organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Nitro-4-(2-nitro­ethen­yl)benzene

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: jhrkk20060220@yahoo.com.cn

(Received 15 October 2009; accepted 16 October 2009; online 23 October 2009)

The asymmetric unit of the title compound, C8H6N2O4, consists of two independent mol­ecules with similar geometries, each adopting a trans configuration about the olefinic double bond. The two mol­ecules are both almost planar (r.m.s. deviations = 0.034 and 0.035 Å) and form a dihedral angle of 83.62 (2)°. Short N⋯O contacts [2.834 (3)–2.861 (3) Å] are observed between the nitro groups of neighbouring mol­ecules, with the O atom located directly atop the p orbital of the N atom. In the crystal, the mol­ecules are linked into a three-dimensional network by the N⋯O inter­actions and by C—H⋯O hydrogen bonds.

Related literature

For general background to β-nitro­olefins, see: Barrett & Graboski (1986[Barrett, A. G. M. & Graboski, G. G. (1986). Chem. Rev. 86, 751-762.]). For the synthesis, see: Valdes et al. (2007[Valdes, A. C., Pina-Luis, G. & Rivero, I. A. (2007). J. Mex. Chem. Soc. 51, 87-95.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O4

  • Mr = 194.15

  • Orthorhombic, P n a 21

  • a = 15.847 (4) Å

  • b = 4.9991 (11) Å

  • c = 20.495 (5) Å

  • V = 1623.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 93 K

  • 0.43 × 0.17 × 0.17 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: none

  • 12157 measured reflections

  • 1921 independent reflections

  • 1821 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.13

  • 1921 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.95 2.57 3.389 (3) 144
C5—H5⋯O6ii 0.95 2.43 3.234 (3) 143
C6—H6⋯O7iii 0.95 2.56 3.469 (3) 160
C7—H7⋯O5i 0.95 2.45 3.304 (3) 150
C10—H10⋯O4iv 0.95 2.41 3.352 (3) 174
C11—H11⋯O1v 0.95 2.44 3.243 (3) 142
C14—H14⋯O2vi 0.95 2.57 3.381 (3) 144
C15—H15⋯O2vi 0.95 2.44 3.296 (3) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+2, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

β-Nitroolefins are a class of useful and versatile building blocks in organic synthesis (Barrett & Graboski, 1986). The author reports here, the crystal structure of the title compound.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1) each of which adopts a trans configuration about the olefinic double bond. All atoms in each independent molecule are almost coplanar. The N2/O3/O4 and C1-C6 (r.m.s. deviation 0.001 Å) planes form a dihedral angle of 1.4 (4)°. The dihedral angle between the C1-C6 and N1/O1/O2/C7/C8 (r.m.s. deviation 0.031 Å) planes is 2.9 (1)°. The N4/O7/O8 and C9-C14 (r.m.s. deviation 0.004 Å) planes form a dihedral angle of 2.9 (4)°. The dihedral angle between the C9-C14 and N3/O5/O6/C15/C16 (r.m.s. deviation 0.028 Å) planes is 2.9 (1)°. The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1) and N···O short contacts.

Related literature top

For general background to β-nitroolefins, see: Barrett & Graboski (1986). For the synthesis, see: Valdes et al. (2007).

Experimental top

The title compound was synthesized according to the method reported in the literature (Valdes et al., 2007). Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in calculated positions, with C-H = 0.95 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Structure description top

β-Nitroolefins are a class of useful and versatile building blocks in organic synthesis (Barrett & Graboski, 1986). The author reports here, the crystal structure of the title compound.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1) each of which adopts a trans configuration about the olefinic double bond. All atoms in each independent molecule are almost coplanar. The N2/O3/O4 and C1-C6 (r.m.s. deviation 0.001 Å) planes form a dihedral angle of 1.4 (4)°. The dihedral angle between the C1-C6 and N1/O1/O2/C7/C8 (r.m.s. deviation 0.031 Å) planes is 2.9 (1)°. The N4/O7/O8 and C9-C14 (r.m.s. deviation 0.004 Å) planes form a dihedral angle of 2.9 (4)°. The dihedral angle between the C9-C14 and N3/O5/O6/C15/C16 (r.m.s. deviation 0.028 Å) planes is 2.9 (1)°. The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1) and N···O short contacts.

For general background to β-nitroolefins, see: Barrett & Graboski (1986). For the synthesis, see: Valdes et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.
(E)-1-Nitro-4-(2-nitroethenyl)benzene top
Crystal data top
C8H6N2O4F(000) = 800
Mr = 194.15Dx = 1.588 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5000 reflections
a = 15.847 (4) Åθ = 3.3–27.5°
b = 4.9991 (11) ŵ = 0.13 mm1
c = 20.495 (5) ÅT = 93 K
V = 1623.6 (7) Å3Prism, yellow
Z = 80.43 × 0.17 × 0.17 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
1821 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = 2020
multi–scank = 66
12157 measured reflectionsl = 2026
1921 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0124P]
where P = (Fo2 + 2Fc2)/3
1921 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C8H6N2O4V = 1623.6 (7) Å3
Mr = 194.15Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 15.847 (4) ŵ = 0.13 mm1
b = 4.9991 (11) ÅT = 93 K
c = 20.495 (5) Å0.43 × 0.17 × 0.17 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
1821 reflections with I > 2σ(I)
12157 measured reflectionsRint = 0.032
1921 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.13Δρmax = 0.26 e Å3
1921 reflectionsΔρmin = 0.17 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00934 (11)0.2104 (4)0.37970 (9)0.0256 (4)
O20.03415 (11)0.1404 (4)0.27702 (8)0.0227 (4)
O30.40990 (11)1.2126 (4)0.30965 (8)0.0231 (4)
O40.39197 (11)1.1786 (3)0.41409 (8)0.0227 (4)
N10.04305 (12)0.0847 (4)0.33513 (10)0.0181 (4)
N20.37733 (12)1.1093 (4)0.35767 (10)0.0172 (4)
C10.20144 (14)0.4859 (5)0.32540 (12)0.0201 (5)
C20.24209 (16)0.6078 (5)0.27306 (12)0.0212 (5)
H20.22990.55060.22990.025*
C30.29987 (15)0.8108 (5)0.28293 (12)0.0194 (5)
H30.32730.89380.24700.023*
C40.31691 (14)0.8909 (5)0.34625 (11)0.0170 (5)
C50.27766 (15)0.7755 (5)0.39972 (12)0.0195 (5)
H50.29010.83480.44270.023*
C60.21957 (15)0.5709 (5)0.38928 (12)0.0214 (5)
H60.19220.48870.42530.026*
C70.14131 (14)0.2682 (5)0.31123 (13)0.0200 (5)
H70.13450.21780.26690.024*
C80.09642 (15)0.1380 (5)0.35480 (12)0.0198 (5)
H80.09880.18960.39940.024*
O50.69565 (11)0.3595 (4)0.15876 (8)0.0214 (4)
O60.72313 (10)0.2899 (4)0.05672 (9)0.0234 (4)
O70.33698 (11)1.6608 (4)0.01863 (8)0.0239 (4)
O80.31958 (11)1.7112 (3)0.12274 (9)0.0222 (4)
N30.68809 (12)0.4151 (4)0.10092 (10)0.0167 (4)
N40.35187 (12)1.6000 (4)0.07547 (10)0.0167 (4)
C90.52828 (13)0.9813 (5)0.11027 (11)0.0170 (5)
C100.51094 (15)1.0658 (5)0.04660 (12)0.0203 (5)
H100.53960.98510.01100.024*
C110.45240 (14)1.2658 (5)0.03503 (12)0.0204 (5)
H110.43981.32160.00820.024*
C120.41275 (14)1.3822 (5)0.08803 (11)0.0167 (5)
C130.42840 (15)1.3075 (5)0.15165 (12)0.0184 (5)
H130.40041.39280.18700.022*
C140.48642 (15)1.1037 (5)0.16264 (12)0.0173 (5)
H140.49781.04700.20600.021*
C150.58824 (14)0.7649 (5)0.12470 (12)0.0175 (5)
H150.59460.71350.16910.021*
C160.63421 (15)0.6356 (5)0.08075 (11)0.0191 (5)
H160.63200.68710.03620.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0256 (9)0.0291 (9)0.0220 (9)0.0036 (8)0.0025 (7)0.0041 (8)
O20.0238 (9)0.0263 (10)0.0180 (9)0.0004 (7)0.0000 (7)0.0033 (8)
O30.0225 (8)0.0260 (9)0.0209 (8)0.0040 (8)0.0013 (7)0.0046 (7)
O40.0261 (10)0.0234 (9)0.0186 (8)0.0004 (7)0.0041 (7)0.0025 (7)
N10.0155 (10)0.0182 (10)0.0204 (10)0.0008 (8)0.0018 (8)0.0016 (8)
N20.0149 (9)0.0170 (9)0.0198 (9)0.0004 (8)0.0016 (8)0.0031 (8)
C10.0159 (11)0.0164 (11)0.0279 (14)0.0038 (10)0.0002 (9)0.0024 (10)
C20.0216 (12)0.0197 (11)0.0224 (12)0.0023 (10)0.0031 (10)0.0033 (9)
C30.0171 (11)0.0220 (12)0.0191 (12)0.0024 (9)0.0008 (9)0.0019 (10)
C40.0131 (10)0.0152 (10)0.0228 (12)0.0038 (9)0.0001 (9)0.0005 (10)
C50.0210 (11)0.0217 (13)0.0159 (12)0.0028 (11)0.0022 (9)0.0007 (9)
C60.0210 (11)0.0216 (12)0.0217 (12)0.0017 (10)0.0021 (10)0.0060 (10)
C70.0199 (11)0.0186 (12)0.0215 (11)0.0032 (11)0.0011 (10)0.0011 (10)
C80.0199 (12)0.0184 (11)0.0210 (11)0.0013 (9)0.0021 (9)0.0019 (9)
O50.0235 (9)0.0239 (9)0.0167 (8)0.0021 (7)0.0017 (7)0.0045 (7)
O60.0237 (9)0.0237 (9)0.0230 (9)0.0051 (7)0.0005 (7)0.0066 (8)
O70.0249 (9)0.0249 (10)0.0218 (9)0.0030 (7)0.0035 (7)0.0067 (8)
O80.0210 (8)0.0215 (8)0.0241 (9)0.0057 (7)0.0001 (7)0.0039 (7)
N30.0147 (9)0.0161 (9)0.0193 (10)0.0008 (8)0.0003 (8)0.0003 (8)
N40.0156 (9)0.0149 (9)0.0194 (10)0.0017 (8)0.0019 (7)0.0014 (8)
C90.0149 (10)0.0178 (11)0.0184 (12)0.0025 (9)0.0007 (9)0.0020 (9)
C100.0216 (12)0.0212 (12)0.0182 (11)0.0032 (10)0.0029 (9)0.0007 (10)
C110.0213 (11)0.0220 (12)0.0179 (12)0.0006 (11)0.0023 (9)0.0002 (9)
C120.0135 (10)0.0143 (10)0.0222 (12)0.0017 (9)0.0020 (9)0.0011 (9)
C130.0180 (12)0.0195 (10)0.0176 (11)0.0009 (9)0.0032 (9)0.0006 (10)
C140.0168 (11)0.0206 (11)0.0146 (11)0.0001 (10)0.0005 (9)0.0000 (9)
C150.0157 (10)0.0195 (12)0.0172 (11)0.0007 (10)0.0014 (9)0.0005 (9)
C160.0181 (11)0.0210 (12)0.0182 (11)0.0009 (9)0.0015 (9)0.0008 (9)
Geometric parameters (Å, º) top
O1—N11.231 (3)O5—N31.223 (3)
O2—N11.231 (3)O6—N31.233 (3)
O3—N21.225 (3)O7—N41.227 (3)
O4—N21.229 (3)O8—N41.229 (3)
N1—C81.455 (3)N3—C161.455 (3)
N2—C41.471 (3)N4—C121.477 (3)
C1—C21.392 (3)C9—C101.399 (3)
C1—C61.406 (3)C9—C141.402 (3)
C1—C71.476 (3)C9—C151.470 (3)
C2—C31.382 (3)C10—C111.385 (3)
C2—H20.95C10—H100.95
C3—C41.385 (3)C11—C121.383 (3)
C3—H30.95C11—H110.95
C4—C51.386 (3)C12—C131.379 (3)
C5—C61.392 (4)C13—C141.391 (3)
C5—H50.95C13—H130.95
C6—H60.95C14—H140.95
C7—C81.314 (4)C15—C161.327 (3)
C7—H70.95C15—H150.95
C8—H80.95C16—H160.95
O2—N1—O1123.6 (2)O5—N3—O6123.5 (2)
O2—N1—C8120.5 (2)O5—N3—C16120.3 (2)
O1—N1—C8115.9 (2)O6—N3—C16116.11 (19)
O3—N2—O4123.9 (2)O7—N4—O8123.8 (2)
O3—N2—C4117.33 (19)O7—N4—C12118.28 (19)
O4—N2—C4118.79 (19)O8—N4—C12117.89 (19)
C2—C1—C6119.4 (2)C10—C9—C14119.3 (2)
C2—C1—C7118.0 (2)C10—C9—C15122.5 (2)
C6—C1—C7122.6 (2)C14—C9—C15118.2 (2)
C3—C2—C1121.0 (2)C11—C10—C9120.6 (2)
C3—C2—H2119.5C11—C10—H10119.7
C1—C2—H2119.5C9—C10—H10119.7
C2—C3—C4118.6 (2)C12—C11—C10118.3 (2)
C2—C3—H3120.7C12—C11—H11120.9
C4—C3—H3120.7C10—C11—H11120.9
C3—C4—C5122.2 (2)C13—C12—C11123.2 (2)
C3—C4—N2119.4 (2)C13—C12—N4118.8 (2)
C5—C4—N2118.4 (2)C11—C12—N4118.0 (2)
C4—C5—C6118.7 (2)C12—C13—C14118.1 (2)
C4—C5—H5120.6C12—C13—H13121.0
C6—C5—H5120.6C14—C13—H13121.0
C5—C6—C1120.0 (2)C13—C14—C9120.6 (2)
C5—C6—H6120.0C13—C14—H14119.7
C1—C6—H6120.0C9—C14—H14119.7
C8—C7—C1125.5 (2)C16—C15—C9125.2 (2)
C8—C7—H7117.2C16—C15—H15117.4
C1—C7—H7117.2C9—C15—H15117.4
C7—C8—N1120.3 (2)C15—C16—N3119.9 (2)
C7—C8—H8119.8C15—C16—H16120.0
N1—C8—H8119.8N3—C16—H16120.0
C6—C1—C2—C30.0 (4)C14—C9—C10—C110.8 (4)
C7—C1—C2—C3179.2 (2)C15—C9—C10—C11178.3 (2)
C1—C2—C3—C40.2 (4)C9—C10—C11—C121.0 (4)
C2—C3—C4—C50.4 (4)C10—C11—C12—C130.4 (4)
C2—C3—C4—N2179.1 (2)C10—C11—C12—N4178.6 (2)
O3—N2—C4—C30.4 (3)O7—N4—C12—C13178.4 (2)
O4—N2—C4—C3180.0 (2)O8—N4—C12—C132.2 (3)
O3—N2—C4—C5178.4 (2)O7—N4—C12—C112.6 (3)
O4—N2—C4—C51.2 (3)O8—N4—C12—C11176.8 (2)
C3—C4—C5—C60.4 (4)C11—C12—C13—C140.5 (4)
N2—C4—C5—C6179.2 (2)N4—C12—C13—C14179.5 (2)
C4—C5—C6—C10.3 (4)C12—C13—C14—C90.8 (3)
C2—C1—C6—C50.1 (4)C10—C9—C14—C130.2 (3)
C7—C1—C6—C5179.3 (2)C15—C9—C14—C13179.3 (2)
C2—C1—C7—C8178.2 (2)C10—C9—C15—C162.9 (4)
C6—C1—C7—C82.6 (4)C14—C9—C15—C16178.0 (2)
C1—C7—C8—N1176.1 (2)C9—C15—C16—N3176.7 (2)
O2—N1—C8—C75.7 (3)O5—N3—C16—C154.9 (3)
O1—N1—C8—C7173.6 (2)O6—N3—C16—C15173.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.952.573.389 (3)144
C5—H5···O6ii0.952.433.234 (3)143
C6—H6···O7iii0.952.563.469 (3)160
C7—H7···O5i0.952.453.304 (3)150
C10—H10···O4iv0.952.413.352 (3)174
C11—H11···O1v0.952.443.243 (3)142
C14—H14···O2vi0.952.573.381 (3)144
C15—H15···O2vi0.952.443.296 (3)150
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y3/2, z+1/2; (iv) x+1, y+2, z1/2; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H6N2O4
Mr194.15
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)93
a, b, c (Å)15.847 (4), 4.9991 (11), 20.495 (5)
V3)1623.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.43 × 0.17 × 0.17
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12157, 1921, 1821
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.13
No. of reflections1921
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.952.573.389 (3)144
C5—H5···O6ii0.952.433.234 (3)143
C6—H6···O7iii0.952.563.469 (3)160
C7—H7···O5i0.952.453.304 (3)150
C10—H10···O4iv0.952.413.352 (3)174
C11—H11···O1v0.952.443.243 (3)142
C14—H14···O2vi0.952.573.381 (3)144
C15—H15···O2vi0.952.443.296 (3)150
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y3/2, z+1/2; (iv) x+1, y+2, z1/2; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The author thanks the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

References

First citationBarrett, A. G. M. & Graboski, G. G. (1986). Chem. Rev. 86, 751–762.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValdes, A. C., Pina-Luis, G. & Rivero, I. A. (2007). J. Mex. Chem. Soc. 51, 87–95.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds