metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(2-Hy­droxy­ethyl)ethyl­enedi­amine]oxalatocopper(II)

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit TR-55139, Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
*Correspondence e-mail: yhakki@omu.edu.tr

(Received 28 September 2009; accepted 2 October 2009; online 10 October 2009)

In the title mononuclear copper(II) compound, [Cu(C2O4)(C4H12N2O)], the CuII ion has a slightly distorted square-pyramidal geometry, with a tridentate N-(2-hydroxy­ethyl)ethyl­enediamine (HydEt-en) and a bidentate oxalate (ox) ligand. The N atoms of the HydEt-en ligand and the O atoms of ox ligand form the basal plane, while the O atom of the ethanol group of the HydEt-en ligand is located in the axial position. The complex mol­ecules participate in a supra­molecular assembly through N—H⋯O and O—H⋯O hydrogen bonds between HydEt-en and ox ligands.

Related literature

For general background to the HydEt-en ligand, see: Karadağ et al. (2004[Karadağ, A., Paşaoğlu, H., Kaştaş, G. & Büyükgüngör, O. (2004). Acta Cryst. C60, m581-m583.], 2005[Karadağ, A., Paşaoğlu, H., Kaştaş, G. & Büyükgüngör, O. (2005). Z. Kristallogr. 220, 74-78.]); Paşaoğlu et al. (2005[Paşaoğlu, H., Karadağ, A., Tezcan, F. & Büyükgüngör, O. (2005). Acta Cryst. C61, m93-m94.]). For transition metal complexes of oxalate, see: Scott et al. (1973[Scott, K. L., Wieghardt, K. & Sykes, A. G. (1973). Inorg. Chem. 12, 655-663.]); Xia et al. (2004[Xia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003-1009.]); Yılmaz et al. (2003[Yılmaz, V. T., Senel, E. & Thoene, C. (2003). J. Coord. Chem. 56, 1417-1423.]); Youngme et al. (2003[Youngme, S., Albada, G. A., Chaichit, N., Gunnasoot, P., Kongsaeree, P., Mutikainen, I., Roubeau, O., Reedijk, J. & Turpeinen, U. (2003). Inorg. Chim. Acta, 353, 119-128.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2O4)(C4H12N2O)]

  • Mr = 255.72

  • Orthorhombic, P 21 21 21

  • a = 7.9766 (5) Å

  • b = 8.7263 (4) Å

  • c = 13.0191 (7) Å

  • V = 906.21 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 296 K

  • 0.52 × 0.42 × 0.23 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.570, Tmax = 0.781

  • 10045 measured reflections

  • 1868 independent reflections

  • 1780 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.065

  • S = 1.08

  • 1868 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −1.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 797 Friedel pairs

  • Flack parameter: 0.017 (17)

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9505 (13)
Cu1—O4 1.9625 (14)
Cu1—N2 1.9717 (18)
Cu1—N1 2.0066 (18)
Cu1—O5 2.4174 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.85 (3) 2.17 (3) 3.015 (2) 173 (2)
N2—H2A⋯O1ii 0.94 (3) 2.02 (3) 2.936 (2) 165 (2)
N2—H2B⋯O2iii 0.91 (3) 2.02 (3) 2.909 (2) 168 (3)
O5—H5⋯O3iv 0.72 (3) 2.06 (3) 2.774 (3) 171 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing research on the preparation and characterization of mixed ligand metal complexes of HydEt-en we report here the synthesis and X-ray analysis of a mononuclear copper(II) complex, [Cu(HydEt-en)(ox)]. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed-ligand metal complexes.

In title compound, the HydEt-en ligand chelates through its two N atoms and the O atom of the hydroxyl group. The square-pyramidal coordination shell consists of three five-membered chelate rings (Fig. 1) viz. A (Cu1/O1/C1/C2/O4), B (Cu1/N1/C5/C6/N2) and C (Cu1/O5/C3/C4/N1). The mean plane through ring C is perpendicular to that through the ring A, with a dihedral angle of 89.27 (5)°. The bite angles of rings B and C are 86.36 (7)° and 78.65 (7)°, respectively.

The complex participates in a supramolecular assembly through N—H···O and O—H···O hydrogen bonds between HydEt-en and oxalate ligands. The HydEt-en ligand is involved in hydrogen bonds through its amino, imino and hydroxyl groups. In the crystal structure (Fig. 2), N1—H1···O4i and N2—H2A···O1ii (Table 2) hydrogen bonds constitute a polymeric chain parallel to the [010], giving rise to C(4) chain and R22(8) (Bernstein et al., 1995) rings. These polymeric chains are inter-connected to each other by N2—H2B···O2iii and O5—H5···O3iv hydrogen bonds extending through the ac plane, resulting in a three-dimensional supramolecular network as illustrated in Fig. 3.

Related literature top

For general background to the HydEt-en ligand, see: Karadağ et al. (2004, 2005); Paşaoğlu et al. (2005). For the crystal structure of oxalate, see: Scott et al. (1973); Xia et al. (2004); Yılmaz et al. (2003); Youngme et al. (2003). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The HydEt-en ligand (0.12 g, 2 mmol) was added dropwise to a solution of Cu(ox).0.5H2O (0.48 g, 3.0 mmol) in pyridine-water (1:2, 30 ml) at 50° C. The resulting solution was stirred for 1 h at 50° C and then filtered. The reaction mixture was then slowly cooled to room temperature. Violet crystals suitable for X-ray diffraction analysis were obtained after a few days and were washed with 5 ml of ethanol and dried in air.

Refinement top

All H atoms involved in hydrogen bondings were located in a difference Fourier map and their positional and Uiso parameters were refined. The remaining H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C-H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our ongoing research on the preparation and characterization of mixed ligand metal complexes of HydEt-en we report here the synthesis and X-ray analysis of a mononuclear copper(II) complex, [Cu(HydEt-en)(ox)]. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed-ligand metal complexes.

In title compound, the HydEt-en ligand chelates through its two N atoms and the O atom of the hydroxyl group. The square-pyramidal coordination shell consists of three five-membered chelate rings (Fig. 1) viz. A (Cu1/O1/C1/C2/O4), B (Cu1/N1/C5/C6/N2) and C (Cu1/O5/C3/C4/N1). The mean plane through ring C is perpendicular to that through the ring A, with a dihedral angle of 89.27 (5)°. The bite angles of rings B and C are 86.36 (7)° and 78.65 (7)°, respectively.

The complex participates in a supramolecular assembly through N—H···O and O—H···O hydrogen bonds between HydEt-en and oxalate ligands. The HydEt-en ligand is involved in hydrogen bonds through its amino, imino and hydroxyl groups. In the crystal structure (Fig. 2), N1—H1···O4i and N2—H2A···O1ii (Table 2) hydrogen bonds constitute a polymeric chain parallel to the [010], giving rise to C(4) chain and R22(8) (Bernstein et al., 1995) rings. These polymeric chains are inter-connected to each other by N2—H2B···O2iii and O5—H5···O3iv hydrogen bonds extending through the ac plane, resulting in a three-dimensional supramolecular network as illustrated in Fig. 3.

For general background to the HydEt-en ligand, see: Karadağ et al. (2004, 2005); Paşaoğlu et al. (2005). For the crystal structure of oxalate, see: Scott et al. (1973); Xia et al. (2004); Yılmaz et al. (2003); Youngme et al. (2003). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Cu(HydEt-en)(ox)] with atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level for the non hydrogen atoms.
[Figure 2] Fig. 2. The assembly of polymeric chains of [Cu(HydEt-en)(ox)] into a two-dimensional layer by N—H···O and O—H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Symmetry codes are as given in Table 2
[Figure 3] Fig. 3. The supramolecular network of [Cu(HydEt-en)(ox)] projected onto (010). All H atoms except H2b and H5 have been omitted for clarity. Symmetry codes are as given in Table 2.
[N-(2-Hydroxyethyl)ethylenediamine]oxalatocopper(II) top
Crystal data top
[Cu(C2O4)(C4H12N2O)]F(000) = 524
Mr = 255.72Dx = 1.874 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10045 reflections
a = 7.9766 (5) Åθ = 1.6–28.0°
b = 8.7263 (4) ŵ = 2.41 mm1
c = 13.0191 (7) ÅT = 296 K
V = 906.21 (9) Å3Prism, violet
Z = 40.52 × 0.42 × 0.23 mm
Data collection top
Stoe IPDS-II
diffractometer
1868 independent reflections
Radiation source: fine-focus sealed tube1780 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.063
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.8°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.570, Tmax = 0.781l = 1516
10045 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0427P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1868 reflectionsΔρmax = 0.22 e Å3
143 parametersΔρmin = 1.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (17)
Crystal data top
[Cu(C2O4)(C4H12N2O)]V = 906.21 (9) Å3
Mr = 255.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9766 (5) ŵ = 2.41 mm1
b = 8.7263 (4) ÅT = 296 K
c = 13.0191 (7) Å0.52 × 0.42 × 0.23 mm
Data collection top
Stoe IPDS-II
diffractometer
1868 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1780 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.781Rint = 0.063
10045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.22 e Å3
S = 1.08Δρmin = 1.30 e Å3
1868 reflectionsAbsolute structure: Flack (1983), 797 Friedel pairs
143 parametersAbsolute structure parameter: 0.017 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6054 (2)0.4652 (2)0.44437 (15)0.0242 (4)
C20.7217 (3)0.3322 (2)0.41059 (16)0.0274 (4)
C30.1649 (3)0.2157 (3)0.28011 (18)0.0389 (5)
H3A0.08210.18360.33020.047*
H3B0.14510.15890.21720.047*
C40.1448 (3)0.3853 (2)0.25922 (18)0.0374 (5)
H4A0.03890.40290.22440.045*
H4B0.14220.44040.32390.045*
C50.2752 (3)0.3933 (3)0.08732 (16)0.0334 (4)
H5A0.19740.45690.04920.040*
H5B0.23570.28830.08450.040*
C60.4476 (3)0.4039 (3)0.04004 (16)0.0339 (4)
H6A0.44870.35300.02620.041*
H6B0.47800.51050.02990.041*
Cu10.50643 (3)0.38250 (2)0.252350 (16)0.02606 (11)
N10.2830 (2)0.44501 (19)0.19527 (13)0.0271 (4)
N20.5680 (2)0.3297 (2)0.11000 (14)0.0282 (4)
O10.48949 (18)0.49776 (14)0.38029 (11)0.0288 (3)
O20.6303 (2)0.53159 (18)0.52577 (12)0.0364 (4)
O30.8216 (2)0.27578 (18)0.47136 (13)0.0408 (4)
O40.70385 (19)0.28980 (16)0.31740 (11)0.0328 (3)
O50.3275 (2)0.18117 (19)0.31756 (14)0.0351 (3)
H10.280 (3)0.542 (3)0.1959 (18)0.028 (6)*
H2A0.559 (3)0.223 (3)0.102 (2)0.038 (7)*
H2B0.668 (4)0.371 (4)0.093 (2)0.052 (8)*
H50.319 (3)0.186 (3)0.373 (2)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (9)0.0247 (8)0.0231 (9)0.0019 (7)0.0017 (8)0.0006 (7)
C20.0259 (9)0.0240 (8)0.0323 (10)0.0001 (8)0.0045 (8)0.0010 (8)
C30.0350 (12)0.0418 (11)0.0400 (11)0.0101 (10)0.0008 (10)0.0076 (9)
C40.0307 (10)0.0416 (11)0.0399 (13)0.0025 (8)0.0031 (9)0.0028 (11)
C50.0340 (10)0.0397 (10)0.0266 (10)0.0020 (10)0.0076 (8)0.0005 (9)
C60.0419 (11)0.0360 (9)0.0238 (10)0.0051 (9)0.0019 (9)0.0035 (8)
Cu10.02695 (16)0.02892 (15)0.02230 (18)0.00454 (9)0.00390 (9)0.00309 (8)
N10.0286 (8)0.0228 (8)0.0299 (9)0.0020 (6)0.0050 (7)0.0012 (6)
N20.0280 (9)0.0289 (8)0.0276 (9)0.0039 (7)0.0030 (7)0.0019 (7)
O10.0315 (7)0.0291 (6)0.0258 (6)0.0055 (6)0.0055 (6)0.0039 (5)
O20.0366 (9)0.0409 (7)0.0316 (8)0.0008 (7)0.0068 (7)0.0103 (7)
O30.0415 (9)0.0449 (8)0.0359 (8)0.0151 (7)0.0119 (7)0.0018 (7)
O40.0321 (7)0.0363 (8)0.0299 (7)0.0109 (6)0.0046 (7)0.0068 (6)
O50.0370 (8)0.0366 (8)0.0318 (8)0.0002 (7)0.0049 (7)0.0061 (7)
Geometric parameters (Å, º) top
C1—O21.224 (2)C5—H5A0.97
C1—O11.277 (2)C5—H5B0.97
C1—C21.549 (3)C6—N21.473 (3)
C2—O31.226 (3)C6—H6A0.97
C2—O41.276 (3)C6—H6B0.97
C3—O51.418 (3)Cu1—O11.9505 (13)
C3—C41.514 (3)Cu1—O41.9625 (14)
C3—H3A0.97Cu1—N21.9717 (18)
C3—H3B0.97Cu1—N12.0066 (18)
C4—N11.477 (3)Cu1—O52.4174 (16)
C4—H4A0.97N1—H10.85 (3)
C4—H4B0.97N2—H2A0.94 (3)
C5—N11.477 (3)N2—H2B0.91 (3)
C5—C61.509 (3)O5—H50.72 (3)
O2—C1—O1125.27 (18)H6A—C6—H6B108.4
O2—C1—C2120.22 (17)O1—Cu1—O484.24 (6)
O1—C1—C2114.50 (16)O1—Cu1—N2160.11 (7)
O3—C2—O4124.72 (19)O4—Cu1—N296.29 (7)
O3—C2—C1120.44 (18)O1—Cu1—N196.58 (6)
O4—C2—C1114.83 (16)O4—Cu1—N1169.93 (7)
O5—C3—C4111.52 (19)N2—Cu1—N186.36 (7)
O5—C3—H3A109.3O1—Cu1—O591.94 (6)
C4—C3—H3A109.3O4—Cu1—O591.30 (6)
O5—C3—H3B109.3N2—Cu1—O5107.90 (7)
C4—C3—H3B109.3N1—Cu1—O578.65 (7)
H3A—C3—H3B108.0C4—N1—C5113.41 (17)
N1—C4—C3111.52 (19)C4—N1—Cu1111.01 (13)
N1—C4—H4A109.3C5—N1—Cu1107.84 (13)
C3—C4—H4A109.3C4—N1—H1109.0 (17)
N1—C4—H4B109.3C5—N1—H1108.3 (16)
C3—C4—H4B109.3Cu1—N1—H1107.1 (16)
H4A—C4—H4B108.0C6—N2—Cu1108.44 (13)
N1—C5—C6109.33 (17)C6—N2—H2A108.3 (16)
N1—C5—H5A109.8Cu1—N2—H2A108.5 (16)
C6—C5—H5A109.8C6—N2—H2B104 (2)
N1—C5—H5B109.8Cu1—N2—H2B111 (2)
C6—C5—H5B109.8H2A—N2—H2B116 (3)
H5A—C5—H5B108.3C1—O1—Cu1113.13 (11)
N2—C6—C5108.33 (17)C2—O4—Cu1112.35 (12)
N2—C6—H6A110.0C3—O5—Cu1105.36 (12)
C5—C6—H6A110.0C3—O5—H5104 (2)
N2—C6—H6B110.0Cu1—O5—H5112 (2)
C5—C6—H6B110.0
O2—C1—C2—O311.9 (3)O4—Cu1—N2—C6173.13 (13)
O1—C1—C2—O3169.41 (19)N1—Cu1—N2—C616.62 (13)
O2—C1—C2—O4167.92 (19)O5—Cu1—N2—C693.46 (14)
O1—C1—C2—O410.8 (2)O2—C1—O1—Cu1173.14 (16)
O5—C3—C4—N150.6 (3)C2—C1—O1—Cu15.5 (2)
N1—C5—C6—N249.2 (2)O4—Cu1—O1—C10.32 (13)
C3—C4—N1—C571.6 (2)N2—Cu1—O1—C192.3 (2)
C3—C4—N1—Cu150.0 (2)N1—Cu1—O1—C1170.23 (14)
C6—C5—N1—C4157.56 (17)O5—Cu1—O1—C191.43 (13)
C6—C5—N1—Cu134.2 (2)O3—C2—O4—Cu1170.12 (18)
O1—Cu1—N1—C464.96 (14)C1—C2—O4—Cu110.1 (2)
O4—Cu1—N1—C429.1 (4)O1—Cu1—O4—C25.92 (14)
N2—Cu1—N1—C4134.79 (14)N2—Cu1—O4—C2165.93 (14)
O5—Cu1—N1—C425.71 (13)N1—Cu1—O4—C289.3 (4)
O1—Cu1—N1—C5170.23 (13)O5—Cu1—O4—C285.90 (14)
O4—Cu1—N1—C595.7 (4)C4—C3—O5—Cu125.7 (2)
N2—Cu1—N1—C59.98 (14)O1—Cu1—O5—C396.66 (14)
O5—Cu1—N1—C599.10 (14)O4—Cu1—O5—C3179.06 (14)
C5—C6—N2—Cu139.46 (19)N2—Cu1—O5—C382.02 (15)
O1—Cu1—N2—C682.7 (2)N1—Cu1—O5—C30.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.85 (3)2.17 (3)3.015 (2)173 (2)
N2—H2A···O1ii0.94 (3)2.02 (3)2.936 (2)165 (2)
N2—H2B···O2iii0.91 (3)2.02 (3)2.909 (2)168 (3)
O5—H5···O3iv0.72 (3)2.06 (3)2.774 (3)171 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+3/2, y+1, z1/2; (iv) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)(C4H12N2O)]
Mr255.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.9766 (5), 8.7263 (4), 13.0191 (7)
V3)906.21 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.52 × 0.42 × 0.23
Data collection
DiffractometerStoe IPDS-II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.570, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
10045, 1868, 1780
Rint0.063
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 1.08
No. of reflections1868
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 1.30
Absolute structureFlack (1983), 797 Friedel pairs
Absolute structure parameter0.017 (17)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O11.9505 (13)Cu1—N12.0066 (18)
Cu1—O41.9625 (14)Cu1—O52.4174 (16)
Cu1—N21.9717 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.85 (3)2.17 (3)3.015 (2)173 (2)
N2—H2A···O1ii0.94 (3)2.02 (3)2.936 (2)165 (2)
N2—H2B···O2iii0.91 (3)2.02 (3)2.909 (2)168 (3)
O5—H5···O3iv0.72 (3)2.06 (3)2.774 (3)171 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+3/2, y+1, z1/2; (iv) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Professor Orhan Büyükgüngör for his help with the data collection and acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaradağ, A., Paşaoğlu, H., Kaştaş, G. & Büyükgüngör, O. (2004). Acta Cryst. C60, m581–m583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradağ, A., Paşaoğlu, H., Kaştaş, G. & Büyükgüngör, O. (2005). Z. Kristallogr. 220, 74–78.  Google Scholar
First citationPaşaoğlu, H., Karadağ, A., Tezcan, F. & Büyükgüngör, O. (2005). Acta Cryst. C61, m93–m94.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, K. L., Wieghardt, K. & Sykes, A. G. (1973). Inorg. Chem. 12, 655–663.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003–1009.  Web of Science CSD CrossRef CAS Google Scholar
First citationYılmaz, V. T., Senel, E. & Thoene, C. (2003). J. Coord. Chem. 56, 1417–1423.  Google Scholar
First citationYoungme, S., Albada, G. A., Chaichit, N., Gunnasoot, P., Kongsaeree, P., Mutikainen, I., Roubeau, O., Reedijk, J. & Turpeinen, U. (2003). Inorg. Chim. Acta, 353, 119–128.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds