organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1,2-di­phenylethenyl 4-methyl­phenyl sulfoxide

aDepartment of Physics, S.V. University, Tirupati 517502, India, bDepartment of Physics, Yangon University, Myanmar, and cDepartment of Chemistry, Sri Krishnadevaraya University, Anantapur, India
*Correspondence e-mail: Thanzawoo06@gmail.com

(Received 11 October 2009; accepted 14 October 2009; online 17 October 2009)

In the title compound, C21H17BrO2S, the two phenyl rings attached to the ethene group are oriented at dihedral angles of 76.19 (10) and 57.99 (8)° with respect to the Br—C=C—S plane [r.m.s. deviation 0.003 Å]. The sulfonyl-bound phenyl ring forms a dihedral angle of 83.26 (8)° with the above plane. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For the anti­bacterial activity of sulfone compounds, see: Mandell & Sande (1985[Mandell, G. L. & Sande, M. A. (1985). The Pharmacological Basis of Therapeutics, edited by A. G. Gilman, L. S. Goodman, T. W. Rall & F. Murad, pp. 1212-1213. New York: MacMillan.]). For a related structure, see: Wolf (1999[Wolf, W. M. (1999). Acta Cryst. C55, 469-472.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17BrO2S

  • Mr = 413.32

  • Monoclinic, C 2/c

  • a = 21.561 (9) Å

  • b = 8.505 (4) Å

  • c = 21.134 (10) Å

  • β = 106.044 (9)°

  • V = 3725 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 300 K

  • 0.15 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 0.820

  • 12736 measured reflections

  • 4273 independent reflections

  • 2826 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.01

  • 4273 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.93 2.91 3.608 (5) 133
C19—H19⋯Cg1ii 0.93 2.88 3.786 (4) 166
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]. Cg1 is the centroid of the C3–C8 ring.

Data collection: SMART (Bruker 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON.

Supporting information


Comment top

Sulfone compounds, similar to sulfonamides, show strong in vitro and in vivo antibacterial activity, and for almost 60 years they have been used successfully in medicine (Mandell & Sande, 1985). Certain sulfones also exhibit fungicidal activity.

The separation of the Br and S1 atoms [3.371 (2) Å] is less than the sum of their respective van der Waals radii 3.65 Å. Shortening of this interatomic distance has often been observed in α,α-unsubstituted β-ketosulfones and is usually explained by hyperconjugative cross-interaction involving the π*(C2—Br)–σ(S1—C1) and π(C2—Br)–σ*(S1—C1) pairs of bonding and non-bonding molecular orbitals. According to general theory of the anomeric effect, the largest overlapping of these orbitals should occur when the interacting polar bonds are situated in the gauche position. However, in the title compound, the S1—C1 and C2—Br bonds are almost planar [the S1—C1—C2—Br torsion angle is 0.9 (3)°]. The only existing gauche interactions involve S1O1 with the C1—C2 and C1—C9 bonds. In addition, the O1···C9 non-bonding distance [3.827 (2) Å] is much longer than the sum of the respective van der Waals radii (3.22 Å). Therefore, the main electronic interaction, despite the unfavoured planar arrangement, should be the Coulombic type, weak electronic interaction of the negatively charged bromine atom and the highly positive S atom, that is responsible for the electron-density transfer from the sulfonyl group towards the bromine atom. All the above features are similar to those reported for 4'-{[benzoyl(4-tolyl-hydrazono)methyl]sulfonyl}acetanilide (Wolf, 1999, and references thererin). The bond lengths are consistent with values reported by Allen et al. (1987), and indicate high level of electron-density delocalization which exists in the planar phenyl rings attached to the ethene group.

Related literature top

For the antibacterial activity of sulfone compounds, see: Mandell & Sande (1985). For a related structure, see: Wolf (1999). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C3–C8 ring.

Experimental top

cis-Stilbene (4 g) was reacted with bromine (5 g) at 283 K to obtain dibromostilbene. The resultant compound was refluxed with paramethylphenyl sodium sulphonate (4.5 g) for 6 h. The reaction mixture was condensed to yield 5 mg of the title compound and was recrystallized from methanol.

Refinement top

H-atoms were positioned at calculated positions [C—H = 0.93 Å (aromatic) and 0.96 Å (methyl)] and refined as riding with Uiso(H) = 1.2Ueq(Caromatic) and Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Sulfone compounds, similar to sulfonamides, show strong in vitro and in vivo antibacterial activity, and for almost 60 years they have been used successfully in medicine (Mandell & Sande, 1985). Certain sulfones also exhibit fungicidal activity.

The separation of the Br and S1 atoms [3.371 (2) Å] is less than the sum of their respective van der Waals radii 3.65 Å. Shortening of this interatomic distance has often been observed in α,α-unsubstituted β-ketosulfones and is usually explained by hyperconjugative cross-interaction involving the π*(C2—Br)–σ(S1—C1) and π(C2—Br)–σ*(S1—C1) pairs of bonding and non-bonding molecular orbitals. According to general theory of the anomeric effect, the largest overlapping of these orbitals should occur when the interacting polar bonds are situated in the gauche position. However, in the title compound, the S1—C1 and C2—Br bonds are almost planar [the S1—C1—C2—Br torsion angle is 0.9 (3)°]. The only existing gauche interactions involve S1O1 with the C1—C2 and C1—C9 bonds. In addition, the O1···C9 non-bonding distance [3.827 (2) Å] is much longer than the sum of the respective van der Waals radii (3.22 Å). Therefore, the main electronic interaction, despite the unfavoured planar arrangement, should be the Coulombic type, weak electronic interaction of the negatively charged bromine atom and the highly positive S atom, that is responsible for the electron-density transfer from the sulfonyl group towards the bromine atom. All the above features are similar to those reported for 4'-{[benzoyl(4-tolyl-hydrazono)methyl]sulfonyl}acetanilide (Wolf, 1999, and references thererin). The bond lengths are consistent with values reported by Allen et al. (1987), and indicate high level of electron-density delocalization which exists in the planar phenyl rings attached to the ethene group.

For the antibacterial activity of sulfone compounds, see: Mandell & Sande (1985). For a related structure, see: Wolf (1999). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C3–C8 ring.

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2002); data reduction: SAINT (Bruker 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-Bromo-1,2-diphenylethenyl 4-methylphenyl sulfoxide top
Crystal data top
C21H17BrO2SF(000) = 1680
Mr = 413.32Dx = 1.474 Mg m3
Dm = 1.48 Mg m3
Dm measured by not measured
Monoclinic, C2/cMelting point: 500 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.561 (9) ÅCell parameters from 4223 reflections
b = 8.505 (4) Åθ = 2–25°
c = 21.134 (10) ŵ = 2.33 mm1
β = 106.044 (9)°T = 300 K
V = 3725 (3) Å3Plate, colourless
Z = 80.15 × 0.12 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4273 independent reflections
Radiation source: fine-focus sealed tube2826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS, Bruker, 2001)
h = 2827
Tmin = 0.661, Tmax = 0.820k = 1111
12736 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0592P)2]
where P = (Fo2 + 2Fc2)/3
4273 reflections(Δ/σ)max = 0.008
227 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H17BrO2SV = 3725 (3) Å3
Mr = 413.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.561 (9) ŵ = 2.33 mm1
b = 8.505 (4) ÅT = 300 K
c = 21.134 (10) Å0.15 × 0.12 × 0.08 mm
β = 106.044 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4273 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2001)
2826 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.820Rint = 0.035
12736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
4273 reflectionsΔρmin = 0.30 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11848 (11)0.3985 (3)0.54204 (12)0.0459 (6)
C90.09957 (13)0.2624 (3)0.49692 (13)0.0500 (6)
C30.12159 (11)0.5778 (3)0.44958 (12)0.0440 (6)
C20.12993 (11)0.5387 (3)0.51983 (12)0.0458 (6)
C40.06193 (13)0.5579 (3)0.40419 (13)0.0514 (6)
H40.02730.51940.41770.062*
C60.10397 (15)0.6526 (4)0.31844 (14)0.0645 (8)
H60.09810.67820.27440.077*
C100.03670 (16)0.2091 (4)0.47825 (15)0.0657 (8)
H100.00560.25830.49430.079*
C80.17237 (13)0.6357 (3)0.42858 (14)0.0534 (7)
H80.21260.64970.45860.064*
C130.1272 (3)0.0614 (5)0.4310 (2)0.0968 (13)
H130.15790.01170.41460.116*
C70.16352 (16)0.6726 (4)0.36342 (15)0.0635 (8)
H70.19790.71130.34950.076*
C50.05398 (13)0.5952 (4)0.33917 (14)0.0606 (7)
H50.01390.58110.30890.073*
C140.14498 (17)0.1862 (4)0.47292 (17)0.0698 (9)
H140.18770.21980.48530.084*
C120.0654 (3)0.0094 (5)0.41319 (19)0.1024 (14)
H120.05420.07700.38540.123*
C110.0197 (2)0.0831 (4)0.43584 (18)0.0896 (12)
H110.02290.04870.42280.108*
S10.12699 (3)0.35497 (10)0.62701 (3)0.0549 (2)
O20.10422 (10)0.1974 (3)0.62829 (10)0.0762 (7)
O10.09830 (8)0.4768 (3)0.65579 (9)0.0712 (6)
C150.21083 (12)0.3535 (3)0.66457 (12)0.0480 (6)
C190.31330 (15)0.2364 (4)0.67791 (16)0.0632 (8)
H190.33880.16010.66590.076*
C200.24851 (14)0.2377 (3)0.64798 (15)0.0574 (7)
H200.23000.16170.61690.069*
C180.34187 (13)0.3447 (4)0.72521 (15)0.0608 (7)
C160.23801 (13)0.4638 (4)0.71088 (13)0.0614 (7)
H160.21270.54210.72190.074*
C170.30353 (14)0.4575 (4)0.74120 (15)0.0695 (8)
H170.32200.53160.77320.083*
C210.41371 (15)0.3392 (5)0.7578 (2)0.0926 (12)
H21A0.42740.43690.78010.139*
H21B0.43620.32260.72500.139*
H21C0.42320.25460.78910.139*
Br0.158444 (16)0.71426 (4)0.575988 (15)0.07199 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0358 (12)0.0608 (16)0.0377 (14)0.0047 (11)0.0045 (11)0.0023 (12)
C90.0575 (16)0.0513 (15)0.0386 (15)0.0036 (12)0.0089 (13)0.0057 (11)
C30.0453 (14)0.0448 (13)0.0384 (14)0.0040 (11)0.0057 (11)0.0029 (11)
C20.0351 (12)0.0582 (16)0.0393 (14)0.0076 (11)0.0025 (11)0.0033 (12)
C40.0445 (14)0.0641 (17)0.0430 (15)0.0024 (12)0.0077 (12)0.0001 (13)
C60.076 (2)0.0751 (19)0.0416 (16)0.0031 (16)0.0147 (16)0.0003 (14)
C100.070 (2)0.0679 (19)0.0540 (19)0.0146 (16)0.0086 (16)0.0039 (15)
C80.0487 (15)0.0611 (17)0.0465 (16)0.0117 (12)0.0067 (12)0.0028 (13)
C130.157 (4)0.062 (2)0.086 (3)0.016 (2)0.057 (3)0.002 (2)
C70.0661 (19)0.073 (2)0.0571 (19)0.0133 (15)0.0270 (16)0.0028 (15)
C50.0522 (16)0.080 (2)0.0426 (16)0.0032 (14)0.0011 (13)0.0013 (14)
C140.080 (2)0.068 (2)0.065 (2)0.0041 (16)0.0277 (18)0.0069 (16)
C120.193 (5)0.053 (2)0.063 (2)0.025 (3)0.039 (3)0.0082 (17)
C110.120 (3)0.074 (2)0.062 (2)0.040 (2)0.004 (2)0.0026 (18)
S10.0430 (4)0.0810 (5)0.0379 (4)0.0120 (3)0.0064 (3)0.0061 (3)
O20.0724 (14)0.0939 (17)0.0528 (13)0.0361 (12)0.0013 (11)0.0181 (11)
O10.0492 (11)0.1182 (18)0.0501 (12)0.0083 (11)0.0201 (10)0.0003 (12)
C150.0441 (14)0.0618 (16)0.0341 (13)0.0061 (12)0.0040 (11)0.0036 (12)
C190.0581 (18)0.0678 (19)0.062 (2)0.0121 (14)0.0142 (16)0.0040 (15)
C200.0605 (18)0.0576 (17)0.0497 (17)0.0025 (13)0.0077 (14)0.0031 (13)
C180.0455 (15)0.079 (2)0.0522 (18)0.0030 (15)0.0040 (13)0.0099 (16)
C160.0529 (16)0.078 (2)0.0465 (17)0.0060 (14)0.0023 (13)0.0129 (14)
C170.0566 (17)0.085 (2)0.0548 (19)0.0065 (16)0.0054 (14)0.0188 (16)
C210.0491 (18)0.127 (3)0.088 (3)0.000 (2)0.0033 (18)0.009 (2)
Br0.0854 (3)0.0743 (2)0.0511 (2)0.02668 (16)0.01018 (17)0.01482 (14)
Geometric parameters (Å, º) top
C1—C21.330 (4)C5—H50.93
C1—C91.483 (4)C14—H140.93
C1—S11.793 (3)C12—C111.362 (6)
C9—C101.379 (4)C12—H120.93
C9—C141.382 (4)C11—H110.93
C3—C81.381 (3)S1—O11.426 (2)
C3—C41.386 (3)S1—O21.430 (2)
C3—C21.483 (3)S1—C151.762 (3)
C2—Br1.901 (3)C15—C161.365 (4)
C4—C51.374 (4)C15—C201.382 (4)
C4—H40.93C19—C201.365 (4)
C6—C51.361 (4)C19—C181.373 (4)
C6—C71.381 (4)C19—H190.93
C6—H60.93C20—H200.93
C10—C111.380 (5)C18—C171.368 (4)
C10—H100.93C18—C211.512 (4)
C8—C71.373 (4)C16—C171.382 (4)
C8—H80.93C16—H160.93
C13—C121.356 (6)C17—H170.93
C13—C141.367 (5)C21—H21A0.96
C13—H130.93C21—H21B0.96
C7—H70.93C21—H21C0.96
C2—C1—C9121.2 (2)C13—C12—C11120.2 (4)
C2—C1—S1124.1 (2)C13—C12—H12119.9
C9—C1—S1114.63 (18)C11—C12—H12119.9
C10—C9—C14118.7 (3)C12—C11—C10119.8 (4)
C10—C9—C1120.9 (3)C12—C11—H11120.1
C14—C9—C1120.3 (3)C10—C11—H11120.1
C8—C3—C4119.2 (2)O1—S1—O2118.75 (14)
C8—C3—C2120.9 (2)O1—S1—C15108.95 (13)
C4—C3—C2119.9 (2)O2—S1—C15107.45 (14)
C1—C2—C3124.9 (2)O1—S1—C1109.93 (13)
C1—C2—Br122.9 (2)O2—S1—C1105.77 (12)
C3—C2—Br112.19 (18)C15—S1—C1105.13 (11)
C5—C4—C3120.0 (2)C16—C15—C20120.4 (2)
C5—C4—H4120.0C16—C15—S1120.1 (2)
C3—C4—H4120.0C20—C15—S1119.5 (2)
C5—C6—C7119.4 (3)C20—C19—C18121.8 (3)
C5—C6—H6120.3C20—C19—H19119.1
C7—C6—H6120.3C18—C19—H19119.1
C9—C10—C11120.3 (3)C19—C20—C15119.1 (3)
C9—C10—H10119.8C19—C20—H20120.5
C11—C10—H10119.8C15—C20—H20120.5
C7—C8—C3120.1 (3)C17—C18—C19118.0 (3)
C7—C8—H8120.0C17—C18—C21121.5 (3)
C3—C8—H8120.0C19—C18—C21120.5 (3)
C12—C13—C14120.7 (4)C15—C16—C17119.1 (3)
C12—C13—H13119.6C15—C16—H16120.4
C14—C13—H13119.6C17—C16—H16120.4
C8—C7—C6120.5 (3)C18—C17—C16121.5 (3)
C8—C7—H7119.8C18—C17—H17119.2
C6—C7—H7119.8C16—C17—H17119.2
C6—C5—C4120.9 (3)C18—C21—H21A109.5
C6—C5—H5119.5C18—C21—H21B109.5
C4—C5—H5119.5H21A—C21—H21B109.5
C13—C14—C9120.1 (4)C18—C21—H21C109.5
C13—C14—H14119.9H21A—C21—H21C109.5
C9—C14—H14119.9H21B—C21—H21C109.5
C2—C1—C9—C10105.1 (3)C14—C13—C12—C111.3 (6)
S1—C1—C9—C1077.0 (3)C13—C12—C11—C101.4 (6)
C2—C1—C9—C1475.1 (3)C9—C10—C11—C121.1 (5)
S1—C1—C9—C14102.8 (3)C2—C1—S1—O145.3 (2)
C9—C1—C2—C33.9 (4)C9—C1—S1—O1136.93 (19)
S1—C1—C2—C3178.41 (19)C2—C1—S1—O2174.6 (2)
C9—C1—C2—Br176.77 (18)C9—C1—S1—O27.6 (2)
S1—C1—C2—Br0.9 (3)C2—C1—S1—C1571.9 (2)
C8—C3—C2—C1122.7 (3)C9—C1—S1—C15105.9 (2)
C4—C3—C2—C158.0 (4)O1—S1—C15—C163.0 (3)
C8—C3—C2—Br57.9 (3)O2—S1—C15—C16132.9 (2)
C4—C3—C2—Br121.4 (2)C1—S1—C15—C16114.8 (2)
C8—C3—C4—C50.2 (4)O1—S1—C15—C20175.4 (2)
C2—C3—C4—C5179.5 (3)O2—S1—C15—C2045.5 (2)
C14—C9—C10—C110.7 (5)C1—S1—C15—C2066.8 (2)
C1—C9—C10—C11179.5 (3)C18—C19—C20—C151.6 (5)
C4—C3—C8—C70.1 (4)C16—C15—C20—C190.9 (4)
C2—C3—C8—C7179.4 (3)S1—C15—C20—C19179.2 (2)
C3—C8—C7—C60.1 (5)C20—C19—C18—C171.1 (5)
C5—C6—C7—C80.3 (5)C20—C19—C18—C21179.5 (3)
C7—C6—C5—C40.4 (5)C20—C15—C16—C170.4 (4)
C3—C4—C5—C60.4 (4)S1—C15—C16—C17178.0 (2)
C12—C13—C14—C90.9 (6)C19—C18—C17—C160.2 (5)
C10—C9—C14—C130.6 (5)C21—C18—C17—C16179.2 (3)
C1—C9—C14—C13179.6 (3)C15—C16—C17—C180.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.913.608 (5)133
C19—H19···Cg1ii0.932.883.786 (4)166
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H17BrO2S
Mr413.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)300
a, b, c (Å)21.561 (9), 8.505 (4), 21.134 (10)
β (°) 106.044 (9)
V3)3725 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.15 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS, Bruker, 2001)
Tmin, Tmax0.661, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
12736, 4273, 2826
Rint0.035
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.01
No. of reflections4273
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.30

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.913.608 (5)133
C19—H19···Cg1ii0.932.883.786 (4)166
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

MK thanks Ed. CEL, New Delhi, for sponsoring a visit to Yangon University, Myanmar.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1985). The Pharmacological Basis of Therapeutics, edited by A. G. Gilman, L. S. Goodman, T. W. Rall & F. Murad, pp. 1212–1213. New York: MacMillan.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolf, W. M. (1999). Acta Cryst. C55, 469–472.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds