organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(2,4-Di­chloro­benz­yl­oxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 21 October 2009; accepted 23 October 2009; online 28 October 2009)

In the mol­ecule of the title compound, C15H13Cl2N3O2, the triazole ring is oriented at dihedral angles of 14.8 (2) and 81.5 (1)° to the furan and dichloro­benzene rings, respectively. The dihedral angle between the dichloro­benzene and furan rings is 86.3 (2)°. An intra­molecular C—H⋯O hydrogen bond results in the formation of a planar [maximum deviation 0.012 (2) Å] five-membered ring, which is oriented at a dihedral angle of 0.90 (7)° with respect to the dichloro­benzene ring. There is an inter­molecular C—H⋯π contact between the methyl­ene group and the dichloro­benzene ring.

Related literature

For general background to the use of ether structures containing 1H-imidazole and 1H-1,2,4-triazole rings as anti­fungal agents, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Godefroi et al. (1969[Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem. 12, 784-791.]); Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.]); Paulvannan et al. (2001[Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677-9682.]); Peeters et al. (1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]); Wahbi et al. (1995[Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955-962.]). For related structures, see: Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Özel Güven et al. (2008a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.],b[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496-o1497.],c[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588-o1589.],d[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655-o1656.],e[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914-o1915.],f[Özel Güven, Ö., Tahtacı, H., Tahir, M. N. & Hökelek, T. (2008f). Acta Cryst. E64, o2465.]); Peeters et al. (1979[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461-2464.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13Cl2N3O2

  • Mr = 338.18

  • Monoclinic, P 21 /n

  • a = 10.6057 (2) Å

  • b = 13.3560 (3) Å

  • c = 11.1919 (2) Å

  • β = 101.170 (1)°

  • V = 1555.30 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 120 K

  • 0.50 × 0.35 × 0.20 mm

Data collection
  • Bruker–Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.920

  • 6687 measured reflections

  • 3547 independent reflections

  • 2522 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.161

  • S = 1.06

  • 3547 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1 0.93 2.35 2.702 (3) 102
C9—H9BCg1i 0.97 2.90 3.775 (3) 151
Symmetry code: (i) -x+1, -y, -z+1. Cg1 is the centroid of the C10—C15 ring.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. Some ether structures containing 1H-imidazole ring like micozanole, ecozanole and sulconazole have been synthesized and developed for clinical uses as antifungal agents (Godefroi et al., 1969). The crystal structures of these ether derivatives like miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) have been reported previously. Also, antifungal activity of aromatic ethers possessing 1H-1,2,4-triazole ring have been reported (Wahbi et al., 1995). Itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing azole derivatives. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Ether structures possessing 1H-benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of 1H-benzimidazole ring containing ether derivatives (Özel Güven et al., 2008a,b,c,d) and also,1H-1,2,4-triazole ring containing ether derivatives have been reported recently (Özel Güven et al., 2008e,f). Now, we report herein the crystal structure of 2,4-dichloro- derivative of 1H-1,2,4-triazole and furyl rings containing ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 14.8 (2)° and 81.5 (1)°, respectively. Atoms C3, C4 and C9 are -0.021 (2), 0.029 (2) and 0.034 (4) Å away from the planes of the triazole, furan and dichlorobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The dichlorobenzene ring is oriented with respect to the furan ring at a dihedral angle of 86.3 (2)°. An intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring (O1/H11/C9–C11), which is oriented with respect to dichlorobenzene ring at a dihedral angle of 0.90 (7)°. So, they are coplanar.

In the crystal, an intermolecular C—H···π interaction (Table 1) is observed between the methylene group and the dichlorobenzene ring. A view of the molecular packing in the crystal is shown in Fig.2.

Related literature top

For general background to the use of ether structures containing 1H-imidazole and1H-1,2,4-triazole rings as antifungal agents, see: Caira et al. (2004); Godefroi et al. (1969); Özel Güven et al. (2007a,b); Paulvannan et al. (2001); Peeters et al. (1996); Wahbi et al. (1995). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008a,b,c,d,e,f); Peeters et al. (1979). Cg1 is the centriod of the C10—C15 ring.

Experimental top

The title compound was synthesized by the reaction of 1-(furan-2-yl)-2-(1H-1, 2,4-triazol-1-yl)ethanol (unpublished results) with NaH and appropriate benzyl halide. To a solution of alcohol (400 mg, 2.232 mmol) in DMF (4 ml) was added NaH (89 mg, 2.232 mmol) in small fractions. The appropriate benzyl halide (436 mg, 2.232 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from 2-propanol (yield; 355 mg, 47%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. Some ether structures containing 1H-imidazole ring like micozanole, ecozanole and sulconazole have been synthesized and developed for clinical uses as antifungal agents (Godefroi et al., 1969). The crystal structures of these ether derivatives like miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) have been reported previously. Also, antifungal activity of aromatic ethers possessing 1H-1,2,4-triazole ring have been reported (Wahbi et al., 1995). Itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing azole derivatives. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Ether structures possessing 1H-benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of 1H-benzimidazole ring containing ether derivatives (Özel Güven et al., 2008a,b,c,d) and also,1H-1,2,4-triazole ring containing ether derivatives have been reported recently (Özel Güven et al., 2008e,f). Now, we report herein the crystal structure of 2,4-dichloro- derivative of 1H-1,2,4-triazole and furyl rings containing ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 14.8 (2)° and 81.5 (1)°, respectively. Atoms C3, C4 and C9 are -0.021 (2), 0.029 (2) and 0.034 (4) Å away from the planes of the triazole, furan and dichlorobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The dichlorobenzene ring is oriented with respect to the furan ring at a dihedral angle of 86.3 (2)°. An intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a planar five-membered ring (O1/H11/C9–C11), which is oriented with respect to dichlorobenzene ring at a dihedral angle of 0.90 (7)°. So, they are coplanar.

In the crystal, an intermolecular C—H···π interaction (Table 1) is observed between the methylene group and the dichlorobenzene ring. A view of the molecular packing in the crystal is shown in Fig.2.

For general background to the use of ether structures containing 1H-imidazole and1H-1,2,4-triazole rings as antifungal agents, see: Caira et al. (2004); Godefroi et al. (1969); Özel Güven et al. (2007a,b); Paulvannan et al. (2001); Peeters et al. (1996); Wahbi et al. (1995). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008a,b,c,d,e,f); Peeters et al. (1979). Cg1 is the centriod of the C10—C15 ring.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of a packing diagram. Hydrogen atoms have been omitted for clarity.
1-[2-(2,4-Dichlorobenzyloxy)-2-(2-furyl)ethyl]-1H-1,2,4-triazole top
Crystal data top
C15H13Cl2N3O2F(000) = 696
Mr = 338.18Dx = 1.444 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3274 reflections
a = 10.6057 (2) Åθ = 2.9–27.5°
b = 13.3560 (3) ŵ = 0.43 mm1
c = 11.1919 (2) ÅT = 120 K
β = 101.170 (1)°Plate, colourless
V = 1555.30 (5) Å30.50 × 0.35 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
3547 independent reflections
Radiation source: fine-focus sealed tube2522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1313
Tmin = 0.815, Tmax = 0.920k = 1717
6687 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.4221P]
where P = (Fo2 + 2Fc2)/3
3547 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H13Cl2N3O2V = 1555.30 (5) Å3
Mr = 338.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6057 (2) ŵ = 0.43 mm1
b = 13.3560 (3) ÅT = 120 K
c = 11.1919 (2) Å0.50 × 0.35 × 0.20 mm
β = 101.170 (1)°
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
3547 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2522 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.920Rint = 0.025
6687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.06Δρmax = 0.77 e Å3
3547 reflectionsΔρmin = 0.33 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48306 (8)0.29223 (6)0.76970 (7)0.0823 (3)
Cl20.66147 (6)0.12991 (6)0.39547 (7)0.0719 (3)
O10.26246 (14)0.02290 (13)0.27553 (13)0.0523 (4)
O20.20740 (18)0.07592 (15)0.01684 (16)0.0673 (5)
N10.06121 (18)0.11249 (15)0.27806 (16)0.0498 (5)
N20.0878 (2)0.20960 (17)0.3093 (2)0.0648 (6)
N30.0001 (2)0.13162 (18)0.45167 (19)0.0644 (6)
C10.0492 (3)0.2156 (2)0.4135 (3)0.0657 (7)
H10.05560.27460.45830.079*
C20.0106 (3)0.0688 (2)0.3648 (2)0.0598 (6)
H20.01420.00190.36370.072*
C30.0914 (2)0.0710 (2)0.16712 (19)0.0550 (6)
H3A0.04250.01000.14640.066*
H3B0.06580.11830.10110.066*
C40.2337 (2)0.04811 (18)0.17976 (19)0.0495 (5)
H40.28310.10930.20360.059*
C50.2625 (2)0.01101 (19)0.0610 (2)0.0505 (5)
C60.2450 (3)0.0932 (3)0.0918 (2)0.0760 (8)
H60.22180.14860.14160.091*
C70.3176 (4)0.0206 (3)0.1140 (3)0.0926 (11)
H70.35510.01470.18230.111*
C80.3303 (3)0.0490 (3)0.0155 (3)0.0884 (10)
H80.37650.10860.00710.106*
C90.3934 (2)0.05052 (18)0.30581 (19)0.0460 (5)
H9A0.41710.08850.23960.055*
H9B0.44680.00890.31910.055*
C100.4136 (2)0.11323 (16)0.41992 (18)0.0430 (5)
C110.3143 (2)0.13351 (19)0.4814 (2)0.0528 (6)
H110.23250.10870.45080.063*
C120.3349 (2)0.1896 (2)0.5868 (2)0.0590 (6)
H120.26740.20250.62670.071*
C130.4554 (2)0.22648 (19)0.6326 (2)0.0547 (6)
C140.5566 (2)0.20958 (18)0.5743 (2)0.0532 (6)
H140.63790.23510.60520.064*
C150.5333 (2)0.15318 (17)0.4678 (2)0.0470 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1025 (6)0.0819 (6)0.0616 (4)0.0194 (4)0.0135 (4)0.0290 (4)
Cl20.0461 (4)0.0894 (6)0.0834 (5)0.0112 (3)0.0204 (3)0.0183 (4)
O10.0435 (8)0.0694 (11)0.0444 (8)0.0108 (7)0.0093 (6)0.0156 (7)
O20.0722 (12)0.0746 (13)0.0579 (10)0.0045 (10)0.0191 (8)0.0056 (9)
N10.0488 (10)0.0542 (12)0.0468 (10)0.0102 (9)0.0101 (8)0.0052 (8)
N20.0735 (14)0.0536 (13)0.0701 (14)0.0059 (11)0.0206 (11)0.0055 (10)
N30.0621 (13)0.0746 (16)0.0615 (12)0.0017 (11)0.0249 (10)0.0094 (11)
C10.0627 (16)0.0617 (17)0.0743 (17)0.0078 (13)0.0171 (13)0.0120 (13)
C20.0644 (15)0.0610 (16)0.0577 (13)0.0051 (12)0.0213 (11)0.0013 (12)
C30.0521 (13)0.0703 (16)0.0415 (11)0.0148 (11)0.0069 (9)0.0046 (10)
C40.0505 (12)0.0546 (14)0.0431 (11)0.0075 (10)0.0086 (9)0.0083 (10)
C50.0482 (12)0.0583 (14)0.0466 (11)0.0061 (11)0.0133 (9)0.0116 (10)
C60.081 (2)0.095 (2)0.0525 (14)0.0173 (18)0.0141 (13)0.0096 (15)
C70.101 (2)0.125 (3)0.0621 (17)0.008 (2)0.0413 (17)0.0092 (18)
C80.099 (2)0.100 (3)0.0766 (19)0.0192 (19)0.0428 (18)0.0125 (17)
C90.0430 (11)0.0520 (13)0.0437 (10)0.0073 (10)0.0101 (8)0.0030 (9)
C100.0439 (11)0.0428 (12)0.0416 (10)0.0036 (9)0.0067 (8)0.0020 (8)
C110.0455 (12)0.0633 (16)0.0495 (12)0.0082 (10)0.0094 (9)0.0073 (10)
C120.0594 (14)0.0677 (16)0.0518 (13)0.0041 (12)0.0157 (11)0.0110 (11)
C130.0670 (15)0.0499 (14)0.0456 (12)0.0063 (11)0.0072 (10)0.0063 (10)
C140.0548 (13)0.0495 (14)0.0508 (12)0.0109 (10)0.0009 (10)0.0008 (10)
C150.0434 (11)0.0479 (13)0.0493 (11)0.0030 (9)0.0083 (9)0.0026 (9)
Geometric parameters (Å, º) top
Cl1—C131.742 (2)C5—C81.321 (3)
Cl2—C151.740 (2)C6—H60.93
O1—C41.419 (3)C7—C61.293 (5)
O1—C91.413 (2)C7—H70.93
O2—C51.350 (3)C8—C71.428 (5)
O2—C61.370 (3)C8—H80.93
N1—N21.358 (3)C9—H9A0.97
N1—C21.332 (3)C9—H9B0.97
N1—C31.451 (3)C10—C151.386 (3)
N2—C11.311 (3)C10—C111.391 (3)
N3—C11.341 (4)C10—C91.508 (3)
N3—C21.305 (3)C11—C121.379 (3)
C1—H10.93C11—H110.93
C2—H20.93C12—H120.93
C3—H3A0.97C13—C121.373 (3)
C3—H3B0.97C14—C131.378 (4)
C4—C31.519 (3)C14—C151.391 (3)
C4—C51.504 (3)C14—H140.93
C4—H40.98
C9—O1—C4114.40 (16)C6—C7—C8108.0 (3)
C5—O2—C6106.9 (2)C6—C7—H7126.0
N2—N1—C3121.0 (2)C8—C7—H7126.0
C2—N1—N2108.9 (2)C5—C8—C7105.6 (3)
C2—N1—C3130.1 (2)C5—C8—H8127.2
C1—N2—N1101.6 (2)C7—C8—H8127.2
C2—N3—C1101.9 (2)O1—C9—C10108.67 (17)
N2—C1—N3116.1 (2)O1—C9—H9A110.0
N2—C1—H1121.9O1—C9—H9B110.0
N3—C1—H1121.9C10—C9—H9A110.0
N1—C2—H2124.3C10—C9—H9B110.0
N3—C2—N1111.4 (2)H9A—C9—H9B108.3
N3—C2—H2124.3C11—C10—C9122.02 (19)
N1—C3—C4112.17 (18)C15—C10—C9120.72 (19)
N1—C3—H3A109.2C15—C10—C11117.3 (2)
N1—C3—H3B109.2C10—C11—H11119.4
C4—C3—H3A109.2C12—C11—C10121.3 (2)
C4—C3—H3B109.2C12—C11—H11119.4
H3A—C3—H3B107.9C11—C12—H12120.1
O1—C4—C5113.35 (19)C13—C12—C11119.8 (2)
O1—C4—C3105.63 (18)C13—C12—H12120.1
O1—C4—H4109.0C12—C13—Cl1119.7 (2)
C3—C4—H4109.0C12—C13—C14121.2 (2)
C5—C4—C3110.63 (18)C14—C13—Cl1119.08 (19)
C5—C4—H4109.0C13—C14—C15118.0 (2)
O2—C5—C4117.3 (2)C13—C14—H14121.0
C8—C5—O2110.1 (3)C15—C14—H14121.0
C8—C5—C4132.5 (3)C10—C15—Cl2119.41 (17)
O2—C6—H6125.3C10—C15—C14122.5 (2)
C7—C6—O2109.3 (3)C14—C15—Cl2118.09 (18)
C7—C6—H6125.3
C9—O1—C4—C3177.01 (19)C3—C4—C5—C8113.9 (3)
C9—O1—C4—C561.7 (3)O2—C5—C8—C70.9 (4)
C4—O1—C9—C10171.48 (18)C4—C5—C8—C7178.2 (3)
C6—O2—C5—C4178.8 (2)C8—C7—C6—O20.2 (4)
C6—O2—C5—C81.0 (3)C5—C8—C7—C60.4 (4)
C5—O2—C6—C70.8 (3)C11—C10—C9—O12.1 (3)
C2—N1—N2—C10.4 (3)C15—C10—C9—O1177.9 (2)
C3—N1—N2—C1178.7 (2)C9—C10—C11—C12178.9 (2)
N2—N1—C2—N30.9 (3)C15—C10—C11—C121.1 (4)
C3—N1—C2—N3179.0 (2)C9—C10—C15—Cl20.3 (3)
N2—N1—C3—C477.0 (3)C9—C10—C15—C14178.6 (2)
C2—N1—C3—C4100.9 (3)C11—C10—C15—Cl2179.67 (18)
N1—N2—C1—N30.2 (3)C11—C10—C15—C141.4 (3)
C2—N3—C1—N20.7 (3)C10—C11—C12—C130.0 (4)
C1—N3—C2—N11.0 (3)Cl1—C13—C12—C11176.9 (2)
O1—C4—C3—N160.3 (3)C14—C13—C12—C110.9 (4)
C5—C4—C3—N1176.7 (2)C15—C14—C13—Cl1177.24 (18)
O1—C4—C5—O255.2 (3)C15—C14—C13—C120.6 (4)
O1—C4—C5—C8127.7 (3)C13—C14—C15—C100.6 (4)
C3—C4—C5—O263.3 (3)C13—C14—C15—Cl2178.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.932.352.702 (3)102
C9—H9B···Cg1i0.972.903.775 (3)151
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13Cl2N3O2
Mr338.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.6057 (2), 13.3560 (3), 11.1919 (2)
β (°) 101.170 (1)
V3)1555.30 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.50 × 0.35 × 0.20
Data collection
DiffractometerBruker–Nonius Kappa CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.815, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
6687, 3547, 2522
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.161, 1.06
No. of reflections3547
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.33

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.932.352.702 (3)102
C9—H9B···Cg1i0.972.903.775 (3)151
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (Project No. 2008–13–02–06) for financial support.

References

First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGodefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem. 12, 784–791.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914–o1915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Tahir, M. N. & Hökelek, T. (2008f). Acta Cryst. E64, o2465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.  Web of Science CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955–962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds