organic compounds
2-Chloro-N′-(2-chlorobenzylidene)benzohydrazide
aCollege of Life Science and Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China, bQiqihar Medical University, Qiqihar 161006, People's Republic of China, and cLiaoning Cheng Da Biotechnology Co Ltd, Shenyang 100044, People's Republic of China
*Correspondence e-mail: zd6008@sina.com
The molecule of the title compound, C14H10Cl2N2O, adopts an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 79.7 (2)°. In the molecules are linked by intermolecular N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds, forming chains running along the b axis.
Related literature
For the biological activity of hydrazones, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007); Avaji et al. (2009); Kümmerle et al. (2009); Raparti et al. (2009); Bayrak et al. (2009); Hearn et al. (2009). For crystal structures of hydrazone compounds, see: Fun et al. (2008); Lo & Ng (2009); Ren (2009); Zhang (2009); Wu (2009); Peng & Hou (2008); Mohd Lair et al. (2009); Liang & Zou (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809043803/ci2943sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043803/ci2943Isup2.hkl
Equimolar quantities (1.0 mmol each) of 2-chlorobenzaldehyde and 2-chlorobenzohydrazide were mixed and refluxed in methanol. The reaction mixture was cooled to room temperature to give a clear colourless solution. Colourless single crystals of the title compound were formed by slow evaporation of the solution in air.
Atom H2 was located in a difference map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å and Uiso set at 0.08 Å2. Other H atoms were placed in calculated positions (C-H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
During the past decades, the human population affected with life-treating infectious diseases caused by multidrug-resistant Gram-positive and Gram-negative pathogen bacteria increased to an alarming level around the world. Recently, a great deal of antibacterial agents were used in therapy.
are an important component of the Schiff base family. These compounds have been widely used in the fields of antimicrobial, antibacterial and antitumor (Küçükgüzel et al., 2003; Charkoudian et al., 2007; Avaji et al., 2009; Kümmerle et al., 2009; Raparti et al., 2009; Bayrak et al., 2009; Hearn et al., 2009). In the last few years, crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2008; Lo & Ng, 2009; Ren, 2009; Zhang, 2009). As a continuation of our work in this area (Liang & Zou, 2009), the author reports herein the of the title new hydrazone compound.In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 79.7 (2)°. The molecule exists in an E configuration about the C═N bond. All bond lengths are within normal values and comparable to those obserbved in related hydrazone compounds (Wu, 2009; Peng & Hou, 2008; Mohd Lair et al., 2009).
In the
of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).For the biological activity of hydrozones, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007); Avaji et al. (2009); Kümmerle et al. (2009); Raparti et al. (2009); Bayrak et al. (2009); Hearn et al. (2009). For crystal structures of hydrazone compounds, see: Fun et al. (2008); Lo & Ng (2009); Ren (2009); Zhang (2009); Wu (2009); Peng & Hou (2008); Mohd Lair et al. (2009); Liang & Zou (2009).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H10Cl2N2O | F(000) = 1200 |
Mr = 293.14 | Dx = 1.482 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2480 reflections |
a = 11.9336 (5) Å | θ = 2.4–24.5° |
b = 9.7471 (4) Å | µ = 0.49 mm−1 |
c = 22.5840 (9) Å | T = 298 K |
V = 2626.93 (19) Å3 | Block, colourless |
Z = 8 | 0.23 × 0.21 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 2863 independent reflections |
Radiation source: fine-focus sealed tube | 2035 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ω scans | θmax = 27.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→11 |
Tmin = 0.897, Tmax = 0.909 | k = −12→12 |
15167 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.038P)2 + 0.9372P] where P = (Fo2 + 2Fc2)/3 |
2863 reflections | (Δ/σ)max = 0.001 |
175 parameters | Δρmax = 0.21 e Å−3 |
1 restraint | Δρmin = −0.36 e Å−3 |
C14H10Cl2N2O | V = 2626.93 (19) Å3 |
Mr = 293.14 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.9336 (5) Å | µ = 0.49 mm−1 |
b = 9.7471 (4) Å | T = 298 K |
c = 22.5840 (9) Å | 0.23 × 0.21 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 2863 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2035 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.909 | Rint = 0.045 |
15167 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 1 restraint |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.21 e Å−3 |
2863 reflections | Δρmin = −0.36 e Å−3 |
175 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.79500 (6) | 0.47092 (7) | 0.48378 (3) | 0.0674 (2) | |
Cl2 | 0.53369 (5) | 1.04300 (6) | 0.72070 (3) | 0.05271 (18) | |
N1 | 0.84153 (13) | 0.81563 (16) | 0.59949 (6) | 0.0345 (4) | |
N2 | 0.78786 (14) | 0.79951 (16) | 0.65338 (7) | 0.0341 (4) | |
O1 | 0.78386 (13) | 1.02813 (13) | 0.67114 (6) | 0.0445 (4) | |
C1 | 0.90227 (16) | 0.7097 (2) | 0.51022 (8) | 0.0352 (4) | |
C2 | 0.88637 (17) | 0.6053 (2) | 0.46878 (9) | 0.0413 (5) | |
C3 | 0.9388 (2) | 0.6077 (3) | 0.41454 (10) | 0.0540 (6) | |
H3 | 0.9271 | 0.5370 | 0.3876 | 0.065* | |
C4 | 1.0084 (2) | 0.7148 (3) | 0.40032 (10) | 0.0560 (6) | |
H4 | 1.0434 | 0.7167 | 0.3635 | 0.067* | |
C5 | 1.02694 (18) | 0.8197 (2) | 0.44010 (9) | 0.0494 (6) | |
H5 | 1.0743 | 0.8920 | 0.4303 | 0.059* | |
C6 | 0.97447 (17) | 0.8163 (2) | 0.49456 (9) | 0.0415 (5) | |
H6 | 0.9876 | 0.8867 | 0.5215 | 0.050* | |
C7 | 0.84564 (16) | 0.70741 (19) | 0.56775 (8) | 0.0359 (4) | |
H7 | 0.8126 | 0.6268 | 0.5812 | 0.043* | |
C8 | 0.76315 (16) | 0.91055 (19) | 0.68656 (8) | 0.0327 (4) | |
C9 | 0.71126 (16) | 0.87531 (19) | 0.74505 (8) | 0.0346 (4) | |
C10 | 0.61214 (17) | 0.9330 (2) | 0.76526 (9) | 0.0387 (5) | |
C11 | 0.5702 (2) | 0.9017 (3) | 0.82073 (10) | 0.0520 (6) | |
H11 | 0.5042 | 0.9422 | 0.8339 | 0.062* | |
C12 | 0.6263 (2) | 0.8106 (3) | 0.85620 (10) | 0.0600 (7) | |
H12 | 0.5982 | 0.7897 | 0.8935 | 0.072* | |
C13 | 0.7236 (2) | 0.7499 (3) | 0.83710 (10) | 0.0570 (6) | |
H13 | 0.7606 | 0.6869 | 0.8611 | 0.068* | |
C14 | 0.76608 (19) | 0.7831 (2) | 0.78197 (9) | 0.0462 (5) | |
H14 | 0.8326 | 0.7430 | 0.7694 | 0.055* | |
H2 | 0.768 (2) | 0.7142 (14) | 0.6655 (11) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0867 (5) | 0.0575 (4) | 0.0581 (4) | −0.0282 (3) | 0.0204 (3) | −0.0183 (3) |
Cl2 | 0.0438 (3) | 0.0540 (4) | 0.0603 (4) | 0.0084 (3) | −0.0088 (3) | −0.0094 (3) |
N1 | 0.0413 (9) | 0.0334 (9) | 0.0288 (8) | 0.0033 (7) | 0.0049 (7) | 0.0008 (7) |
N2 | 0.0447 (10) | 0.0279 (8) | 0.0297 (8) | 0.0004 (7) | 0.0066 (7) | −0.0014 (7) |
O1 | 0.0614 (10) | 0.0267 (7) | 0.0452 (8) | 0.0046 (7) | 0.0093 (7) | 0.0024 (6) |
C1 | 0.0396 (11) | 0.0358 (11) | 0.0301 (10) | 0.0058 (8) | 0.0022 (8) | 0.0013 (8) |
C2 | 0.0448 (12) | 0.0416 (12) | 0.0376 (11) | −0.0017 (9) | 0.0059 (9) | −0.0040 (9) |
C3 | 0.0608 (15) | 0.0597 (15) | 0.0415 (12) | −0.0060 (12) | 0.0127 (11) | −0.0152 (11) |
C4 | 0.0565 (14) | 0.0716 (17) | 0.0399 (12) | −0.0003 (12) | 0.0174 (11) | −0.0033 (12) |
C5 | 0.0482 (13) | 0.0532 (14) | 0.0467 (12) | −0.0033 (11) | 0.0100 (10) | 0.0051 (11) |
C6 | 0.0486 (13) | 0.0370 (11) | 0.0390 (11) | −0.0009 (9) | 0.0038 (9) | 0.0007 (9) |
C7 | 0.0452 (11) | 0.0308 (10) | 0.0318 (10) | 0.0007 (9) | 0.0034 (8) | 0.0015 (8) |
C8 | 0.0354 (10) | 0.0285 (10) | 0.0341 (10) | 0.0027 (8) | −0.0007 (8) | −0.0006 (8) |
C9 | 0.0412 (11) | 0.0314 (10) | 0.0314 (10) | −0.0012 (8) | 0.0024 (8) | −0.0035 (8) |
C10 | 0.0380 (11) | 0.0379 (11) | 0.0402 (11) | −0.0033 (9) | 0.0002 (9) | −0.0109 (9) |
C11 | 0.0460 (13) | 0.0633 (15) | 0.0467 (13) | −0.0057 (11) | 0.0126 (10) | −0.0157 (12) |
C12 | 0.0669 (17) | 0.0763 (18) | 0.0368 (12) | −0.0104 (14) | 0.0154 (12) | 0.0003 (12) |
C13 | 0.0686 (16) | 0.0625 (15) | 0.0398 (12) | 0.0039 (13) | 0.0043 (11) | 0.0107 (11) |
C14 | 0.0535 (13) | 0.0460 (13) | 0.0391 (11) | 0.0066 (10) | 0.0070 (10) | 0.0025 (10) |
Cl1—C2 | 1.738 (2) | C5—C6 | 1.381 (3) |
Cl2—C10 | 1.743 (2) | C5—H5 | 0.93 |
N1—C7 | 1.276 (2) | C6—H6 | 0.93 |
N1—N2 | 1.384 (2) | C7—H7 | 0.93 |
N2—C8 | 1.349 (2) | C8—C9 | 1.499 (3) |
N2—H2 | 0.908 (10) | C9—C10 | 1.387 (3) |
O1—C8 | 1.223 (2) | C9—C14 | 1.389 (3) |
C1—C6 | 1.395 (3) | C10—C11 | 1.383 (3) |
C1—C2 | 1.395 (3) | C11—C12 | 1.371 (3) |
C1—C7 | 1.465 (3) | C11—H11 | 0.93 |
C2—C3 | 1.376 (3) | C12—C13 | 1.372 (3) |
C3—C4 | 1.373 (3) | C12—H12 | 0.93 |
C3—H3 | 0.93 | C13—C14 | 1.383 (3) |
C4—C5 | 1.379 (3) | C13—H13 | 0.93 |
C4—H4 | 0.93 | C14—H14 | 0.93 |
C7—N1—N2 | 114.69 (16) | N1—C7—H7 | 119.9 |
C8—N2—N1 | 119.89 (15) | C1—C7—H7 | 119.9 |
C8—N2—H2 | 120.6 (17) | O1—C8—N2 | 123.33 (17) |
N1—N2—H2 | 119.5 (17) | O1—C8—C9 | 123.31 (17) |
C6—C1—C2 | 117.19 (17) | N2—C8—C9 | 113.33 (16) |
C6—C1—C7 | 121.43 (18) | C10—C9—C14 | 117.81 (18) |
C2—C1—C7 | 121.39 (18) | C10—C9—C8 | 123.31 (17) |
C3—C2—C1 | 121.5 (2) | C14—C9—C8 | 118.85 (17) |
C3—C2—Cl1 | 118.13 (17) | C11—C10—C9 | 121.1 (2) |
C1—C2—Cl1 | 120.29 (15) | C11—C10—Cl2 | 117.69 (17) |
C4—C3—C2 | 119.8 (2) | C9—C10—Cl2 | 121.17 (15) |
C4—C3—H3 | 120.1 | C12—C11—C10 | 119.7 (2) |
C2—C3—H3 | 120.1 | C12—C11—H11 | 120.1 |
C3—C4—C5 | 120.6 (2) | C10—C11—H11 | 120.1 |
C3—C4—H4 | 119.7 | C11—C12—C13 | 120.6 (2) |
C5—C4—H4 | 119.7 | C11—C12—H12 | 119.7 |
C4—C5—C6 | 119.3 (2) | C13—C12—H12 | 119.7 |
C4—C5—H5 | 120.3 | C12—C13—C14 | 119.5 (2) |
C6—C5—H5 | 120.3 | C12—C13—H13 | 120.3 |
C5—C6—C1 | 121.6 (2) | C14—C13—H13 | 120.3 |
C5—C6—H6 | 119.2 | C13—C14—C9 | 121.3 (2) |
C1—C6—H6 | 119.2 | C13—C14—H14 | 119.4 |
N1—C7—C1 | 120.20 (17) | C9—C14—H14 | 119.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.91 (1) | 1.92 (1) | 2.809 (2) | 166 (2) |
C7—H7···O1i | 0.93 | 2.53 | 3.301 (2) | 141 |
C14—H14···Cl2i | 0.93 | 2.75 | 3.620 (2) | 156 |
Symmetry code: (i) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C14H10Cl2N2O |
Mr | 293.14 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 11.9336 (5), 9.7471 (4), 22.5840 (9) |
V (Å3) | 2626.93 (19) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.49 |
Crystal size (mm) | 0.23 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.897, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15167, 2863, 2035 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.098, 1.03 |
No. of reflections | 2863 |
No. of parameters | 175 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.36 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.91 (1) | 1.920 (12) | 2.809 (2) | 166 (2) |
C7—H7···O1i | 0.93 | 2.53 | 3.301 (2) | 141 |
C14—H14···Cl2i | 0.93 | 2.75 | 3.620 (2) | 156 |
Symmetry code: (i) −x+3/2, y−1/2, z. |
Acknowledgements
D-HZ acknowledges Qiqihar University for financial support.
References
Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559. Web of Science CrossRef PubMed CAS Google Scholar
Bayrak, H., Demirbas, A., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362-4366. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042. Web of Science CSD CrossRef Google Scholar
Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., Kang, H. J.-O., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169–4178. Web of Science CrossRef PubMed CAS Google Scholar
Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013. Web of Science PubMed Google Scholar
Kümmerle, A. E., Raimundo, J. M., Leal, C. M., da Silva, G. S., Balliano, T. L., Pereira, M. A., de Simone, C. A., Sudo, R. T., Zapata-Sudo, G. & Fraga, C. A. M. (2009). Eur. J. Med. Chem. 44, 4004–4009. Web of Science PubMed Google Scholar
Liang, M. & Zou, D.-H. (2009). Acta Cryst. E65, o1609. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. Web of Science CSD CrossRef IUCr Journals Google Scholar
Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954–3960. Web of Science CrossRef PubMed CAS Google Scholar
Ren, C.-G. (2009). Acta Cryst. E65, o1503–o1504. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H.-Y. (2009). Acta Cryst. E65, o852. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X. (2009). Acta Cryst. E65, o1388. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the past decades, the human population affected with life-treating infectious diseases caused by multidrug-resistant Gram-positive and Gram-negative pathogen bacteria increased to an alarming level around the world. Recently, a great deal of antibacterial agents were used in therapy. Hydrazones are an important component of the Schiff base family. These compounds have been widely used in the fields of antimicrobial, antibacterial and antitumor (Küçükgüzel et al., 2003; Charkoudian et al., 2007; Avaji et al., 2009; Kümmerle et al., 2009; Raparti et al., 2009; Bayrak et al., 2009; Hearn et al., 2009). In the last few years, crystal structures of a number of hydrazone compounds have been reported (Fun et al., 2008; Lo & Ng, 2009; Ren, 2009; Zhang, 2009). As a continuation of our work in this area (Liang & Zou, 2009), the author reports herein the crystal structure of the title new hydrazone compound.
In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 79.7 (2)°. The molecule exists in an E configuration about the C═N bond. All bond lengths are within normal values and comparable to those obserbved in related hydrazone compounds (Wu, 2009; Peng & Hou, 2008; Mohd Lair et al., 2009).
In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).