organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5,7-Trimeth­­oxy-2-(4-meth­oxy­phen­yl)-4H-1-benzo­pyran-4-one

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand, and The Center for Petroleum Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330, Thailand
*Correspondence e-mail: thammarat.aree@gmail.com

(Received 4 October 2009; accepted 7 October 2009; online 10 October 2009)

In the title compound, C19H18O6, also known as 3,4′,5,7-tetra­methoxy­flavone, the dihedral angle between the benzopyran-4-one group and the attached benzene ring is 11.23 (8)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (0[\overline{1}]1) by inter­molecular C—H⋯O hydrogen bonds, which generate R44(20), R44(12) and R22(14) ring motifs. Adjacent networks interact by ππ inter­actions between the pyran ring and its methoxy­phenyl substituent [centroid–centroid distance = 3.5267 (8) Å].

Related literature

For related structures, see: Aree et al. (2009[Aree, T., Sabphon, C. & Sawasdee, P. (2009). Acta Cryst. E65, o2693.]) and the Cambridge Structural Database [Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.])]. For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O6

  • Mr = 342.33

  • Triclinic, [P \overline 1]

  • a = 8.7854 (3) Å

  • b = 9.2743 (4) Å

  • c = 10.6950 (4) Å

  • α = 70.749 (1)°

  • β = 81.448 (1)°

  • γ = 83.078 (1)°

  • V = 811.15 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.946

  • 5901 measured reflections

  • 3930 independent reflections

  • 2827 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.06

  • 3930 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O5 0.93 2.23 2.8690 (18) 126
C17—H17B⋯O2i 0.96 2.48 3.2674 (19) 139
C17—H17B⋯O3i 0.96 2.61 3.458 (2) 148
C18—H18B⋯O6ii 0.96 2.57 3.530 (2) 173
C19—H19C⋯O5iii 0.96 2.51 3.457 (2) 170
Symmetry codes: (i) -x-1, -y, -z+1; (ii) -x, -y+1, -z+2; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), (3,5,7-trimethoxy-2-(4-methoxyphenyl)-4H- 1-benzopyran-4-one or 3,4',5,7-tetramethoxyflavone), (Fig.1), is a secondary metabolite that was isolated from a Thai medicinal plant, Kaempferia parviflora. Several flavones have also been isolated from this plant and their crystal structures have been reported, for example see Aree et al. (2009) and references cited therein. Here, we report the crystal structure of another flavone in an anhydrous form having no strong hydrogen bond donor. Weak C—H···O hydrogen bonds play a key role in stabilizing the crystal lattice.

The molecular structure of (I) deviates from a planar geometry; the interplanar angle between the benzopyran-4-one group and the attached phenyl group is 11.23 (8)° (Fig. 1). A search in the Cambridge Structural Database [Version 1.11 (Allen, 2002); CONQUEST (Bruno et al., 2002)] indicate that this feature is frequently observed . The three methoxy C16, C17 and C19 atoms slightly deviate from the mean planes of the attached benzopyran or phenyl rings by 0.288 (3), -0.119 (3) and 0.355 (3) Å whereas atom C18 deviates from the benzopyran plane by -0.933 (3) Å. The corresponding values of torsion angles are C16—O4—C3—C2 = 3.0 (2)°, C17—O3—C5—C4 = 0.4 (2)°, C19—O6—C13—C12 = -15.9 (2)° and C18—O5—C8—C9 = 111.09 (17)°. The flavone molecule is stabilized by an intramolecular C15—H···O5 hydrogen bond that generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal, molecules are linked to form a ribbon-like structure by intermolecular C18—H18B···O6ii and C19—H19C···.O5iii hydrogen bonds, generating R22(20) and R44(12) ring motifs (Bernstein et al., 1995) (Fig. 2). The adjacent inversion-related ribbons are cross-linked into a two-dimensional network parallel to the (011) by intermolecular C17—H17B···O2i and C17—H17B···O3i hydrogen bonds, generating R22(14) ring motifs (Bernstein et al., 1995) (Fig. 3). The crystal structure is further stabilized by ππ interactions (Fig. 4) between O1/C1/C6-C9 and C10-C15 rings of the molecules in adjacent networks, with a centroid-to-centroid distance of 3.5267 (8) Å.

Related literature top

For related structures, see: Aree et al. (2009) and the Cambridge Structural Database [Allen (2002); Bruno et al. (2002)]. For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995).

Experimental top

The title compound, (I), was extracted from Kaempferia parviflora, a medicinal plant from the north-east of Thailand. Single crystals of (I) were obtained by slow evaporation of a methanol–water (1:1, v/v) solution at room temperature.

Refinement top

All H atoms were located in a difference map and then refined using a riding model, with C-H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C), and C-H = 0.96 Å (methyl) and Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

The title compound, (I), (3,5,7-trimethoxy-2-(4-methoxyphenyl)-4H- 1-benzopyran-4-one or 3,4',5,7-tetramethoxyflavone), (Fig.1), is a secondary metabolite that was isolated from a Thai medicinal plant, Kaempferia parviflora. Several flavones have also been isolated from this plant and their crystal structures have been reported, for example see Aree et al. (2009) and references cited therein. Here, we report the crystal structure of another flavone in an anhydrous form having no strong hydrogen bond donor. Weak C—H···O hydrogen bonds play a key role in stabilizing the crystal lattice.

The molecular structure of (I) deviates from a planar geometry; the interplanar angle between the benzopyran-4-one group and the attached phenyl group is 11.23 (8)° (Fig. 1). A search in the Cambridge Structural Database [Version 1.11 (Allen, 2002); CONQUEST (Bruno et al., 2002)] indicate that this feature is frequently observed . The three methoxy C16, C17 and C19 atoms slightly deviate from the mean planes of the attached benzopyran or phenyl rings by 0.288 (3), -0.119 (3) and 0.355 (3) Å whereas atom C18 deviates from the benzopyran plane by -0.933 (3) Å. The corresponding values of torsion angles are C16—O4—C3—C2 = 3.0 (2)°, C17—O3—C5—C4 = 0.4 (2)°, C19—O6—C13—C12 = -15.9 (2)° and C18—O5—C8—C9 = 111.09 (17)°. The flavone molecule is stabilized by an intramolecular C15—H···O5 hydrogen bond that generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal, molecules are linked to form a ribbon-like structure by intermolecular C18—H18B···O6ii and C19—H19C···.O5iii hydrogen bonds, generating R22(20) and R44(12) ring motifs (Bernstein et al., 1995) (Fig. 2). The adjacent inversion-related ribbons are cross-linked into a two-dimensional network parallel to the (011) by intermolecular C17—H17B···O2i and C17—H17B···O3i hydrogen bonds, generating R22(14) ring motifs (Bernstein et al., 1995) (Fig. 3). The crystal structure is further stabilized by ππ interactions (Fig. 4) between O1/C1/C6-C9 and C10-C15 rings of the molecules in adjacent networks, with a centroid-to-centroid distance of 3.5267 (8) Å.

For related structures, see: Aree et al. (2009) and the Cambridge Structural Database [Allen (2002); Bruno et al. (2002)]. For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al. 2006).; software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom numbering and 50% probability displacement ellipsoids. An intramolecular C—H···O hydrogen bond forming an S(6) motif is shown as a dashed line.
[Figure 2] Fig. 2. Part of a ribbon formed by intermolecular C—H···O hydrogen bonds, with R44(20) and R44(12) ring motifs. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of R22(14) ring motifs which connect adjacent ribbons. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the stacking of pyran and 4-methoxyphenyl rings. Hydrogen bonds are shown as dashed lines.
3,5,7-Trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one top
Crystal data top
C19H18O6Z = 2
Mr = 342.33F(000) = 360
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 8.7854 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2743 (4) ÅCell parameters from 2649 reflections
c = 10.6950 (4) Åθ = 2.9–29.0°
α = 70.749 (1)°µ = 0.11 mm1
β = 81.448 (1)°T = 298 K
γ = 83.078 (1)°Block, colourless
V = 811.15 (5) Å30.40 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3930 independent reflections
Radiation source: fine-focus sealed tube2827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.839, Tmax = 0.946k = 1212
5901 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0796P]
where P = (Fo2 + 2Fc2)/3
3930 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H18O6γ = 83.078 (1)°
Mr = 342.33V = 811.15 (5) Å3
Triclinic, P1Z = 2
a = 8.7854 (3) ÅMo Kα radiation
b = 9.2743 (4) ŵ = 0.11 mm1
c = 10.6950 (4) ÅT = 298 K
α = 70.749 (1)°0.40 × 0.22 × 0.18 mm
β = 81.448 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2827 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.946Rint = 0.023
5901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3930 reflectionsΔρmin = 0.19 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09284 (11)0.00853 (11)0.77045 (10)0.0384 (2)
O20.35336 (13)0.11019 (15)0.69876 (14)0.0627 (4)
O30.31863 (12)0.09508 (12)0.56603 (11)0.0472 (3)
O40.14430 (12)0.41488 (12)0.58844 (11)0.0491 (3)
O50.22549 (11)0.24963 (11)0.83872 (10)0.0417 (3)
O60.37277 (13)0.34385 (13)1.08046 (12)0.0554 (3)
C10.02711 (15)0.08612 (15)0.70567 (13)0.0334 (3)
C20.12382 (16)0.20556 (15)0.67915 (14)0.0370 (3)
H20.22370.22660.70300.044*
C30.06590 (16)0.29116 (15)0.61632 (13)0.0363 (3)
C40.08153 (16)0.25525 (16)0.57554 (14)0.0377 (3)
H40.11680.31180.52980.045*
C50.17492 (16)0.13643 (16)0.60281 (13)0.0358 (3)
C60.12267 (15)0.04848 (15)0.67302 (13)0.0337 (3)
C70.21732 (16)0.07127 (16)0.71647 (14)0.0381 (3)
C80.13869 (16)0.14406 (16)0.78818 (13)0.0343 (3)
C90.01016 (15)0.10572 (15)0.81213 (13)0.0329 (3)
C100.10563 (15)0.16951 (15)0.88037 (13)0.0334 (3)
C110.26309 (17)0.12727 (17)0.87961 (14)0.0397 (3)
H110.30690.05960.83420.048*
C120.35723 (17)0.18231 (17)0.94411 (15)0.0415 (3)
H120.46220.15220.94150.050*
C130.29333 (17)0.28240 (16)1.01227 (14)0.0383 (3)
C140.13743 (18)0.32664 (18)1.01423 (16)0.0464 (4)
H140.09440.39441.05970.056*
C150.04512 (17)0.27193 (18)0.94994 (16)0.0446 (4)
H150.05960.30340.95260.054*
C160.2918 (2)0.4624 (2)0.6324 (2)0.0593 (5)
H16A0.36090.38370.58730.089*
H16B0.33080.55490.61300.089*
H16C0.28380.48080.72680.089*
C170.3753 (2)0.1803 (2)0.49641 (19)0.0556 (4)
H17A0.30850.17360.41530.083*
H17B0.47750.13930.47560.083*
H17C0.37810.28560.55120.083*
C180.2656 (3)0.3918 (2)0.74252 (19)0.0718 (6)
H18A0.17630.42630.68070.108*
H18B0.30270.46630.78660.108*
H18C0.34490.37870.69520.108*
C190.5210 (2)0.2757 (2)1.11183 (18)0.0582 (5)
H19A0.51350.17011.16430.087*
H19B0.56200.32841.16150.087*
H19C0.58820.28251.03090.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (5)0.0393 (5)0.0537 (6)0.0034 (4)0.0130 (4)0.0279 (5)
O20.0377 (6)0.0752 (8)0.0972 (9)0.0149 (6)0.0282 (6)0.0546 (7)
O30.0394 (6)0.0499 (6)0.0641 (7)0.0004 (5)0.0220 (5)0.0281 (5)
O40.0479 (6)0.0465 (6)0.0663 (7)0.0043 (5)0.0132 (5)0.0356 (5)
O50.0376 (5)0.0459 (6)0.0466 (5)0.0098 (4)0.0091 (4)0.0241 (5)
O60.0479 (6)0.0617 (7)0.0775 (8)0.0096 (5)0.0264 (6)0.0467 (6)
C10.0337 (7)0.0329 (7)0.0381 (6)0.0042 (5)0.0073 (5)0.0154 (5)
C20.0345 (7)0.0358 (7)0.0451 (7)0.0007 (6)0.0100 (6)0.0178 (6)
C30.0394 (8)0.0324 (7)0.0391 (7)0.0028 (6)0.0032 (6)0.0147 (6)
C40.0409 (8)0.0375 (7)0.0406 (7)0.0085 (6)0.0080 (6)0.0169 (6)
C50.0341 (7)0.0367 (7)0.0384 (7)0.0062 (6)0.0086 (6)0.0111 (6)
C60.0337 (7)0.0315 (7)0.0378 (7)0.0034 (5)0.0075 (5)0.0117 (5)
C70.0331 (7)0.0391 (7)0.0454 (7)0.0000 (6)0.0095 (6)0.0167 (6)
C80.0334 (7)0.0351 (7)0.0366 (6)0.0014 (5)0.0048 (5)0.0155 (5)
C90.0329 (7)0.0318 (7)0.0364 (6)0.0004 (5)0.0048 (5)0.0148 (5)
C100.0351 (7)0.0327 (7)0.0351 (6)0.0007 (5)0.0075 (5)0.0136 (5)
C110.0393 (8)0.0406 (8)0.0473 (7)0.0071 (6)0.0112 (6)0.0257 (6)
C120.0337 (7)0.0463 (8)0.0521 (8)0.0076 (6)0.0135 (6)0.0256 (7)
C130.0408 (8)0.0378 (7)0.0427 (7)0.0007 (6)0.0137 (6)0.0188 (6)
C140.0447 (9)0.0502 (9)0.0562 (9)0.0083 (7)0.0116 (7)0.0347 (7)
C150.0339 (7)0.0543 (9)0.0563 (9)0.0069 (7)0.0111 (6)0.0329 (7)
C160.0516 (10)0.0537 (10)0.0871 (13)0.0130 (8)0.0179 (9)0.0436 (9)
C170.0490 (10)0.0620 (10)0.0707 (11)0.0037 (8)0.0254 (8)0.0333 (9)
C180.1032 (16)0.0453 (10)0.0648 (11)0.0232 (10)0.0173 (11)0.0217 (9)
C190.0463 (9)0.0770 (12)0.0683 (11)0.0066 (9)0.0231 (8)0.0427 (10)
Geometric parameters (Å, º) top
O1—C91.3707 (15)C10—C111.3912 (19)
O1—C11.3708 (15)C10—C151.4018 (19)
O2—C71.2300 (17)C11—C121.3871 (19)
O3—C51.3517 (16)C11—H110.93
O3—C171.4212 (17)C12—C131.381 (2)
O4—C31.3616 (16)C12—H120.93
O4—C161.4150 (19)C13—C141.381 (2)
O5—C81.3707 (16)C14—C151.372 (2)
O5—C181.422 (2)C14—H140.93
O6—C131.3657 (16)C15—H150.93
O6—C191.4141 (19)C16—H16A0.96
C1—C61.3860 (18)C16—H16B0.96
C1—C21.3921 (18)C16—H16C0.96
C2—C31.3753 (18)C17—H17A0.96
C2—H20.93C17—H17B0.96
C3—C41.395 (2)C17—H17C0.96
C4—C51.377 (2)C18—H18A0.96
C4—H40.93C18—H18B0.96
C5—C61.4270 (18)C18—H18C0.96
C6—C71.4641 (19)C19—H19A0.96
C7—C81.4603 (19)C19—H19B0.96
C8—C91.3526 (18)C19—H19C0.96
C9—C101.4740 (18)
C9—O1—C1121.22 (10)C10—C11—H11118.8
C5—O3—C17117.68 (12)C13—C12—C11119.26 (13)
C3—O4—C16117.79 (11)C13—C12—H12120.4
C8—O5—C18115.26 (12)C11—C12—H12120.4
C13—O6—C19118.35 (12)O6—C13—C14115.45 (12)
O1—C1—C6122.08 (12)O6—C13—C12125.06 (13)
O1—C1—C2113.58 (11)C14—C13—C12119.50 (12)
C6—C1—C2124.33 (12)C15—C14—C13120.90 (13)
C3—C2—C1117.38 (12)C15—C14—H14119.6
C3—C2—H2121.3C13—C14—H14119.6
C1—C2—H2121.3C14—C15—C10121.25 (13)
O4—C3—C2124.15 (13)C14—C15—H15119.4
O4—C3—C4114.65 (12)C10—C15—H15119.4
C2—C3—C4121.20 (13)O4—C16—H16A109.5
C5—C4—C3120.26 (12)O4—C16—H16B109.5
C5—C4—H4119.9H16A—C16—H16B109.5
C3—C4—H4119.9O4—C16—H16C109.5
O3—C5—C4123.43 (12)H16A—C16—H16C109.5
O3—C5—C6115.93 (12)H16B—C16—H16C109.5
C4—C5—C6120.63 (12)O3—C17—H17A109.5
C1—C6—C5116.09 (12)O3—C17—H17B109.5
C1—C6—C7119.08 (12)H17A—C17—H17B109.5
C5—C6—C7124.77 (12)O3—C17—H17C109.5
O2—C7—C8120.11 (13)H17A—C17—H17C109.5
O2—C7—C6125.17 (13)H17B—C17—H17C109.5
C8—C7—C6114.71 (11)O5—C18—H18A109.5
C9—C8—O5119.91 (11)O5—C18—H18B109.5
C9—C8—C7123.11 (12)H18A—C18—H18B109.5
O5—C8—C7116.87 (11)O5—C18—H18C109.5
C8—C9—O1119.68 (11)H18A—C18—H18C109.5
C8—C9—C10129.53 (12)H18B—C18—H18C109.5
O1—C9—C10110.79 (10)O6—C19—H19A109.5
C11—C10—C15116.66 (12)O6—C19—H19B109.5
C11—C10—C9120.31 (12)H19A—C19—H19B109.5
C15—C10—C9123.02 (12)O6—C19—H19C109.5
C12—C11—C10122.43 (13)H19A—C19—H19C109.5
C12—C11—H11118.8H19B—C19—H19C109.5
C9—O1—C1—C63.33 (19)C18—O5—C8—C772.50 (18)
C9—O1—C1—C2175.58 (12)O2—C7—C8—C9179.37 (14)
O1—C1—C2—C3178.92 (12)C6—C7—C8—C90.6 (2)
C6—C1—C2—C30.0 (2)O2—C7—C8—O53.1 (2)
C16—O4—C3—C23.0 (2)C6—C7—C8—O5175.74 (11)
C16—O4—C3—C4177.12 (14)O5—C8—C9—O1174.86 (11)
C1—C2—C3—O4177.39 (13)C7—C8—C9—O11.3 (2)
C1—C2—C3—C42.8 (2)O5—C8—C9—C104.9 (2)
O4—C3—C4—C5177.35 (12)C7—C8—C9—C10178.90 (13)
C2—C3—C4—C52.8 (2)C1—O1—C9—C80.58 (19)
C17—O3—C5—C40.4 (2)C1—O1—C9—C10179.24 (11)
C17—O3—C5—C6179.72 (13)C8—C9—C10—C11171.67 (14)
C3—C4—C5—O3179.81 (12)O1—C9—C10—C118.53 (18)
C3—C4—C5—C60.0 (2)C8—C9—C10—C159.3 (2)
O1—C1—C6—C5178.53 (12)O1—C9—C10—C15170.51 (13)
C2—C1—C6—C52.7 (2)C15—C10—C11—C120.1 (2)
O1—C1—C6—C74.0 (2)C9—C10—C11—C12178.98 (13)
C2—C1—C6—C7174.78 (13)C10—C11—C12—C130.2 (2)
O3—C5—C6—C1177.23 (12)C19—O6—C13—C14164.09 (15)
C4—C5—C6—C12.63 (19)C19—O6—C13—C1215.9 (2)
O3—C5—C6—C75.5 (2)C11—C12—C13—O6179.50 (14)
C4—C5—C6—C7174.66 (13)C11—C12—C13—C140.4 (2)
C1—C6—C7—O2176.71 (14)O6—C13—C14—C15179.64 (14)
C5—C6—C7—O20.5 (2)C12—C13—C14—C150.3 (2)
C1—C6—C7—C82.05 (19)C13—C14—C15—C100.0 (3)
C5—C6—C7—C8179.26 (12)C11—C10—C15—C140.3 (2)
C18—O5—C8—C9111.09 (17)C9—C10—C15—C14178.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O50.932.232.8690 (18)126
C17—H17B···O2i0.962.483.2674 (19)139
C17—H17B···O3i0.962.613.458 (2)148
C18—H18B···O6ii0.962.573.530 (2)173
C19—H19C···O5iii0.962.513.457 (2)170
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z+2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H18O6
Mr342.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7854 (3), 9.2743 (4), 10.6950 (4)
α, β, γ (°)70.749 (1), 81.448 (1), 83.078 (1)
V3)811.15 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.839, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
5901, 3930, 2827
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.06
No. of reflections3930
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al. 2006)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O50.932.232.8690 (18)126
C17—H17B···O2i0.962.483.2674 (19)139
C17—H17B···O3i0.962.613.458 (2)148
C18—H18B···O6ii0.962.573.530 (2)173
C19—H19C···O5iii0.962.513.457 (2)170
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z+2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Department of Chemistry and Research Funds from the Faculty of Science, Chulalongkorn University to TA and by the Thailand Research Fund and the Commission on Higher Education (grant No. MRG4980018) to PS.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAree, T., Sabphon, C. & Sawasdee, P. (2009). Acta Cryst. E65, o2693.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds