organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-(2-chloro­benzyl­­idene)benzohydrazide

aCollege of Life Science and Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China, bQiqihar Medical University, Qiqihar 161006, People's Republic of China, and cLiaoning Cheng Da Biotechnology Co Ltd, Shenyang 100044, People's Republic of China
*Correspondence e-mail: zd6008@sina.com

(Received 17 October 2009; accepted 22 October 2009; online 28 October 2009)

The mol­ecule of the title compound, C14H10Cl2N2O, adopts an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 79.7 (2)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For the biological activity of hydra­zones, see: Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Charkoudian et al. (2007[Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031-5042.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Kümmerle et al. (2009[Kümmerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G. & Fraga, C. A. M. (2009). Eur. J. Med. Chem. 44, 4004-4009.]); Raparti et al. (2009[Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954-3960.]); Bayrak et al. (2009[Bayrak, H., Demirbas, A., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362-4366.]); Hearn et al. (2009[Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., Kang, H. J.-O., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169-4178.]). For crystal structures of hydrazone compounds, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.]); Ren (2009[Ren, C.-G. (2009). Acta Cryst. E65, o1503-o1504.]); Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o1388.]); Wu (2009[Wu, H.-Y. (2009). Acta Cryst. E65, o852.]); Peng & Hou (2008[Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]); Liang & Zou (2009[Liang, M. & Zou, D.-H. (2009). Acta Cryst. E65, o1609.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O

  • Mr = 293.14

  • Orthorhombic, P b c a

  • a = 11.9336 (5) Å

  • b = 9.7471 (4) Å

  • c = 22.5840 (9) Å

  • V = 2626.93 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.897, Tmax = 0.909

  • 15167 measured reflections

  • 2863 independent reflections

  • 2035 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.03

  • 2863 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.91 (1) 1.920 (12) 2.809 (2) 166 (2)
C7—H7⋯O1i 0.93 2.53 3.301 (2) 141
C14—H14⋯Cl2i 0.93 2.75 3.620 (2) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decades, the human population affected with life-treating infectious diseases caused by multidrug-resistant Gram-positive and Gram-negative pathogen bacteria increased to an alarming level around the world. Recently, a great deal of antibacterial agents were used in therapy. Hydrazones are an important component of the Schiff base family. These compounds have been widely used in the fields of antimicrobial, antibacterial and antitumor (Küçükgüzel et al., 2003; Charkoudian et al., 2007; Avaji et al., 2009; Kümmerle et al., 2009; Raparti et al., 2009; Bayrak et al., 2009; Hearn et al., 2009). In the last few years, crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2008; Lo & Ng, 2009; Ren, 2009; Zhang, 2009). As a continuation of our work in this area (Liang & Zou, 2009), the author reports herein the crystal structure of the title new hydrazone compound.

In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 79.7 (2)°. The molecule exists in an E configuration about the CN bond. All bond lengths are within normal values and comparable to those obserbved in related hydrazone compounds (Wu, 2009; Peng & Hou, 2008; Mohd Lair et al., 2009).

In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Related literature top

For the biological activity of hydrozones, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007); Avaji et al. (2009); Kümmerle et al. (2009); Raparti et al. (2009); Bayrak et al. (2009); Hearn et al. (2009). For crystal structures of hydrazone compounds, see: Fun et al. (2008); Lo & Ng (2009); Ren (2009); Zhang (2009); Wu (2009); Peng & Hou (2008); Mohd Lair et al. (2009); Liang & Zou (2009).

Experimental top

Equimolar quantities (1.0 mmol each) of 2-chlorobenzaldehyde and 2-chlorobenzohydrazide were mixed and refluxed in methanol. The reaction mixture was cooled to room temperature to give a clear colourless solution. Colourless single crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 was located in a difference map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å and Uiso set at 0.08 Å2. Other H atoms were placed in calculated positions (C-H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

During the past decades, the human population affected with life-treating infectious diseases caused by multidrug-resistant Gram-positive and Gram-negative pathogen bacteria increased to an alarming level around the world. Recently, a great deal of antibacterial agents were used in therapy. Hydrazones are an important component of the Schiff base family. These compounds have been widely used in the fields of antimicrobial, antibacterial and antitumor (Küçükgüzel et al., 2003; Charkoudian et al., 2007; Avaji et al., 2009; Kümmerle et al., 2009; Raparti et al., 2009; Bayrak et al., 2009; Hearn et al., 2009). In the last few years, crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2008; Lo & Ng, 2009; Ren, 2009; Zhang, 2009). As a continuation of our work in this area (Liang & Zou, 2009), the author reports herein the crystal structure of the title new hydrazone compound.

In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 79.7 (2)°. The molecule exists in an E configuration about the CN bond. All bond lengths are within normal values and comparable to those obserbved in related hydrazone compounds (Wu, 2009; Peng & Hou, 2008; Mohd Lair et al., 2009).

In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

For the biological activity of hydrozones, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007); Avaji et al. (2009); Kümmerle et al. (2009); Raparti et al. (2009); Bayrak et al. (2009); Hearn et al. (2009). For crystal structures of hydrazone compounds, see: Fun et al. (2008); Lo & Ng (2009); Ren (2009); Zhang (2009); Wu (2009); Peng & Hou (2008); Mohd Lair et al. (2009); Liang & Zou (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Chloro-N'-(2-chlorobenzylidene)benzohydrazide top
Crystal data top
C14H10Cl2N2OF(000) = 1200
Mr = 293.14Dx = 1.482 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2480 reflections
a = 11.9336 (5) Åθ = 2.4–24.5°
b = 9.7471 (4) ŵ = 0.49 mm1
c = 22.5840 (9) ÅT = 298 K
V = 2626.93 (19) Å3Block, colourless
Z = 80.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2863 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1511
Tmin = 0.897, Tmax = 0.909k = 1212
15167 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.038P)2 + 0.9372P]
where P = (Fo2 + 2Fc2)/3
2863 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C14H10Cl2N2OV = 2626.93 (19) Å3
Mr = 293.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.9336 (5) ŵ = 0.49 mm1
b = 9.7471 (4) ÅT = 298 K
c = 22.5840 (9) Å0.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2863 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2035 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.909Rint = 0.045
15167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
2863 reflectionsΔρmin = 0.36 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.79500 (6)0.47092 (7)0.48378 (3)0.0674 (2)
Cl20.53369 (5)1.04300 (6)0.72070 (3)0.05271 (18)
N10.84153 (13)0.81563 (16)0.59949 (6)0.0345 (4)
N20.78786 (14)0.79951 (16)0.65338 (7)0.0341 (4)
O10.78386 (13)1.02813 (13)0.67114 (6)0.0445 (4)
C10.90227 (16)0.7097 (2)0.51022 (8)0.0352 (4)
C20.88637 (17)0.6053 (2)0.46878 (9)0.0413 (5)
C30.9388 (2)0.6077 (3)0.41454 (10)0.0540 (6)
H30.92710.53700.38760.065*
C41.0084 (2)0.7148 (3)0.40032 (10)0.0560 (6)
H41.04340.71670.36350.067*
C51.02694 (18)0.8197 (2)0.44010 (9)0.0494 (6)
H51.07430.89200.43030.059*
C60.97447 (17)0.8163 (2)0.49456 (9)0.0415 (5)
H60.98760.88670.52150.050*
C70.84564 (16)0.70741 (19)0.56775 (8)0.0359 (4)
H70.81260.62680.58120.043*
C80.76315 (16)0.91055 (19)0.68656 (8)0.0327 (4)
C90.71126 (16)0.87531 (19)0.74505 (8)0.0346 (4)
C100.61214 (17)0.9330 (2)0.76526 (9)0.0387 (5)
C110.5702 (2)0.9017 (3)0.82073 (10)0.0520 (6)
H110.50420.94220.83390.062*
C120.6263 (2)0.8106 (3)0.85620 (10)0.0600 (7)
H120.59820.78970.89350.072*
C130.7236 (2)0.7499 (3)0.83710 (10)0.0570 (6)
H130.76060.68690.86110.068*
C140.76608 (19)0.7831 (2)0.78197 (9)0.0462 (5)
H140.83260.74300.76940.055*
H20.768 (2)0.7142 (14)0.6655 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0867 (5)0.0575 (4)0.0581 (4)0.0282 (3)0.0204 (3)0.0183 (3)
Cl20.0438 (3)0.0540 (4)0.0603 (4)0.0084 (3)0.0088 (3)0.0094 (3)
N10.0413 (9)0.0334 (9)0.0288 (8)0.0033 (7)0.0049 (7)0.0008 (7)
N20.0447 (10)0.0279 (8)0.0297 (8)0.0004 (7)0.0066 (7)0.0014 (7)
O10.0614 (10)0.0267 (7)0.0452 (8)0.0046 (7)0.0093 (7)0.0024 (6)
C10.0396 (11)0.0358 (11)0.0301 (10)0.0058 (8)0.0022 (8)0.0013 (8)
C20.0448 (12)0.0416 (12)0.0376 (11)0.0017 (9)0.0059 (9)0.0040 (9)
C30.0608 (15)0.0597 (15)0.0415 (12)0.0060 (12)0.0127 (11)0.0152 (11)
C40.0565 (14)0.0716 (17)0.0399 (12)0.0003 (12)0.0174 (11)0.0033 (12)
C50.0482 (13)0.0532 (14)0.0467 (12)0.0033 (11)0.0100 (10)0.0051 (11)
C60.0486 (13)0.0370 (11)0.0390 (11)0.0009 (9)0.0038 (9)0.0007 (9)
C70.0452 (11)0.0308 (10)0.0318 (10)0.0007 (9)0.0034 (8)0.0015 (8)
C80.0354 (10)0.0285 (10)0.0341 (10)0.0027 (8)0.0007 (8)0.0006 (8)
C90.0412 (11)0.0314 (10)0.0314 (10)0.0012 (8)0.0024 (8)0.0035 (8)
C100.0380 (11)0.0379 (11)0.0402 (11)0.0033 (9)0.0002 (9)0.0109 (9)
C110.0460 (13)0.0633 (15)0.0467 (13)0.0057 (11)0.0126 (10)0.0157 (12)
C120.0669 (17)0.0763 (18)0.0368 (12)0.0104 (14)0.0154 (12)0.0003 (12)
C130.0686 (16)0.0625 (15)0.0398 (12)0.0039 (13)0.0043 (11)0.0107 (11)
C140.0535 (13)0.0460 (13)0.0391 (11)0.0066 (10)0.0070 (10)0.0025 (10)
Geometric parameters (Å, º) top
Cl1—C21.738 (2)C5—C61.381 (3)
Cl2—C101.743 (2)C5—H50.93
N1—C71.276 (2)C6—H60.93
N1—N21.384 (2)C7—H70.93
N2—C81.349 (2)C8—C91.499 (3)
N2—H20.908 (10)C9—C101.387 (3)
O1—C81.223 (2)C9—C141.389 (3)
C1—C61.395 (3)C10—C111.383 (3)
C1—C21.395 (3)C11—C121.371 (3)
C1—C71.465 (3)C11—H110.93
C2—C31.376 (3)C12—C131.372 (3)
C3—C41.373 (3)C12—H120.93
C3—H30.93C13—C141.383 (3)
C4—C51.379 (3)C13—H130.93
C4—H40.93C14—H140.93
C7—N1—N2114.69 (16)N1—C7—H7119.9
C8—N2—N1119.89 (15)C1—C7—H7119.9
C8—N2—H2120.6 (17)O1—C8—N2123.33 (17)
N1—N2—H2119.5 (17)O1—C8—C9123.31 (17)
C6—C1—C2117.19 (17)N2—C8—C9113.33 (16)
C6—C1—C7121.43 (18)C10—C9—C14117.81 (18)
C2—C1—C7121.39 (18)C10—C9—C8123.31 (17)
C3—C2—C1121.5 (2)C14—C9—C8118.85 (17)
C3—C2—Cl1118.13 (17)C11—C10—C9121.1 (2)
C1—C2—Cl1120.29 (15)C11—C10—Cl2117.69 (17)
C4—C3—C2119.8 (2)C9—C10—Cl2121.17 (15)
C4—C3—H3120.1C12—C11—C10119.7 (2)
C2—C3—H3120.1C12—C11—H11120.1
C3—C4—C5120.6 (2)C10—C11—H11120.1
C3—C4—H4119.7C11—C12—C13120.6 (2)
C5—C4—H4119.7C11—C12—H12119.7
C4—C5—C6119.3 (2)C13—C12—H12119.7
C4—C5—H5120.3C12—C13—C14119.5 (2)
C6—C5—H5120.3C12—C13—H13120.3
C5—C6—C1121.6 (2)C14—C13—H13120.3
C5—C6—H6119.2C13—C14—C9121.3 (2)
C1—C6—H6119.2C13—C14—H14119.4
N1—C7—C1120.20 (17)C9—C14—H14119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (1)1.92 (1)2.809 (2)166 (2)
C7—H7···O1i0.932.533.301 (2)141
C14—H14···Cl2i0.932.753.620 (2)156
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H10Cl2N2O
Mr293.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.9336 (5), 9.7471 (4), 22.5840 (9)
V3)2626.93 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.897, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
15167, 2863, 2035
Rint0.045
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.03
No. of reflections2863
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (1)1.920 (12)2.809 (2)166 (2)
C7—H7···O1i0.932.533.301 (2)141
C14—H14···Cl2i0.932.753.620 (2)156
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

D-HZ acknowledges Qiqihar University for financial support.

References

First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBayrak, H., Demirbas, A., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362-4366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042.  Web of Science CSD CrossRef Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., Kang, H. J.-O., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169–4178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationKümmerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G. & Fraga, C. A. M. (2009). Eur. J. Med. Chem. 44, 4004–4009.  Web of Science PubMed Google Scholar
First citationLiang, M. & Zou, D.-H. (2009). Acta Cryst. E65, o1609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954–3960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRen, C.-G. (2009). Acta Cryst. E65, o1503–o1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-Y. (2009). Acta Cryst. E65, o852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. (2009). Acta Cryst. E65, o1388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds