99C13—H13B0.99
C3—C41.529 (3)C14—C151.530 (3)
C3—H3A0.99C14—H14A0.99
C3—H3B0.99C14—H14B0.99
C4—C51.519 (2)C15—C161.518 (2)
C4—H41.00C15—H15A1.00
C5—H5A0.99C16—H16A0.99
C5—H5B0.99C16—H16B0.99
C6—O3i1.335 (2)C17—O7ii1.338 (2)
C8—C101.520 (3)C19—C221.514 (3)
C8—C111.521 (3)C19—C201.520 (3)
C8—C91.524 (3)C19—C211.524 (3)
C9—H9A0.98C20—H20A0.98
C9—H9B0.98C20—H20B0.98
C9—H9C0.98C20—H20C0.98
C10—H10A0.98C21—H21A0.98
C10—H10B0.98C21—H21B0.98
C10—H10C0.98C21—H21C0.98
C11—H11A0.98C22—H22A0.98
C11—H11B0.98C22—H22B0.98
C11—H11C0.98C22—H22C0.98
C7—O1—C8120.75 (16)C18—O5—C19120.63 (15)
C6—O3—C5116.37 (15)C17—O7—C16116.16 (15)
C7—N1—C4124.77 (16)C18—N2—C12120.16 (16)
C7—N1—C1121.41 (17)C18—N2—C15125.37 (15)
C4—N1—C1112.57 (16)C12—N2—C15112.93 (15)
N1—C1—C2102.72 (15)N2—C12—C13102.06 (14)
N1—C1—H1A111.2N2—C12—H12A111.4
C2—C1—H1A111.2C13—C12—H12A111.4
N1—C1—H1B111.2N2—C12—H12B111.4
C2—C1—H1B111.2C13—C12—H12B111.4
H1A—C1—H1B109.1H12A—C12—H12B109.2
C1—C2—C3102.54 (16)C12—C13—C14103.02 (16)
C1—C2—H2A111.3C12—C13—H13A111.2
C3—C2—H2A111.3C14—C13—H13A111.2
C1—C2—H2B111.3C12—C13—H13B111.2
C3—C2—H2B111.3C14—C13—H13B111.2
H2A—C2—H2B109.2H13A—C13—H13B109.1
C4—C3—C2103.59 (15)C13—C14—C15104.08 (15)
C4—C3—H3A111.0C13—C14—H14A110.9
C2—C3—H3A111.0C15—C14—H14A110.9
C4—C3—H3B111.0C13—C14—H14B110.9
C2—C3—H3B111.0C15—C14—H14B110.9
H3A—C3—H3B109.0H14A—C14—H14B109.0
N1—C4—C5110.40 (14)N2—C15—C16110.76 (13)
N1—C4—C3102.62 (14)N2—C15—C14102.50 (14)
C5—C4—C3112.86 (15)C16—C15—C14112.45 (15)
N1—C4—H4110.2N2—C15—H15A110.3
C5—C4—H4110.2C16—C15—H15A110.3
C3—C4—H4110.2C14—C15—H15A110.3
O3—C5—C4108.41 (14)O7—C16—C15108.95 (13)
O3—C5—H5A110.0O7—C16—H16A109.9
C4—C5—H5A110.0C15—C16—H16A109.9
O3—C5—H5B110.0O7—C16—H16B109.9
C4—C5—H5B110.0C15—C16—H16B109.9
H5A—C5—H5B108.4H16A—C16—H16B108.3
O4—C6—O3i126.69 (12)O8—C17—O7126.48 (11)
O4—C6—O3126.69 (12)O8—C17—O7ii126.48 (11)
O3i—C6—O3106.6 (2)O7—C17—O7ii107.0 (2)
O2—C7—O1126.3 (2)O6—C18—O5125.61 (19)
O2—C7—N1123.91 (19)O6—C18—N2123.86 (19)
O1—C7—N1109.83 (16)O5—C18—N2110.51 (16)
O1—C8—C10110.09 (16)O5—C19—C22108.72 (16)
O1—C8—C11102.07 (16)O5—C19—C20102.10 (15)
C10—C8—C11110.79 (17)C22—C19—C20111.57 (16)
O1—C8—C9110.27 (16)O5—C19—C21110.84 (16)
C10—C8—C9112.29 (17)C22—C19—C21112.85 (17)
C11—C8—C9110.88 (16)C20—C19—C21110.23 (17)
C8—C9—H9A109.5C19—C20—H20A109.5
C8—C9—H9B109.5C19—C20—H20B109.5
H9A—C9—H9B109.5H20A—C20—H20B109.5
C8—C9—H9C109.5C19—C20—H20C109.5
H9A—C9—H9C109.5H20A—C20—H20C109.5
H9B—C9—H9C109.5H20B—C20—H20C109.5
C8—C10—H10A109.5C19—C21—H21A109.5
C8—C10—H10B109.5C19—C21—H21B109.5
H10A—C10—H10B109.5H21A—C21—H21B109.5
C8—C10—H10C109.5C19—C21—H21C109.5
H10A—C10—H10C109.5H21A—C21—H21C109.5
H10B—C10—H10C109.5H21B—C21—H21C109.5
C8—C11—H11A109.5C19—C22—H22A109.5
C8—C11—H11B109.5C19—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
C8—C11—H11C109.5C19—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
C7—N1—C1—C2176.45 (17)C18—N2—C12—C13174.22 (16)
C4—N1—C1—C215.76 (19)C15—N2—C12—C1319.19 (18)
N1—C1—C2—C333.84 (18)N2—C12—C13—C1435.11 (18)
C1—C2—C3—C440.29 (18)C12—C13—C14—C1539.24 (19)
C7—N1—C4—C581.3 (2)C18—N2—C15—C1678.9 (2)
C1—N1—C4—C5111.38 (17)C12—N2—C15—C16115.30 (16)
C7—N1—C4—C3158.15 (17)C18—N2—C15—C14160.90 (17)
C1—N1—C4—C39.15 (19)C12—N2—C15—C144.86 (18)
C2—C3—C4—N130.20 (18)C13—C14—C15—N226.95 (18)
C2—C3—C4—C588.61 (17)C13—C14—C15—C1692.03 (17)
C6—O3—C5—C498.00 (16)C17—O7—C16—C1594.52 (15)
N1—C4—C5—O3178.94 (14)N2—C15—C16—O7179.11 (14)
C3—C4—C5—O366.87 (18)C14—C15—C16—O765.08 (18)
C5—O3—C6—O45.10 (16)C16—O7—C17—O85.21 (14)
C5—O3—C6—O3i174.90 (16)C16—O7—C17—O7ii174.79 (14)
C8—O1—C7—O24.2 (3)C19—O5—C18—O61.8 (3)
C8—O1—C7—N1175.71 (15)C19—O5—C18—N2179.82 (14)
C4—N1—C7—O2169.34 (17)C12—N2—C18—O62.7 (3)
C1—N1—C7—O23.1 (3)C15—N2—C18—O6167.50 (16)
C4—N1—C7—O110.8 (3)C12—N2—C18—O5178.84 (14)
C1—N1—C7—O1176.99 (15)C15—N2—C18—O514.0 (2)
C7—O1—C8—C1064.9 (2)C18—O5—C19—C2265.4 (2)
C7—O1—C8—C11177.36 (15)C18—O5—C19—C20176.56 (15)
C7—O1—C8—C959.5 (2)C18—O5—C19—C2159.2 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2iii0.992.603.223 (2)121
C5—H5A···O6iv0.992.503.380 (2)148
C13—H13B···O6v0.992.543.231 (2)127
Symmetry codes: (iii) x+3/2, y+1/2, z+2; (iv) x+3/2, y+1/2, z+1; (v) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H36N2O7
Mr428.52
Crystal system, space groupMonoclinic, C2
Temperature (K)93
a, b, c (Å)21.995 (5), 9.9534 (18), 10.531 (2)
β (°) 100.631 (3)
V3)2265.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.40 × 0.33
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9271, 2735, 2473
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.00
No. of reflections2735
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.992.603.223 (2)121
C5—H5A···O6ii0.992.503.380 (2)148
C13—H13B···O6iii0.992.543.231 (2)127
Symmetry codes: (i) x+3/2, y+1/2, z+2; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+1.
 

Acknowledgements

The authors thank the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

References

First citationDalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138–5175.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiegrebe, W., Herrmann, E. G., Schlunegger, U. P. & Budzikiewicz, H. (1974). Helv. Chim. Acta, 57, 301–314.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds