organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

t-3-Ethyl-r-2,c-7-bis­­(4-meth­oxy­phen­yl)-1,4-diazepan-5-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 4 October 2009; accepted 20 October 2009; online 28 October 2009)

The title compound, C21H26N2O3, crystallizes with two independent mol­ecules in the asymmetric unit. In both independent mol­ecules, the diazepine ring adopts a chair conformation. In the crystal, the independent mol­ecules exist as N—H⋯O hydrogen-bonded R22(8) dimers which are linked via N—H⋯O hydrogen bonds, forming tetra­mers. The tetra­mers are linked by C—H⋯O hydrogen bonds. In one of the molecules in the asymmetric unit, the terminal C atom of the ethyl group is disordered over two positions with refined occupancies of 0.742 (4) and 0.258 (4).

Related literature

For general background to diazepine derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619-624.]); Jeyaraman & Ponnuswamy (1997[Jeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem. 62, 7984-7990.]); Senthil Kumar et al. (1992[Senthil Kumar, U. P., Jeyaraman, R., Murray, R. W. & Singh, M. (1992). J. Org. Chem. 57, 6006-6014.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis, see: Jeyaraman et al. (1995[Jeyaraman, R., Senthil Kumar, U. P. & Bigler, P. (1995). J. Org. Chem. 60, 7461-7470.]); Ponnuswamy et al. (2006[Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059-2070.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O3

  • Mr = 354.44

  • Triclinic, [P \overline 1]

  • a = 10.5190 (3) Å

  • b = 13.3480 (4) Å

  • c = 15.0472 (4) Å

  • α = 102.118 (2)°

  • β = 93.662 (2)°

  • γ = 110.287 (2)°

  • V = 1915.89 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.984

  • 46036 measured reflections

  • 10328 independent reflections

  • 6341 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 1.03

  • 10328 reflections

  • 495 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1Bi 0.88 (2) 2.21 (2) 3.0833 (19) 172 (2)
N1B—H1B⋯O1Ai 0.88 (2) 2.04 (2) 2.9179 (18) 175 (2)
N5A—H5A⋯O2Aii 0.91 (2) 2.49 (2) 3.3769 (18) 164 (2)
C19B—H19B⋯O3Biii 0.93 2.56 3.477 (2) 171
C20A—H20A⋯O3Biv 0.93 2.51 3.410 (2) 162
C20B—H20B⋯O1Bv 0.93 2.53 3.398 (2) 156
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z; (iii) -x+1, -y+3, -z+1; (iv) x, y-1, z; (v) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998). Various substituted diazepan-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Senthil Kumar et al., 1992; Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound, namely t-3-ethyl-r-2,c-7-bis(4-methoxyphenyl)-1,4-diazepan-5-one, was carried out.

In the title compound there are two crystallographically independent molecules in the asymmetric unit (Fig. 1). The diazepine ring in both molecules adopt chair conformation, with puckering (Cremer & Pople, 1975) and asymmetry (Nardelli, 1983) parameters q2 = 0.359 (2)Å, q3 = 0.702 (2)Å, φ2 = 132.2 (3)°, φ3 =102.1 (1)° and Δs(N5A)= 0.017 (1)° for molecule A, and q2 = 0.378 (2) Å, q3 = 0.667 (2) Å, φ2 = -47.3 (3)°, φ3 =-75.9 (2)° and Δs(N5B) = 0.022 (1)° for molecule B. The sum of bond angles around atoms N1A (359.9°) and N1B (359.6°) of the diazepine rings indicate sp2-hybridization, whereas the other N atoms [N5A (331.4°) and N5B (333.2°)] are sp3-hybridized.

In the crystal, independent molecules are linked by intermolecular N—H···O hydrogen bonds forming R22(8) dimers. The adajacent centrosymmetric dimeric units are linked via N—H···O hydrogen bonds into a tetrameric unit with an R22(16) ring motif (Bernstein et al. 1995). The tetramers are linked via C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to diazepine derivatives, see: Hirokawa et al. (1998); Jeyaraman & Ponnuswamy (1997); Senthil Kumar et al. (1992). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1995); Ponnuswamy et al. (2006).

Experimental top

In a typical reaction, t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one was first converted into its hydrochloride and then dry, powdered t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one hydrochloride (3.1 g) was added, in portions, to cold conc. H2SO4 (12.5 ml). The temperature of the solution was allowed to rise to 25°C and NaN3(0.75 g) was added in portions with vigorous stirring. The solution was poured into crushed ice and cold NaOH solution (2 N) was added slowly with stirring until the pH was 8. The separated white solid was filtered and crystallized using methanol (Jeyaraman et al., 1995; Ponnuswamy et al., 2006).

Refinement top

In one of the molecules in the asymmetric unit, the C atom of the ethyl group is disordered over two positions (C23B/C23C) with refined occupancies of 0.742 (4)and 0.258 (4). N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998). Various substituted diazepan-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Senthil Kumar et al., 1992; Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound, namely t-3-ethyl-r-2,c-7-bis(4-methoxyphenyl)-1,4-diazepan-5-one, was carried out.

In the title compound there are two crystallographically independent molecules in the asymmetric unit (Fig. 1). The diazepine ring in both molecules adopt chair conformation, with puckering (Cremer & Pople, 1975) and asymmetry (Nardelli, 1983) parameters q2 = 0.359 (2)Å, q3 = 0.702 (2)Å, φ2 = 132.2 (3)°, φ3 =102.1 (1)° and Δs(N5A)= 0.017 (1)° for molecule A, and q2 = 0.378 (2) Å, q3 = 0.667 (2) Å, φ2 = -47.3 (3)°, φ3 =-75.9 (2)° and Δs(N5B) = 0.022 (1)° for molecule B. The sum of bond angles around atoms N1A (359.9°) and N1B (359.6°) of the diazepine rings indicate sp2-hybridization, whereas the other N atoms [N5A (331.4°) and N5B (333.2°)] are sp3-hybridized.

In the crystal, independent molecules are linked by intermolecular N—H···O hydrogen bonds forming R22(8) dimers. The adajacent centrosymmetric dimeric units are linked via N—H···O hydrogen bonds into a tetrameric unit with an R22(16) ring motif (Bernstein et al. 1995). The tetramers are linked via C—H···O hydrogen bonds (Table 1).

For general background to diazepine derivatives, see: Hirokawa et al. (1998); Jeyaraman & Ponnuswamy (1997); Senthil Kumar et al. (1992). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1995); Ponnuswamy et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
t-3-Ethyl-r-2,c-7-bis(4-methoxyphenyl)-1,4-diazepan-5-one top
Crystal data top
C21H26N2O3Z = 4
Mr = 354.44F(000) = 760
Triclinic, P1Dx = 1.229 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5190 (3) ÅCell parameters from 4523 reflections
b = 13.3480 (4) Åθ = 1.4–29.2°
c = 15.0472 (4) ŵ = 0.08 mm1
α = 102.118 (2)°T = 293 K
β = 93.662 (2)°Block, colourless
γ = 110.287 (2)°0.25 × 0.23 × 0.20 mm
V = 1915.89 (9) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
10328 independent reflections
Radiation source: fine-focus sealed tube6341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1414
Tmin = 0.980, Tmax = 0.984k = 1718
46036 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.06P)2 + 0.383P]
where P = (Fo2 + 2Fc2)/3
10328 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H26N2O3γ = 110.287 (2)°
Mr = 354.44V = 1915.89 (9) Å3
Triclinic, P1Z = 4
a = 10.5190 (3) ÅMo Kα radiation
b = 13.3480 (4) ŵ = 0.08 mm1
c = 15.0472 (4) ÅT = 293 K
α = 102.118 (2)°0.25 × 0.23 × 0.20 mm
β = 93.662 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
10328 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
6341 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.026
46036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
10328 reflectionsΔρmin = 0.18 e Å3
495 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.01838 (15)0.04649 (10)0.27923 (10)0.0830 (4)
O2A0.37857 (13)0.20475 (10)0.10577 (10)0.0756 (4)
O3A0.69336 (15)0.71516 (11)0.19087 (10)0.0811 (4)
N1A0.09646 (14)0.22089 (11)0.27464 (10)0.0560 (3)
H1A0.0770 (18)0.2418 (15)0.3299 (13)0.066 (5)*
N5A0.31252 (13)0.21527 (10)0.14281 (8)0.0475 (3)
H5A0.3987 (18)0.2259 (14)0.1300 (12)0.060 (5)*
C2A0.05133 (16)0.11262 (14)0.23888 (12)0.0573 (4)
C3A0.09336 (15)0.07227 (13)0.14921 (12)0.0549 (4)
H3A0.06200.10290.10310.066*
H3B0.04900.00730.12960.066*
C4A0.24839 (15)0.10354 (12)0.15489 (10)0.0462 (3)
H4A0.28500.10200.21590.055*
C6A0.32146 (15)0.30438 (12)0.22233 (10)0.0475 (3)
H6A0.35760.28960.27780.057*
C7A0.17771 (16)0.30792 (13)0.23321 (11)0.0515 (4)
H7A0.12920.29660.17200.062*
C8A0.28292 (14)0.02316 (12)0.08376 (10)0.0443 (3)
C9A0.35352 (16)0.03896 (13)0.10915 (12)0.0533 (4)
H9A0.38100.03030.17120.064*
C10A0.38390 (17)0.11330 (14)0.04443 (13)0.0595 (4)
H10A0.43270.15340.06300.071*
C11A0.34280 (15)0.12864 (13)0.04710 (12)0.0546 (4)
C12A0.27102 (17)0.06915 (15)0.07426 (12)0.0604 (4)
H12A0.24180.07950.13630.072*
C13A0.24249 (17)0.00635 (14)0.00872 (11)0.0553 (4)
H13A0.19460.04700.02760.066*
C14A0.3381 (3)0.2238 (2)0.20034 (18)0.1147 (10)
H14A0.36900.27860.23350.172*
H14B0.37750.15650.21910.172*
H14C0.23990.24940.21320.172*
C15A0.42113 (16)0.41145 (12)0.20960 (10)0.0486 (3)
C16A0.40863 (19)0.44723 (14)0.13156 (12)0.0626 (4)
H16A0.33840.40280.08370.075*
C17A0.4976 (2)0.54759 (15)0.12202 (13)0.0652 (5)
H17A0.48670.56980.06840.078*
C18A0.60159 (18)0.61386 (13)0.19175 (12)0.0584 (4)
C19A0.6171 (2)0.57884 (16)0.26968 (14)0.0773 (6)
H19A0.68820.62270.31710.093*
C20A0.52801 (19)0.47928 (15)0.27791 (12)0.0677 (5)
H20A0.54020.45690.33130.081*
C21A0.6824 (3)0.75565 (19)0.11292 (18)0.0952 (7)
H21A0.75290.82710.12180.143*
H21B0.59420.76130.10380.143*
H21C0.69260.70620.05990.143*
C22A0.18238 (19)0.41711 (14)0.29253 (14)0.0676 (5)
H22A0.22360.42640.35470.081*
H22B0.24040.47680.26910.081*
C23A0.0429 (2)0.42506 (18)0.29508 (18)0.0889 (7)
H23A0.05230.49520.33350.133*
H23B0.01460.36710.31950.133*
H23C0.00240.41790.23400.133*
O1B0.01626 (13)0.72895 (10)0.53207 (9)0.0721 (4)
O2B0.10372 (17)0.62330 (13)0.02416 (10)0.0924 (5)
O3B0.65088 (12)1.43287 (9)0.47433 (8)0.0594 (3)
N1B0.13486 (14)0.90123 (11)0.55429 (11)0.0560 (3)
H1B0.1050 (19)0.9184 (15)0.6066 (13)0.068 (5)*
N5B0.22122 (13)0.94024 (10)0.36776 (10)0.0496 (3)
H5B0.2177 (18)0.9690 (15)0.3198 (13)0.063 (5)*
C2B0.07613 (17)0.79736 (13)0.50562 (12)0.0540 (4)
C3B0.12403 (18)0.76579 (13)0.41559 (12)0.0576 (4)
H3C0.07240.68820.38780.069*
H3D0.21970.77520.42770.069*
C4B0.10920 (15)0.83176 (12)0.34669 (11)0.0504 (4)
H4B0.02210.84290.34970.060*
C6B0.22491 (15)1.02343 (12)0.44994 (10)0.0468 (3)
H6B0.13621.03230.44870.056*
C7B0.25490 (15)0.98713 (12)0.53712 (11)0.0492 (3)
H7B0.32640.95630.52750.059*
C8B0.10992 (16)0.77287 (12)0.24925 (12)0.0537 (4)
C9B0.1949 (2)0.71538 (16)0.22746 (13)0.0682 (5)
H9B0.25320.71100.27440.082*
C10B0.1956 (2)0.66371 (16)0.13700 (14)0.0719 (5)
H10B0.25270.62440.12390.086*
C11B0.1117 (2)0.67125 (15)0.06772 (13)0.0680 (5)
C12B0.0291 (2)0.72951 (17)0.08731 (14)0.0760 (5)
H12B0.02650.73600.03990.091*
C13B0.02760 (19)0.77921 (15)0.17759 (13)0.0663 (5)
H13B0.03040.81780.19000.080*
C14B0.1884 (3)0.5635 (2)0.04813 (17)0.1003 (8)
H14D0.17330.53500.11360.150*
H14E0.16700.50340.01890.150*
H14F0.28260.61110.02820.150*
C15B0.33542 (15)1.13087 (12)0.44774 (10)0.0443 (3)
C16B0.46146 (15)1.13398 (12)0.42465 (11)0.0494 (4)
H16B0.47421.06790.40390.059*
C17B0.56951 (15)1.23233 (12)0.43144 (11)0.0492 (4)
H17B0.65331.23210.41530.059*
C18B0.55133 (15)1.33051 (12)0.46237 (10)0.0459 (3)
C19B0.42406 (17)1.32896 (13)0.48211 (11)0.0527 (4)
H19B0.41031.39490.50060.063*
C20B0.31804 (16)1.23073 (12)0.47456 (11)0.0507 (4)
H20B0.23301.23110.48770.061*
C21B0.78088 (18)1.44055 (16)0.45013 (15)0.0722 (5)
H21D0.83951.51670.46190.108*
H21E0.77101.40590.38600.108*
H21F0.82051.40420.48600.108*
C22B0.30606 (19)1.08026 (14)0.62487 (12)0.0620 (4)
H22C0.37941.14210.61340.074*0.742 (4)
H22D0.23191.10480.64080.074*0.742 (4)
H22E0.25891.12930.61980.074*0.258 (4)
H22F0.27631.04890.67530.074*0.258 (4)
C23B0.3575 (3)1.0464 (3)0.70459 (18)0.0822 (10)0.742 (4)
H23D0.38851.10770.75770.123*0.742 (4)
H23E0.43221.02340.68970.123*0.742 (4)
H23F0.28480.98640.71730.123*0.742 (4)
C23C0.4545 (7)1.1483 (6)0.6534 (5)0.068 (2)0.258 (4)
H23G0.46671.20270.70960.102*0.258 (4)
H23H0.48891.18450.60630.102*0.258 (4)
H23I0.50351.10180.66280.102*0.258 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0985 (10)0.0547 (8)0.1012 (11)0.0234 (7)0.0645 (8)0.0241 (7)
O2A0.0739 (8)0.0588 (8)0.0864 (10)0.0250 (6)0.0276 (7)0.0034 (7)
O3A0.0921 (9)0.0530 (8)0.0889 (10)0.0080 (7)0.0260 (7)0.0266 (7)
N1A0.0648 (8)0.0478 (8)0.0550 (9)0.0184 (6)0.0260 (7)0.0107 (7)
N5A0.0523 (7)0.0408 (7)0.0466 (7)0.0133 (5)0.0162 (5)0.0089 (5)
C2A0.0561 (9)0.0494 (10)0.0687 (11)0.0183 (7)0.0280 (8)0.0160 (8)
C3A0.0528 (8)0.0437 (9)0.0615 (10)0.0118 (7)0.0187 (7)0.0063 (7)
C4A0.0531 (8)0.0423 (8)0.0431 (8)0.0159 (6)0.0129 (6)0.0119 (6)
C6A0.0567 (8)0.0420 (8)0.0412 (8)0.0152 (6)0.0117 (6)0.0084 (6)
C7A0.0596 (9)0.0434 (8)0.0499 (9)0.0169 (7)0.0163 (7)0.0095 (7)
C8A0.0450 (7)0.0387 (8)0.0471 (8)0.0111 (6)0.0129 (6)0.0120 (6)
C9A0.0551 (8)0.0558 (10)0.0523 (9)0.0220 (7)0.0102 (7)0.0174 (8)
C10A0.0586 (9)0.0529 (10)0.0762 (12)0.0275 (8)0.0179 (8)0.0205 (9)
C11A0.0488 (8)0.0416 (8)0.0660 (11)0.0111 (6)0.0195 (7)0.0042 (7)
C12A0.0646 (10)0.0664 (11)0.0459 (9)0.0230 (8)0.0094 (7)0.0068 (8)
C13A0.0648 (9)0.0577 (10)0.0510 (10)0.0296 (8)0.0134 (7)0.0159 (8)
C14A0.1080 (18)0.125 (2)0.0847 (18)0.0541 (16)0.0022 (13)0.0431 (15)
C15A0.0585 (8)0.0420 (8)0.0428 (8)0.0155 (7)0.0142 (6)0.0089 (6)
C16A0.0763 (11)0.0537 (10)0.0449 (9)0.0109 (8)0.0049 (8)0.0094 (8)
C17A0.0883 (12)0.0576 (11)0.0512 (10)0.0229 (9)0.0196 (9)0.0210 (8)
C18A0.0675 (10)0.0434 (9)0.0622 (11)0.0147 (8)0.0231 (8)0.0143 (8)
C19A0.0807 (13)0.0626 (12)0.0640 (12)0.0022 (9)0.0042 (9)0.0181 (10)
C20A0.0776 (11)0.0576 (11)0.0542 (11)0.0061 (9)0.0004 (8)0.0204 (9)
C21A0.1160 (18)0.0734 (15)0.1049 (18)0.0265 (13)0.0362 (14)0.0492 (14)
C22A0.0770 (11)0.0491 (10)0.0749 (12)0.0227 (9)0.0280 (9)0.0076 (9)
C23A0.0942 (15)0.0698 (13)0.1167 (19)0.0453 (12)0.0381 (13)0.0194 (13)
O1B0.0800 (8)0.0529 (7)0.0832 (9)0.0148 (6)0.0376 (7)0.0258 (6)
O2B0.1108 (12)0.0802 (10)0.0665 (9)0.0231 (9)0.0147 (8)0.0024 (8)
O3B0.0658 (7)0.0392 (6)0.0676 (7)0.0129 (5)0.0154 (5)0.0112 (5)
N1B0.0653 (8)0.0476 (8)0.0605 (9)0.0214 (6)0.0301 (7)0.0177 (7)
N5B0.0601 (7)0.0386 (7)0.0484 (8)0.0145 (6)0.0134 (6)0.0120 (6)
C2B0.0598 (9)0.0456 (9)0.0641 (10)0.0216 (7)0.0227 (8)0.0215 (8)
C3B0.0705 (10)0.0409 (9)0.0645 (11)0.0209 (7)0.0219 (8)0.0152 (8)
C4B0.0514 (8)0.0403 (8)0.0585 (10)0.0154 (6)0.0135 (7)0.0113 (7)
C6B0.0494 (8)0.0399 (8)0.0538 (9)0.0192 (6)0.0131 (6)0.0109 (7)
C7B0.0538 (8)0.0450 (8)0.0533 (9)0.0208 (7)0.0177 (7)0.0145 (7)
C8B0.0566 (9)0.0382 (8)0.0609 (10)0.0109 (7)0.0135 (7)0.0106 (7)
C9B0.0811 (12)0.0688 (12)0.0627 (12)0.0358 (10)0.0182 (9)0.0166 (9)
C10B0.0887 (13)0.0601 (11)0.0725 (13)0.0326 (10)0.0285 (10)0.0140 (10)
C11B0.0781 (12)0.0481 (10)0.0606 (12)0.0072 (9)0.0114 (9)0.0046 (8)
C12B0.0767 (12)0.0727 (13)0.0662 (13)0.0204 (10)0.0025 (9)0.0075 (10)
C13B0.0665 (10)0.0561 (11)0.0683 (12)0.0195 (8)0.0042 (9)0.0058 (9)
C14B0.127 (2)0.0764 (15)0.0827 (16)0.0288 (14)0.0348 (14)0.0023 (12)
C15B0.0538 (8)0.0387 (8)0.0440 (8)0.0205 (6)0.0127 (6)0.0104 (6)
C16B0.0554 (8)0.0367 (8)0.0592 (9)0.0219 (6)0.0152 (7)0.0075 (7)
C17B0.0510 (8)0.0453 (9)0.0531 (9)0.0201 (7)0.0137 (6)0.0100 (7)
C18B0.0585 (8)0.0376 (8)0.0404 (8)0.0157 (6)0.0089 (6)0.0101 (6)
C19B0.0702 (10)0.0384 (8)0.0578 (10)0.0280 (7)0.0199 (7)0.0126 (7)
C20B0.0579 (8)0.0462 (9)0.0578 (10)0.0275 (7)0.0209 (7)0.0156 (7)
C21B0.0618 (10)0.0541 (11)0.0878 (14)0.0083 (8)0.0136 (9)0.0122 (10)
C22B0.0760 (11)0.0541 (10)0.0546 (10)0.0226 (8)0.0163 (8)0.0113 (8)
C23B0.114 (2)0.096 (2)0.0519 (16)0.0624 (19)0.0119 (14)0.0102 (14)
C23C0.058 (4)0.066 (5)0.070 (5)0.020 (3)0.006 (3)0.002 (4)
Geometric parameters (Å, º) top
O1A—C2A1.2323 (19)O3B—C21B1.413 (2)
O2A—C11A1.3725 (19)N1B—C2B1.328 (2)
O2A—C14A1.402 (3)N1B—C7B1.4621 (19)
O3A—C18A1.365 (2)N1B—H1B0.881 (19)
O3A—C21A1.405 (3)N5B—C6B1.4667 (19)
N1A—C2A1.330 (2)N5B—C4B1.4704 (19)
N1A—C7A1.467 (2)N5B—H5B0.890 (19)
N1A—H1A0.881 (19)C2B—C3B1.504 (2)
N5A—C4A1.4642 (19)C3B—C4B1.527 (2)
N5A—C6A1.4717 (19)C3B—H3C0.97
N5A—H5A0.908 (17)C3B—H3D0.97
C2A—C3A1.498 (2)C4B—C8B1.513 (2)
C3A—C4A1.528 (2)C4B—H4B0.98
C3A—H3A0.97C6B—C15B1.509 (2)
C3A—H3B0.97C6B—C7B1.541 (2)
C4A—C8A1.506 (2)C6B—H6B0.98
C4A—H4A0.98C7B—C22B1.528 (2)
C6A—C15A1.510 (2)C7B—H7B0.98
C6A—C7A1.547 (2)C8B—C13B1.375 (2)
C6A—H6A0.98C8B—C9B1.380 (2)
C7A—C22A1.524 (2)C9B—C10B1.393 (3)
C7A—H7A0.98C9B—H9B0.93
C8A—C13A1.376 (2)C10B—C11B1.366 (3)
C8A—C9A1.382 (2)C10B—H10B0.93
C9A—C10A1.375 (2)C11B—C12B1.361 (3)
C9A—H9A0.93C12B—C13B1.385 (3)
C10A—C11A1.367 (3)C12B—H12B0.93
C10A—H10A0.93C13B—H13B0.93
C11A—C12A1.371 (2)C14B—H14D0.96
C12A—C13A1.381 (2)C14B—H14E0.96
C12A—H12A0.93C14B—H14F0.96
C13A—H13A0.93C15B—C16B1.381 (2)
C14A—H14A0.96C15B—C20B1.388 (2)
C14A—H14B0.96C16B—C17B1.386 (2)
C14A—H14C0.96C16B—H16B0.93
C15A—C16A1.372 (2)C17B—C18B1.378 (2)
C15A—C20A1.377 (2)C17B—H17B0.93
C16A—C17A1.386 (2)C18B—C19B1.384 (2)
C16A—H16A0.93C19B—C20B1.372 (2)
C17A—C18A1.368 (3)C19B—H19B0.93
C17A—H17A0.93C20B—H20B0.93
C18A—C19A1.371 (3)C21B—H21D0.96
C19A—C20A1.371 (2)C21B—H21E0.96
C19A—H19A0.93C21B—H21F0.96
C20A—H20A0.93C22B—C23C1.488 (7)
C21A—H21A0.96C22B—C23B1.500 (3)
C21A—H21B0.96C22B—H22C0.97
C21A—H21C0.96C22B—H22D0.97
C22A—C23A1.510 (3)C22B—H22E0.96
C22A—H22A0.97C22B—H22F0.96
C22A—H22B0.97C23B—H22F0.95
C23A—H23A0.96C23B—H23D0.96
C23A—H23B0.96C23B—H23E0.96
C23A—H23C0.96C23B—H23F0.96
O1B—C2B1.2341 (18)C23C—H23G0.96
O2B—C11B1.380 (2)C23C—H23H0.96
O2B—C14B1.405 (3)C23C—H23I0.96
O3B—C18B1.3698 (18)
C11A—O2A—C14A117.77 (17)C4B—C3B—H3C108.6
C18A—O3A—C21A118.48 (17)C2B—C3B—H3D108.6
C2A—N1A—C7A127.11 (14)C4B—C3B—H3D108.6
C2A—N1A—H1A115.7 (12)H3C—C3B—H3D107.6
C7A—N1A—H1A117.1 (12)N5B—C4B—C8B107.49 (12)
C4A—N5A—C6A115.07 (11)N5B—C4B—C3B111.39 (14)
C4A—N5A—H5A109.4 (11)C8B—C4B—C3B112.06 (13)
C6A—N5A—H5A107.9 (11)N5B—C4B—H4B108.6
O1A—C2A—N1A121.74 (15)C8B—C4B—H4B108.6
O1A—C2A—C3A120.31 (15)C3B—C4B—H4B108.6
N1A—C2A—C3A117.89 (14)N5B—C6B—C15B107.71 (11)
C2A—C3A—C4A112.81 (14)N5B—C6B—C7B110.00 (12)
C2A—C3A—H3A109.0C15B—C6B—C7B110.86 (12)
C4A—C3A—H3A109.0N5B—C6B—H6B109.4
C2A—C3A—H3B109.0C15B—C6B—H6B109.4
C4A—C3A—H3B109.0C7B—C6B—H6B109.4
H3A—C3A—H3B107.8N1B—C7B—C22B107.11 (13)
N5A—C4A—C8A109.97 (11)N1B—C7B—C6B112.21 (13)
N5A—C4A—C3A110.15 (12)C22B—C7B—C6B114.44 (13)
C8A—C4A—C3A111.13 (12)N1B—C7B—H7B107.6
N5A—C4A—H4A108.5C22B—C7B—H7B107.6
C8A—C4A—H4A108.5C6B—C7B—H7B107.6
C3A—C4A—H4A108.5C13B—C8B—C9B117.20 (17)
N5A—C6A—C15A108.36 (11)C13B—C8B—C4B119.98 (15)
N5A—C6A—C7A110.41 (12)C9B—C8B—C4B122.77 (16)
C15A—C6A—C7A112.49 (12)C8B—C9B—C10B121.68 (19)
N5A—C6A—H6A108.5C8B—C9B—H9B119.2
C15A—C6A—H6A108.5C10B—C9B—H9B119.2
C7A—C6A—H6A108.5C11B—C10B—C9B119.39 (18)
N1A—C7A—C22A106.99 (13)C11B—C10B—H10B120.3
N1A—C7A—C6A111.92 (13)C9B—C10B—H10B120.3
C22A—C7A—C6A113.26 (13)C12B—C11B—C10B120.02 (18)
N1A—C7A—H7A108.2C12B—C11B—O2B115.65 (19)
C22A—C7A—H7A108.2C10B—C11B—O2B124.33 (19)
C6A—C7A—H7A108.2C11B—C12B—C13B120.16 (19)
C13A—C8A—C9A117.36 (14)C11B—C12B—H12B119.9
C13A—C8A—C4A121.57 (14)C13B—C12B—H12B119.9
C9A—C8A—C4A121.05 (14)C8B—C13B—C12B121.54 (18)
C10A—C9A—C8A121.20 (16)C8B—C13B—H13B119.2
C10A—C9A—H9A119.4C12B—C13B—H13B119.2
C8A—C9A—H9A119.4O2B—C14B—H14D109.5
C11A—C10A—C9A120.46 (15)O2B—C14B—H14E109.5
C11A—C10A—H10A119.8H14D—C14B—H14E109.5
C9A—C10A—H10A119.8O2B—C14B—H14F109.5
C10A—C11A—C12A119.60 (15)H14D—C14B—H14F109.5
C10A—C11A—O2A115.66 (16)H14E—C14B—H14F109.5
C12A—C11A—O2A124.74 (17)C16B—C15B—C20B117.40 (14)
C11A—C12A—C13A119.48 (16)C16B—C15B—C6B120.88 (12)
C11A—C12A—H12A120.3C20B—C15B—C6B121.58 (13)
C13A—C12A—H12A120.3C15B—C16B—C17B122.12 (13)
C8A—C13A—C12A121.89 (15)C15B—C16B—H16B118.9
C8A—C13A—H13A119.1C17B—C16B—H16B118.9
C12A—C13A—H13A119.1C18B—C17B—C16B119.22 (13)
O2A—C14A—H14A109.5C18B—C17B—H17B120.4
O2A—C14A—H14B109.5C16B—C17B—H17B120.4
H14A—C14A—H14B109.5O3B—C18B—C17B124.78 (14)
O2A—C14A—H14C109.5O3B—C18B—C19B115.76 (13)
H14A—C14A—H14C109.5C17B—C18B—C19B119.45 (14)
H14B—C14A—H14C109.5C20B—C19B—C18B120.45 (13)
C16A—C15A—C20A116.87 (15)C20B—C19B—H19B119.8
C16A—C15A—C6A122.38 (14)C18B—C19B—H19B119.8
C20A—C15A—C6A120.73 (14)C19B—C20B—C15B121.22 (14)
C15A—C16A—C17A121.91 (16)C19B—C20B—H20B119.4
C15A—C16A—H16A119.0C15B—C20B—H20B119.4
C17A—C16A—H16A119.0O3B—C21B—H21D109.5
C18A—C17A—C16A119.78 (17)O3B—C21B—H21E109.5
C18A—C17A—H17A120.1H21D—C21B—H21E109.5
C16A—C17A—H17A120.1O3B—C21B—H21F109.5
O3A—C18A—C17A124.94 (17)H21D—C21B—H21F109.5
O3A—C18A—C19A115.86 (16)H21E—C21B—H21F109.5
C17A—C18A—C19A119.20 (16)C23C—C22B—C23B71.7 (3)
C18A—C19A—C20A120.19 (17)C23C—C22B—C7B121.4 (3)
C18A—C19A—H19A119.9C23B—C22B—C7B112.83 (17)
C20A—C19A—H19A119.9C23C—C22B—H22C37.5
C19A—C20A—C15A122.03 (17)C23B—C22B—H22C109.0
C19A—C20A—H20A119.0C7B—C22B—H22C109.0
C15A—C20A—H20A119.0C23C—C22B—H22D124.9
O3A—C21A—H21A109.5C23B—C22B—H22D109.0
O3A—C21A—H21B109.5C7B—C22B—H22D109.0
H21A—C21A—H21B109.5H22C—C22B—H22D107.8
O3A—C21A—H21C109.5C23C—C22B—H22E107.6
H21A—C21A—H21C109.5C23B—C22B—H22E133.3
H21B—C21A—H21C109.5C7B—C22B—H22E106.7
C23A—C22A—C7A113.26 (16)H22C—C22B—H22E79.3
C23A—C22A—H22A108.9H22D—C22B—H22E31.7
C7A—C22A—H22A108.9C23C—C22B—H22F105.9
C23A—C22A—H22B108.9C23B—C22B—H22F38.0
C7A—C22A—H22B108.9C7B—C22B—H22F107.6
H22A—C22A—H22B107.7H22C—C22B—H22F139.1
C22A—C23A—H23A109.5H22D—C22B—H22F76.2
C22A—C23A—H23B109.5H22E—C22B—H22F106.8
H23A—C23A—H23B109.5C22B—C23B—H22F38.5
C22A—C23A—H23C109.5C22B—C23B—H23D109.5
H23A—C23A—H23C109.5H22F—C23B—H23D105.4
H23B—C23A—H23C109.5C22B—C23B—H23E109.5
C11B—O2B—C14B117.88 (19)H22F—C23B—H23E140.1
C18B—O3B—C21B118.75 (13)H23D—C23B—H23E109.5
C2B—N1B—C7B127.36 (14)C22B—C23B—H23F109.5
C2B—N1B—H1B116.5 (12)H22F—C23B—H23F75.6
C7B—N1B—H1B115.7 (12)H23D—C23B—H23F109.5
C6B—N5B—C4B118.50 (12)H23E—C23B—H23F109.5
C6B—N5B—H5B107.2 (12)C22B—C23C—H23G109.5
C4B—N5B—H5B107.5 (12)C22B—C23C—H23H109.5
O1B—C2B—N1B121.57 (15)H23G—C23C—H23H109.5
O1B—C2B—C3B120.71 (15)C22B—C23C—H23I109.5
N1B—C2B—C3B117.70 (14)H23G—C23C—H23I109.5
C2B—C3B—C4B114.62 (13)H23H—C23C—H23I109.5
C2B—C3B—H3C108.6
C7A—N1A—C2A—O1A178.83 (17)C7B—N1B—C2B—C3B8.9 (3)
C7A—N1A—C2A—C3A4.0 (3)O1B—C2B—C3B—C4B120.58 (17)
O1A—C2A—C3A—C4A115.07 (19)N1B—C2B—C3B—C4B58.2 (2)
N1A—C2A—C3A—C4A62.1 (2)C6B—N5B—C4B—C8B166.79 (13)
C6A—N5A—C4A—C8A162.77 (12)C6B—N5B—C4B—C3B70.10 (17)
C6A—N5A—C4A—C3A74.42 (16)C2B—C3B—C4B—N5B79.81 (17)
C2A—C3A—C4A—N5A84.26 (16)C2B—C3B—C4B—C8B159.73 (14)
C2A—C3A—C4A—C8A153.62 (14)C4B—N5B—C6B—C15B171.56 (13)
C4A—N5A—C6A—C15A165.11 (12)C4B—N5B—C6B—C7B67.51 (17)
C4A—N5A—C6A—C7A71.27 (16)C2B—N1B—C7B—C22B164.28 (16)
C2A—N1A—C7A—C22A170.41 (17)C2B—N1B—C7B—C6B69.3 (2)
C2A—N1A—C7A—C6A65.0 (2)N5B—C6B—C7B—N1B76.30 (15)
N5A—C6A—C7A—N1A77.41 (16)C15B—C6B—C7B—N1B164.68 (12)
C15A—C6A—C7A—N1A161.40 (13)N5B—C6B—C7B—C22B161.37 (13)
N5A—C6A—C7A—C22A161.54 (14)C15B—C6B—C7B—C22B42.35 (17)
C15A—C6A—C7A—C22A40.34 (19)N5B—C4B—C8B—C13B93.95 (17)
N5A—C4A—C8A—C13A62.46 (18)C3B—C4B—C8B—C13B143.35 (16)
C3A—C4A—C8A—C13A59.77 (19)N5B—C4B—C8B—C9B83.29 (19)
N5A—C4A—C8A—C9A119.32 (15)C3B—C4B—C8B—C9B39.4 (2)
C3A—C4A—C8A—C9A118.45 (16)C13B—C8B—C9B—C10B1.4 (3)
C13A—C8A—C9A—C10A1.0 (2)C4B—C8B—C9B—C10B178.68 (16)
C4A—C8A—C9A—C10A179.28 (14)C8B—C9B—C10B—C11B1.0 (3)
C8A—C9A—C10A—C11A1.0 (2)C9B—C10B—C11B—C12B0.5 (3)
C9A—C10A—C11A—C12A0.1 (2)C9B—C10B—C11B—O2B179.86 (17)
C9A—C10A—C11A—O2A179.98 (14)C14B—O2B—C11B—C12B179.14 (19)
C14A—O2A—C11A—C10A179.67 (18)C14B—O2B—C11B—C10B0.5 (3)
C14A—O2A—C11A—C12A0.5 (3)C10B—C11B—C12B—C13B1.5 (3)
C10A—C11A—C12A—C13A0.7 (2)O2B—C11B—C12B—C13B178.86 (17)
O2A—C11A—C12A—C13A179.17 (15)C9B—C8B—C13B—C12B0.4 (3)
C9A—C8A—C13A—C12A0.2 (2)C4B—C8B—C13B—C12B177.77 (16)
C4A—C8A—C13A—C12A178.45 (14)C11B—C12B—C13B—C8B1.0 (3)
C11A—C12A—C13A—C8A0.7 (3)N5B—C6B—C15B—C16B43.91 (19)
N5A—C6A—C15A—C16A53.58 (19)C7B—C6B—C15B—C16B76.49 (17)
C7A—C6A—C15A—C16A68.77 (19)N5B—C6B—C15B—C20B140.46 (15)
N5A—C6A—C15A—C20A127.96 (17)C7B—C6B—C15B—C20B99.15 (16)
C7A—C6A—C15A—C20A109.69 (18)C20B—C15B—C16B—C17B2.8 (2)
C20A—C15A—C16A—C17A1.0 (3)C6B—C15B—C16B—C17B173.01 (14)
C6A—C15A—C16A—C17A177.51 (16)C15B—C16B—C17B—C18B0.1 (2)
C15A—C16A—C17A—C18A0.1 (3)C21B—O3B—C18B—C17B2.8 (2)
C21A—O3A—C18A—C17A0.3 (3)C21B—O3B—C18B—C19B176.19 (15)
C21A—O3A—C18A—C19A179.81 (19)C16B—C17B—C18B—O3B178.24 (14)
C16A—C17A—C18A—O3A178.51 (17)C16B—C17B—C18B—C19B2.8 (2)
C16A—C17A—C18A—C19A0.9 (3)O3B—C18B—C19B—C20B178.41 (14)
O3A—C18A—C19A—C20A178.55 (18)C17B—C18B—C19B—C20B2.6 (2)
C17A—C18A—C19A—C20A0.9 (3)C18B—C19B—C20B—C15B0.4 (2)
C18A—C19A—C20A—C15A0.0 (3)C16B—C15B—C20B—C19B3.1 (2)
C16A—C15A—C20A—C19A1.0 (3)C6B—C15B—C20B—C19B172.70 (14)
C6A—C15A—C20A—C19A177.55 (18)N1B—C7B—C22B—C23C146.9 (4)
N1A—C7A—C22A—C23A62.2 (2)C6B—C7B—C22B—C23C88.0 (4)
C6A—C7A—C22A—C23A173.98 (16)N1B—C7B—C22B—C23B65.1 (2)
C7B—N1B—C2B—O1B172.26 (16)C6B—C7B—C22B—C23B169.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Bi0.88 (2)2.21 (2)3.0833 (19)172 (2)
N1B—H1B···O1Ai0.88 (2)2.04 (2)2.9179 (18)175 (2)
N5A—H5A···O2Aii0.91 (2)2.49 (2)3.3769 (18)164 (2)
C19B—H19B···O3Biii0.932.563.477 (2)171
C20A—H20A···O3Biv0.932.513.410 (2)162
C20B—H20B···O1Bv0.932.533.398 (2)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+3, z+1; (iv) x, y1, z; (v) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H26N2O3
Mr354.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.5190 (3), 13.3480 (4), 15.0472 (4)
α, β, γ (°)102.118 (2), 93.662 (2), 110.287 (2)
V3)1915.89 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
46036, 10328, 6341
Rint0.026
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.149, 1.03
No. of reflections10328
No. of parameters495
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Bi0.88 (2)2.21 (2)3.0833 (19)172 (2)
N1B—H1B···O1Ai0.88 (2)2.04 (2)2.9179 (18)175 (2)
N5A—H5A···O2Aii0.91 (2)2.49 (2)3.3769 (18)164 (2)
C19B—H19B···O3Biii0.932.563.477 (2)171
C20A—H20A···O3Biv0.932.513.410 (2)162
C20B—H20B···O1Bv0.932.533.398 (2)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+3, z+1; (iv) x, y1, z; (v) x, y+2, z+1.
 

Acknowledgements

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection, and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamil Nadu, for the encouragement to pursue the programme. SS thanks the UGC for a fellowship under the Rajiv Gandhi National Fellowship Scheme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619–624.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem. 62, 7984–7990.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJeyaraman, R., Senthil Kumar, U. P. & Bigler, P. (1995). J. Org. Chem. 60, 7461–7470.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059–2070.  Google Scholar
First citationSenthil Kumar, U. P., Jeyaraman, R., Murray, R. W. & Singh, M. (1992). J. Org. Chem. 57, 6006–6014.  CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds