organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(4-Chloro­phen­yl)imino­meth­yl]-4-(tri­fluoro­meth­­oxy)phenol

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: ybingol@omu.edu.tr

(Received 5 October 2009; accepted 6 October 2009; online 10 October 2009)

The title compound, C14H9ClF3NO2, crystallizes in a phenol–imine tautomeric form, with a strong intra­molecular O—H⋯N hydrogen bond. The dihedral angle between the two benzene rings is 47.62 (9)°. In the crystal, mol­ecules are linked into chains along the c axis by C—H⋯O hydrogen bonds, and weak C—H⋯π inter­actions involving both benzene rings are also observed.

Related literature

For general background to Schiff bases, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]); Karadayı et al. (2003[Karadayı, N., Gözüyeşil, S., Güzel, B. & Büyükgüngör, O. (2003). Acta Cryst. E59, o161-o163.]); Hökelek et al.(2000[Hökelek, T., Kılıç, S., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]); Dey et al. (2001[Dey, D. K., Dey, S. P., Elmaly, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177-184.]); Ünver et al. (2002[Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203-209.]). For a related structure, see: Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClF3NO2

  • Mr = 315.67

  • Monoclinic, P 21 /c

  • a = 29.612 (5) Å

  • b = 7.195 (5) Å

  • c = 6.375 (5) Å

  • β = 96.012 (5)°

  • V = 1350.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.72 × 0.44 × 0.10 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.844, Tmax = 0.966

  • 11226 measured reflections

  • 2579 independent reflections

  • 1539 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.201

  • S = 1.04

  • 2579 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.604 (4) 147
C14—H14⋯O1i 0.93 2.53 3.396 (5) 155
C2—H2⋯Cg1ii 0.93 2.77 3.496 (4) 135
C5—H5⋯Cg1iii 0.93 2.98 3.713 (4) 136
C10—H10⋯Cg2iv 0.93 2.94 3.644 (4) 133
C13—H13⋯Cg2v 0.93 2.88 3.597 (4) 135
Symmetry codes: (i) x, y, z-1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). These properties result from a proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Schiff bases display two possible tautomeric forms, namely the phenol-imine (Dey et al., 2001; Karadayı et al., 2003) and keto-amine (Hökelek et al., 2000) forms. Our X-ray analysis shows that the title compound, (I), exists in the phenol-imine form (Fig. 1).

The C8N1 [1.282 (4) Å] and C6—O1 [1.343 (4) Å] bond lenghts confirm the phenol-imine form of (I), and these distances are similar to those reported in the literature [1.280 (2) Å and 1.350 (3) Å; Gül et al., 2007]. The molecule is not planar and the dihedral angle between the C1-C6 and C9-C14 rings is 47.62 (9)°. A strong intramolecular O1—H1···N1 hydrogen bond which forms an S(6) graph set motif (Bernstein et al., 1995) is observed.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds (Table 1). In addition, C2—H2···Cg1i, C5—H5···Cg1ii, C10—H10···Cg2iii and C13—H13···Cg2iv (Cg1 and Cg2 are centroids of the C1-C6 and C9-C14 rings, respectively) interactions (Fig.2 and Table 1) are observed.

Related literature top

For general background to Schiff bases, see: Calligaris et al. (1972); Cohen et al. (1964); Hadjoudis et al. (1987); Karadayı et al. (2003); Hökelek et al.(2000); Dey et al. (2001); Ünver et al. (2002). For a related structure, see: Gül et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids

of the C1–C6 and C9–C14 rings, respectively.

Experimental top

2-[(4-Chlorophenyl)iminomethyl]-4-trifluoromethoxyphenol was prepared by refluxing a mixture of a solution containing 2-hydroxy-5-(trifluoromethoxy)benzaldehyde (10 mg, 4.85× 10-2 mmol) in ethanol (20 ml) and a solution containing 4-chloroaniline (10 mg, 4.85× 10-2 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 hour under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 44 %; m.p. 376-377 K).

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with O-H = 0.82 Å, C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). These properties result from a proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Schiff bases display two possible tautomeric forms, namely the phenol-imine (Dey et al., 2001; Karadayı et al., 2003) and keto-amine (Hökelek et al., 2000) forms. Our X-ray analysis shows that the title compound, (I), exists in the phenol-imine form (Fig. 1).

The C8N1 [1.282 (4) Å] and C6—O1 [1.343 (4) Å] bond lenghts confirm the phenol-imine form of (I), and these distances are similar to those reported in the literature [1.280 (2) Å and 1.350 (3) Å; Gül et al., 2007]. The molecule is not planar and the dihedral angle between the C1-C6 and C9-C14 rings is 47.62 (9)°. A strong intramolecular O1—H1···N1 hydrogen bond which forms an S(6) graph set motif (Bernstein et al., 1995) is observed.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds (Table 1). In addition, C2—H2···Cg1i, C5—H5···Cg1ii, C10—H10···Cg2iii and C13—H13···Cg2iv (Cg1 and Cg2 are centroids of the C1-C6 and C9-C14 rings, respectively) interactions (Fig.2 and Table 1) are observed.

For general background to Schiff bases, see: Calligaris et al. (1972); Cohen et al. (1964); Hadjoudis et al. (1987); Karadayı et al. (2003); Hökelek et al.(2000); Dey et al. (2001); Ünver et al. (2002). For a related structure, see: Gül et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids

of the C1–C6 and C9–C14 rings, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. A packing diagram for (I). H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(E)-2-[(4-Chlorophenyl)iminomethyl]-4-(trifluoromethoxy)phenol top
Crystal data top
C14H9ClF3NO2F(000) = 640
Mr = 315.67Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 13303 reflections
a = 29.612 (5) Åθ = 2.1–26.7°
b = 7.195 (5) ŵ = 0.32 mm1
c = 6.375 (5) ÅT = 296 K
β = 96.012 (5)°Plate, light brown
V = 1350.8 (14) Å30.72 × 0.44 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2579 independent reflections
Radiation source: fine-focus sealed tube1539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.8°
ω scansh = 3632
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.844, Tmax = 0.966l = 77
11226 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1139P)2]
where P = (Fo2 + 2Fc2)/3
2579 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H9ClF3NO2V = 1350.8 (14) Å3
Mr = 315.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 29.612 (5) ŵ = 0.32 mm1
b = 7.195 (5) ÅT = 296 K
c = 6.375 (5) Å0.72 × 0.44 × 0.10 mm
β = 96.012 (5)°
Data collection top
Stoe IPDS-II
diffractometer
2579 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1539 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.966Rint = 0.059
11226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
2579 reflectionsΔρmin = 0.33 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79069 (11)0.5332 (4)0.8304 (4)0.0561 (7)
C20.83127 (11)0.5846 (4)0.7543 (5)0.0595 (8)
H20.83090.63450.61960.071*
C30.87134 (11)0.5624 (4)0.8759 (5)0.0612 (8)
C40.87339 (12)0.4841 (4)1.0761 (5)0.0651 (8)
H40.90120.46791.15660.078*
C50.83396 (12)0.4317 (4)1.1521 (5)0.0662 (9)
H50.83510.37691.28470.079*
C60.79214 (11)0.4581 (4)1.0363 (5)0.0607 (8)
C80.74786 (12)0.5520 (4)0.6986 (5)0.0616 (8)
H80.74810.59080.55960.074*
C90.66929 (11)0.5123 (4)0.6311 (5)0.0598 (7)
C100.62906 (12)0.5708 (4)0.7062 (5)0.0674 (8)
H100.62980.61950.84170.081*
C110.58855 (13)0.5576 (5)0.5832 (6)0.0778 (10)
H110.56190.59720.63500.093*
C120.58717 (12)0.4860 (5)0.3835 (6)0.0716 (9)
C130.62616 (13)0.4247 (5)0.3058 (5)0.0707 (9)
H130.62480.37340.17130.085*
C140.66709 (12)0.4392 (4)0.4268 (5)0.0637 (8)
H140.69350.40030.37290.076*
C150.94016 (13)0.5208 (5)0.7263 (6)0.0748 (9)
N10.70971 (9)0.5168 (3)0.7683 (4)0.0618 (7)
O10.75423 (9)0.4102 (3)1.1218 (4)0.0773 (7)
H10.73200.43271.03800.116*
O20.91140 (8)0.6360 (3)0.8050 (4)0.0756 (7)
F10.91975 (12)0.4373 (4)0.5572 (5)0.1403 (12)
F20.97374 (9)0.6120 (4)0.6655 (5)0.1174 (9)
F30.95437 (12)0.3876 (5)0.8491 (6)0.1558 (15)
Cl10.53598 (4)0.46496 (19)0.22578 (19)0.1103 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0635 (19)0.0520 (15)0.0530 (16)0.0008 (13)0.0076 (13)0.0016 (12)
C20.068 (2)0.0537 (15)0.0575 (16)0.0002 (13)0.0091 (15)0.0024 (13)
C30.0584 (19)0.0548 (16)0.0713 (19)0.0048 (13)0.0118 (15)0.0032 (13)
C40.067 (2)0.0586 (17)0.0674 (18)0.0012 (14)0.0043 (15)0.0038 (14)
C50.081 (3)0.0627 (18)0.0551 (17)0.0009 (15)0.0063 (16)0.0006 (13)
C60.067 (2)0.0583 (17)0.0576 (17)0.0009 (14)0.0121 (15)0.0030 (13)
C80.069 (2)0.0602 (17)0.0557 (16)0.0005 (14)0.0073 (15)0.0022 (13)
C90.063 (2)0.0565 (15)0.0609 (17)0.0012 (13)0.0101 (15)0.0027 (13)
C100.067 (2)0.076 (2)0.0608 (18)0.0042 (16)0.0156 (16)0.0032 (15)
C110.059 (2)0.089 (2)0.087 (2)0.0072 (17)0.0131 (18)0.0024 (19)
C120.066 (2)0.0692 (19)0.077 (2)0.0015 (16)0.0024 (17)0.0100 (17)
C130.076 (3)0.074 (2)0.0614 (18)0.0006 (16)0.0042 (17)0.0013 (15)
C140.062 (2)0.0690 (19)0.0614 (18)0.0028 (14)0.0144 (15)0.0015 (14)
C150.070 (2)0.079 (2)0.075 (2)0.0030 (19)0.0089 (18)0.0058 (19)
N10.0598 (17)0.0655 (15)0.0608 (15)0.0022 (12)0.0094 (13)0.0018 (11)
O10.0702 (16)0.1015 (17)0.0622 (13)0.0015 (12)0.0164 (11)0.0150 (12)
O20.0702 (16)0.0633 (13)0.0952 (16)0.0058 (11)0.0180 (13)0.0014 (11)
F10.137 (3)0.158 (3)0.130 (2)0.025 (2)0.032 (2)0.063 (2)
F20.0774 (17)0.126 (2)0.154 (2)0.0122 (14)0.0383 (16)0.0144 (17)
F30.129 (3)0.169 (3)0.181 (3)0.081 (2)0.066 (2)0.091 (2)
Cl10.0737 (8)0.1402 (10)0.1111 (9)0.0048 (6)0.0188 (6)0.0037 (7)
Geometric parameters (Å, º) top
C1—C21.392 (4)C9—N11.407 (4)
C1—C61.416 (4)C10—C111.366 (5)
C1—C81.453 (4)C10—H100.93
C2—C31.357 (5)C11—C121.370 (5)
C2—H20.93C11—H110.93
C3—C41.391 (5)C12—C131.376 (5)
C3—O21.416 (4)C12—Cl11.736 (4)
C4—C51.363 (5)C13—C141.371 (5)
C4—H40.93C13—H130.93
C5—C61.387 (5)C14—H140.93
C5—H50.93C15—F31.280 (4)
C6—O11.343 (4)C15—F21.285 (4)
C8—N11.282 (4)C15—F11.323 (5)
C8—H80.93C15—O21.324 (4)
C9—C101.394 (5)O1—H10.82
C9—C141.400 (4)
C2—C1—C6118.7 (3)C11—C10—C9120.8 (3)
C2—C1—C8120.4 (3)C11—C10—H10119.6
C6—C1—C8120.8 (3)C9—C10—H10119.6
C3—C2—C1120.3 (3)C10—C11—C12119.9 (3)
C3—C2—H2119.8C10—C11—H11120.1
C1—C2—H2119.8C12—C11—H11120.1
C2—C3—C4121.6 (3)C11—C12—C13120.7 (3)
C2—C3—O2119.1 (3)C11—C12—Cl1120.7 (3)
C4—C3—O2119.1 (3)C13—C12—Cl1118.6 (3)
C5—C4—C3118.8 (3)C14—C13—C12119.9 (3)
C5—C4—H4120.6C14—C13—H13120.0
C3—C4—H4120.6C12—C13—H13120.0
C4—C5—C6121.5 (3)C13—C14—C9120.3 (3)
C4—C5—H5119.2C13—C14—H14119.8
C6—C5—H5119.2C9—C14—H14119.8
O1—C6—C5119.1 (3)F3—C15—F2110.6 (4)
O1—C6—C1121.9 (3)F3—C15—F1104.5 (4)
C5—C6—C1119.0 (3)F2—C15—F1106.8 (3)
N1—C8—C1121.9 (3)F3—C15—O2114.8 (3)
N1—C8—H8119.0F2—C15—O2110.1 (3)
C1—C8—H8119.0F1—C15—O2109.6 (3)
C10—C9—C14118.3 (3)C8—N1—C9120.8 (3)
C10—C9—N1118.8 (3)C6—O1—H1109.5
C14—C9—N1122.7 (3)C15—O2—C3118.7 (3)
C6—C1—C2—C30.1 (4)C9—C10—C11—C120.0 (5)
C8—C1—C2—C3178.3 (3)C10—C11—C12—C130.8 (5)
C1—C2—C3—C41.7 (4)C10—C11—C12—Cl1179.1 (3)
C1—C2—C3—O2172.5 (2)C11—C12—C13—C141.6 (5)
C2—C3—C4—C51.1 (5)Cl1—C12—C13—C14179.9 (2)
O2—C3—C4—C5173.1 (3)C12—C13—C14—C91.5 (5)
C3—C4—C5—C61.3 (5)C10—C9—C14—C130.6 (4)
C4—C5—C6—O1177.5 (3)N1—C9—C14—C13174.8 (3)
C4—C5—C6—C13.0 (4)C1—C8—N1—C9171.6 (3)
C2—C1—C6—O1178.2 (3)C10—C9—N1—C8146.5 (3)
C8—C1—C6—O13.4 (4)C14—C9—N1—C838.1 (4)
C2—C1—C6—C52.4 (4)F3—C15—O2—C356.1 (5)
C8—C1—C6—C5176.0 (3)F2—C15—O2—C3178.3 (3)
C2—C1—C8—N1175.6 (3)F1—C15—O2—C361.2 (4)
C6—C1—C8—N16.0 (4)C2—C3—O2—C15103.8 (4)
C14—C9—C10—C110.2 (5)C4—C3—O2—C1581.9 (4)
N1—C9—C10—C11175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (4)147
C14—H14···O1i0.932.533.396 (5)155
C2—H2···Cg1ii0.932.773.496 (4)135
C5—H5···Cg1iii0.932.983.713 (4)136
C10—H10···Cg2iv0.932.943.644 (4)133
C13—H13···Cg2v0.932.883.597 (4)135
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z3/2; (iv) x, y1/2, z3/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H9ClF3NO2
Mr315.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)29.612 (5), 7.195 (5), 6.375 (5)
β (°) 96.012 (5)
V3)1350.8 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.72 × 0.44 × 0.10
Data collection
DiffractometerStoe IPDS-II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.844, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
11226, 2579, 1539
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.201, 1.04
No. of reflections2579
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (4)147
C14—H14···O1i0.932.533.396 (5)155
C2—H2···Cg1ii0.932.773.496 (4)135
C5—H5···Cg1iii0.932.983.713 (4)136
C10—H10···Cg2iv0.932.943.644 (4)133
C13—H13···Cg2v0.932.883.597 (4)135
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z3/2; (iv) x, y1/2, z3/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationDey, D. K., Dey, S. P., Elmaly, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Kılıç, S., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Google Scholar
First citationKaradayı, N., Gözüyeşil, S., Güzel, B. & Büyükgüngör, O. (2003). Acta Cryst. E59, o161–o163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationÜnver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203–209.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds