organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(tert-But­oxy­carbonyl­amino)-2-(2-fluoro­phen­yl)acetic acid

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 October 2009; accepted 23 October 2009; online 28 October 2009)

The title compound, C13H16FNO4, consists of conventional, centrosymmetric carboxyl­ate dimers. These dimers form infinite polymeric chains due to inter­molecular N—H⋯O hydrogen bonding. The 2-fluoro­phenyl unit is disordered over two sets of sites with an ocupancy ratio of 0.915 (3):0.085 (3).

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: González-Cameno et al. (1996[González-Cameno, A. M., Badía, D., Domínguez, E., Arriortua, M. I., Urtiaga, M. K. & Solans, X. (1996). Acta Cryst. C52, 3169-3171.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16FNO4

  • Mr = 269.27

  • Triclinic, [P \overline 1]

  • a = 5.3065 (3) Å

  • b = 10.6264 (6) Å

  • c = 12.4930 (6) Å

  • α = 106.175 (3)°

  • β = 95.175 (2)°

  • γ = 100.728 (3)°

  • V = 657.18 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.22 × 0.19 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.988

  • 11718 measured reflections

  • 2440 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.01

  • 2440 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.8600 2.3900 3.1883 (16) 155.00
O1—H1O⋯O2ii 0.8200 1.8200 2.6399 (16) 174.00
Symmetry codes: (i) x-1, y, z; (ii) -x-1, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The cephalosporins are used as broad spectrum antibiotics. The title compound (I, Fig. 1) has been prepared for the synthesis of different fluoro substituted cephalosporins.

The crystal structure of (II) N-(t-Butoxycarbonyl)-2-phenylglycine (González-Cameno et al., 1996) has been published. The title compound (I) differs from (II) due to substitution of F-atom on the benzene ring at ortho position.

In the molecules of the title compound 2-fluorophenyl moiety is disordered over two sets of sites with ocupancy ratio of 0.915 (3):0.085 (3). The dihedral angle between the disordered moiety is 7 (2)°. The molecules of the title compound form conventional dimers due to O–H···O type of intermolecular H-bondings with R22(8) ring motifs (Bernstein et al., 1995). The dimers are interlinked in the form of infinite one dimensional polymeric chains due to N—H···O type of intermolecular H-bonds (Table 1, Fig. 3). The benzene ring A (C1A—C6A), the group B (C7/C8/O1/O2) and C (N1/C9/O3/O4) are planar with r. m. s. deviations of 0.008, 0.0006 and 0.002 Å respectively, from the respective mean square planes. The major occupancy F1A-atom is at a distance of 0.0458 (74)Å from the plane of benzene ring. The dihedral angles between A/B, A/C and B/C are 80.63 (12), 80.14 (11) and 33.10 (8)°, respectively.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: González-Cameno et al. (1996).

Experimental top

In first step 2-fluorophenyl glycine (0.169 g, 1 mmol) was dissolved in a solution of 1M NaHCO3 and cooled to 273 K. Then 2 equivalent of the di-tert-butyl dicarbonate (0.43 g, 2 mmol) was dissolved in 5 ml of 1,4 dioxane and also cooled to 273 K. Second solution was added dropwise to the former solution with constant stirring at 273 K for 2 h. Then the reaction mixture was stirred at ambient temperature for further 24 h. After this 25 ml of distilled water was added and aqous layer was extracted twice with ethyl acetate. The organic layer was back extracted with 1M NaHCO3 solution. The combined aqous layer was acidified to pH 2 with 10% HCl. The crude material was dissolved in ethyl acetate and evaporation of it affoarded the white prism of title compound (I).

Refinement top

The 2-fluorophenyl moiety is disordered. The benzene ring of the minor occupancy sites was refined using AFIX 66 and EADP. The coordinates of H-atom attached with C7 were refined.

The H-atoms were positioned geometrically (O–H = 0.82 Å, N–H = 0.86 Å, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

The cephalosporins are used as broad spectrum antibiotics. The title compound (I, Fig. 1) has been prepared for the synthesis of different fluoro substituted cephalosporins.

The crystal structure of (II) N-(t-Butoxycarbonyl)-2-phenylglycine (González-Cameno et al., 1996) has been published. The title compound (I) differs from (II) due to substitution of F-atom on the benzene ring at ortho position.

In the molecules of the title compound 2-fluorophenyl moiety is disordered over two sets of sites with ocupancy ratio of 0.915 (3):0.085 (3). The dihedral angle between the disordered moiety is 7 (2)°. The molecules of the title compound form conventional dimers due to O–H···O type of intermolecular H-bondings with R22(8) ring motifs (Bernstein et al., 1995). The dimers are interlinked in the form of infinite one dimensional polymeric chains due to N—H···O type of intermolecular H-bonds (Table 1, Fig. 3). The benzene ring A (C1A—C6A), the group B (C7/C8/O1/O2) and C (N1/C9/O3/O4) are planar with r. m. s. deviations of 0.008, 0.0006 and 0.002 Å respectively, from the respective mean square planes. The major occupancy F1A-atom is at a distance of 0.0458 (74)Å from the plane of benzene ring. The dihedral angles between A/B, A/C and B/C are 80.63 (12), 80.14 (11) and 33.10 (8)°, respectively.

For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: González-Cameno et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme having atoms of greater occupancy ratio. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. View of the title compound with the atom numbering scheme having atoms of smaller occupancy ratio. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 3] Fig. 3. The partial packing (PLATON; Spek, 2009) which shows that molecules are dimerized and form polymeric chains.
2-(tert-Butoxycarbonylamino)-2-(2-fluorophenyl)acetic acid top
Crystal data top
C13H16FNO4Z = 2
Mr = 269.27F(000) = 284
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3065 (3) ÅCell parameters from 2440 reflections
b = 10.6264 (6) Åθ = 3.0–25.5°
c = 12.4930 (6) ŵ = 0.11 mm1
α = 106.175 (3)°T = 296 K
β = 95.175 (2)°Prism, white
γ = 100.728 (3)°0.22 × 0.19 × 0.12 mm
V = 657.18 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2440 independent reflections
Radiation source: fine-focus sealed tube1826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 7.70 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.974, Tmax = 0.988l = 1515
11718 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.1509P]
where P = (Fo2 + 2Fc2)/3
2440 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H16FNO4γ = 100.728 (3)°
Mr = 269.27V = 657.18 (6) Å3
Triclinic, P1Z = 2
a = 5.3065 (3) ÅMo Kα radiation
b = 10.6264 (6) ŵ = 0.11 mm1
c = 12.4930 (6) ÅT = 296 K
α = 106.175 (3)°0.22 × 0.19 × 0.12 mm
β = 95.175 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2440 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1826 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.988Rint = 0.029
11718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.14 e Å3
2440 reflectionsΔρmin = 0.15 e Å3
198 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The coordinates of H7 were refined due to disorder in the adjacent ring and to check its role in H-bondings.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.3735 (2)1.11138 (12)0.22973 (11)0.0633 (5)0.915 (3)
O10.1893 (2)1.06206 (11)0.08285 (10)0.0471 (4)
O20.4647 (2)0.86319 (11)0.03740 (10)0.0500 (4)
O30.2330 (2)0.73869 (12)0.20577 (12)0.0566 (5)
O40.1233 (2)0.58870 (10)0.21489 (10)0.0423 (4)
N10.1695 (2)0.77405 (12)0.17674 (11)0.0387 (4)
C1A0.0132 (9)1.0140 (3)0.2816 (3)0.0351 (8)0.915 (3)
C2A0.2103 (8)1.1122 (5)0.3090 (4)0.0438 (9)0.915 (3)
C3A0.2789 (7)1.2105 (5)0.4113 (4)0.0575 (11)0.915 (3)
C4A0.1121 (9)1.2123 (4)0.4889 (3)0.0608 (13)0.915 (3)
C5A0.1156 (8)1.1190 (3)0.4644 (3)0.0565 (10)0.915 (3)
C6A0.1775 (8)1.0200 (3)0.3618 (3)0.0456 (9)0.915 (3)
C70.0754 (3)0.90636 (15)0.16792 (13)0.0350 (5)
C80.2649 (3)0.94137 (15)0.08892 (12)0.0345 (5)
C90.0012 (3)0.70217 (15)0.19954 (13)0.0363 (5)
C100.0182 (3)0.48439 (15)0.22791 (14)0.0419 (5)
C110.2318 (4)0.54035 (19)0.32723 (16)0.0569 (7)
C120.1142 (4)0.4254 (2)0.11932 (17)0.0687 (8)
C130.1926 (4)0.38239 (18)0.2507 (2)0.0670 (8)
C6B0.167 (6)1.049 (3)0.355 (3)0.024 (4)0.085 (3)
F1B0.3871 (8)0.9486 (3)0.3406 (3)0.065 (5)0.085 (3)
C1B0.004 (8)1.032 (4)0.276 (3)0.024 (4)0.085 (3)
C2B0.249 (7)1.117 (4)0.300 (4)0.024 (4)0.085 (3)
C3B0.323 (5)1.219 (4)0.402 (4)0.024 (4)0.085 (3)
C4B0.152 (6)1.236 (3)0.480 (3)0.024 (4)0.085 (3)
C5B0.093 (5)1.151 (3)0.457 (3)0.024 (4)0.085 (3)
H1A0.333540.741090.167510.0464*
H11B0.367430.602490.310820.0854*
H11C0.300100.468330.342040.0854*
H12A0.246380.492090.106250.1030*
H12B0.027350.396350.058190.1030*
H12C0.184830.349930.124220.1030*
H13A0.333420.352050.189190.1004*
H13B0.254230.423010.319140.1004*
H13C0.124000.307320.258260.1004*
H1O0.303951.080120.045050.0565*
H3A0.434431.274050.427370.0689*0.915 (3)
H4A0.154491.277700.558820.0727*0.915 (3)
H5A0.229551.121940.516970.0677*0.915 (3)
H6A0.332660.956220.346190.0547*0.915 (3)
H70.083 (3)0.9064 (16)0.1350 (13)0.0419*
H11A0.164040.585940.392240.0854*
H2B0.363081.104850.247620.0290*0.085 (3)
H3B0.486691.275220.417610.0290*0.085 (3)
H4B0.201751.304210.548230.0290*0.085 (3)
H5B0.206811.162840.508850.0290*0.085 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0511 (8)0.0626 (8)0.0711 (9)0.0036 (6)0.0154 (6)0.0206 (6)
O10.0543 (7)0.0359 (6)0.0548 (7)0.0109 (5)0.0032 (6)0.0225 (5)
O20.0532 (8)0.0414 (7)0.0550 (7)0.0034 (6)0.0086 (6)0.0238 (6)
O30.0364 (7)0.0523 (7)0.0964 (10)0.0152 (6)0.0153 (6)0.0418 (7)
O40.0365 (6)0.0306 (6)0.0652 (8)0.0112 (5)0.0039 (5)0.0216 (5)
N10.0339 (7)0.0310 (7)0.0553 (8)0.0096 (6)0.0024 (6)0.0195 (6)
C1A0.0404 (14)0.0314 (14)0.0393 (11)0.0130 (11)0.0010 (9)0.0182 (10)
C2A0.044 (2)0.0424 (13)0.0483 (15)0.0121 (15)0.0053 (12)0.0176 (11)
C3A0.056 (2)0.0427 (14)0.064 (2)0.0053 (15)0.0120 (19)0.0108 (13)
C4A0.082 (3)0.053 (2)0.0453 (14)0.0285 (18)0.0037 (16)0.0066 (15)
C5A0.0739 (19)0.061 (2)0.0448 (14)0.0320 (17)0.0151 (12)0.0192 (15)
C6A0.0497 (14)0.0474 (19)0.0475 (12)0.0162 (13)0.0101 (11)0.0224 (13)
C70.0363 (8)0.0308 (8)0.0424 (9)0.0108 (7)0.0073 (7)0.0157 (7)
C80.0425 (9)0.0306 (8)0.0333 (8)0.0116 (7)0.0072 (7)0.0115 (7)
C90.0377 (9)0.0329 (8)0.0420 (9)0.0116 (7)0.0056 (7)0.0149 (7)
C100.0418 (9)0.0309 (8)0.0578 (10)0.0166 (7)0.0037 (8)0.0169 (8)
C110.0573 (11)0.0504 (11)0.0674 (12)0.0206 (9)0.0027 (9)0.0227 (9)
C120.0867 (15)0.0594 (12)0.0668 (13)0.0373 (11)0.0143 (11)0.0153 (10)
C130.0565 (12)0.0412 (10)0.1141 (18)0.0152 (9)0.0098 (11)0.0390 (11)
C6B0.012 (6)0.022 (6)0.047 (8)0.004 (5)0.007 (5)0.022 (5)
F1B0.053 (9)0.062 (9)0.075 (9)0.004 (7)0.023 (7)0.015 (7)
C1B0.012 (6)0.022 (6)0.047 (8)0.004 (5)0.007 (5)0.022 (5)
C2B0.012 (6)0.022 (6)0.047 (8)0.004 (5)0.007 (5)0.022 (5)
C3B0.012 (6)0.022 (6)0.047 (8)0.004 (5)0.007 (5)0.022 (5)
C4B0.012 (6)0.022 (6)0.047 (8)0.004 (5)0.007 (5)0.022 (5)
C5B0.012 (6)0.022 (6)0.047 (8)0.004 (5)0.007 (5)0.022 (5)
Geometric parameters (Å, º) top
F1A—C2A1.372 (5)C5B—C6B1.39 (5)
F1B—C6B1.39 (3)C7—C81.513 (2)
O1—C81.296 (2)C10—C111.504 (3)
O2—C81.216 (2)C10—C121.504 (3)
O3—C91.207 (2)C10—C131.512 (3)
O4—C101.486 (2)C2B—H2B0.9300
O4—C91.335 (2)C3A—H3A0.9300
O1—H1O0.8200C3B—H3B0.9300
N1—C71.440 (2)C4A—H4A0.9300
N1—C91.348 (2)C4B—H4B0.9300
N1—H1A0.8600C5A—H5A0.9300
C1A—C2A1.371 (6)C5B—H5B0.9200
C1A—C6A1.382 (6)C6A—H6A0.9300
C1A—C71.518 (4)C7—H70.969 (16)
C1B—C2B1.39 (6)C11—H11A0.9600
C1B—C71.57 (4)C11—H11B0.9600
C1B—C6B1.40 (5)C11—H11C0.9600
C2A—C3A1.374 (7)C12—H12A0.9600
C2B—C3B1.39 (7)C12—H12B0.9600
C3A—C4A1.369 (6)C12—H12C0.9600
C3B—C4B1.39 (5)C13—H13B0.9600
C4A—C5A1.362 (6)C13—H13C0.9600
C4B—C5B1.39 (4)C13—H13A0.9600
C5A—C6A1.379 (5)
F1A···O1i3.1159 (16)C12···O33.121 (3)
F1A···C6Ai3.223 (4)C13···F1Aviii3.266 (2)
F1A···C8i3.189 (2)C3A···H11Cvi3.0800
F1A···C13ii3.266 (2)C3B···H11Cvi2.9700
F1B···N12.841 (4)C3B···H5Bi2.9600
F1B···C83.250 (4)C4A···H11Avii2.9600
F1B···O3iii2.738 (4)C4B···H11Avii2.9900
F1B···C2Biii2.97 (4)C5B···H11Avii3.0200
F1A···H72.347 (17)C5B···H3Biii2.8700
F1B···H2Biii2.7300C6B···H2Biii2.9600
F1B···H1A2.7000C8···H1Ov2.6400
O1···C8iv3.3671 (19)C9···H12A2.8200
O1···O1iv3.2057 (16)C9···H11B2.8200
O1···O2v2.6399 (16)H1A···O3iii2.3900
O1···F1Aiii3.1159 (16)H1A···O22.4700
O1···C2A3.228 (5)H1A···F1B2.7000
O1···C2B3.25 (4)H1O···O1v2.9000
O2···C8v3.375 (2)H1O···O2v1.8200
O2···O3iii3.1807 (18)H1O···H1Ov2.3800
O2···N12.7130 (17)H1O···C8v2.6400
O2···O1v2.6399 (16)H2B···F1Bi2.7300
O3···C112.920 (2)H2B···H72.3300
O3···F1Bi2.738 (4)H2B···C6Bi2.9600
O3···C123.121 (3)H3B···H13Bii2.5400
O3···C1A3.356 (4)H3B···C5Bi2.8700
O3···O2i3.1807 (18)H3B···H5Bi2.5500
O3···N1i3.1883 (16)H4A···O4vii2.8200
O1···H1Ov2.9000H4A···H11Avii2.4400
O1···H13Cvi2.8400H4B···H11Avii2.5100
O2···H1Ov1.8200H5B···C3Biii2.9600
O2···H7iii2.843 (16)H5B···H3Biii2.5500
O2···H1A2.4700H5B···H11Avii2.5700
O3···H72.423 (17)H6A···N12.7700
O3···H1Ai2.3900H7···O2i2.843 (16)
O3···H11B2.3700H7···F1A2.347 (17)
O3···H12A2.5900H7···O32.423 (17)
O4···H4Avii2.8200H7···H2B2.3300
N1···O3iii3.1883 (16)H11A···C4Avii2.9600
N1···O22.7130 (17)H11A···H13B2.4700
N1···F1B2.841 (4)H11A···C5Bvii3.0200
N1···H6A2.7700H11A···H4Avii2.4400
C1A···O33.356 (4)H11A···C4Bvii2.9900
C2A···O13.228 (5)H11A···H4Bvii2.5100
C2B···O13.25 (4)H11A···H5Bvii2.5700
C2B···F1Bi2.97 (4)H11B···H12A2.4600
C2B···C6Bi3.37 (5)H11B···O32.3700
C3A···C5Ai3.584 (6)H11B···C92.8200
C3B···C6Bi3.53 (5)H11C···H13C2.5000
C3B···C5Bi3.37 (4)H11C···C3Aix3.0800
C4A···C6Avii3.530 (5)H11C···H13Bi2.5300
C5A···C5Avii3.302 (5)H11C···C3Bix2.9700
C5A···C6Avii3.369 (5)H12A···H11B2.4600
C5A···C3Aiii3.584 (6)H12A···O32.5900
C5B···C3Biii3.37 (4)H12A···C92.8200
C6A···C5Avii3.369 (5)H12B···H13A2.4800
C6A···C4Avii3.530 (5)H12C···H13C2.5200
C6A···F1Aiii3.223 (4)H13A···H12B2.4800
C6B···C3Biii3.53 (5)H13B···H3Bviii2.5400
C6B···C2Biii3.37 (5)H13B···H11A2.4700
C8···O2v3.375 (2)H13B···H11Ciii2.5300
C8···O1iv3.3671 (19)H13C···H12C2.5200
C8···F1Aiii3.189 (2)H13C···O1ix2.8400
C8···F1B3.250 (4)H13C···H11C2.5000
C11···O32.920 (2)
C9—O4—C10120.76 (12)O4—C10—C13101.89 (13)
C8—O1—H1O109.00C11—C10—C12112.88 (15)
C7—N1—C9119.57 (12)C3B—C2B—H2B120.00
C9—N1—H1A120.00C1B—C2B—H2B120.00
C7—N1—H1A120.00C2A—C3A—H3A121.00
C6A—C1A—C7122.5 (3)C4A—C3A—H3A121.00
C2A—C1A—C6A116.5 (4)C2B—C3B—H3B120.00
C2A—C1A—C7121.0 (4)C4B—C3B—H3B120.00
C6B—C1B—C7118 (3)C3A—C4A—H4A120.00
C2B—C1B—C7122 (3)C5A—C4A—H4A120.00
C2B—C1B—C6B120 (4)C3B—C4B—H4B120.00
F1A—C2A—C1A117.9 (4)C5B—C4B—H4B120.00
C1A—C2A—C3A123.5 (4)C4A—C5A—H5A120.00
F1A—C2A—C3A118.6 (4)C6A—C5A—H5A120.00
C1B—C2B—C3B120 (4)C4B—C5B—H5B120.00
C2A—C3A—C4A118.2 (4)C6B—C5B—H5B120.00
C2B—C3B—C4B120 (3)C5A—C6A—H6A119.00
C3A—C4A—C5A120.5 (4)C1A—C6A—H6A119.00
C3B—C4B—C5B120 (3)C1A—C7—H7107.8 (10)
C4A—C5A—C6A120.1 (4)C8—C7—H7106.5 (10)
C4B—C5B—C6B120 (3)C1B—C7—H7103.1 (18)
C1A—C6A—C5A121.2 (4)N1—C7—H7108.1 (10)
C1B—C6B—C5B120 (3)C10—C11—H11B109.00
F1B—C6B—C1B119 (3)C10—C11—H11C109.00
F1B—C6B—C5B120 (3)C10—C11—H11A109.00
N1—C7—C8111.29 (13)H11A—C11—H11B109.00
N1—C7—C1A112.66 (17)H11A—C11—H11C109.00
C1A—C7—C8110.2 (2)H11B—C11—H11C109.00
C1B—C7—C8105.9 (15)C10—C12—H12A110.00
N1—C7—C1B120.9 (15)C10—C12—H12B109.00
O2—C8—C7122.76 (15)C10—C12—H12C109.00
O1—C8—O2124.74 (15)H12A—C12—H12B110.00
O1—C8—C7112.50 (13)H12B—C12—H12C109.00
O3—C9—O4126.25 (15)H12A—C12—H12C109.00
O4—C9—N1110.30 (13)C10—C13—H13B109.00
O3—C9—N1123.45 (15)C10—C13—H13C109.00
C12—C10—C13110.98 (16)C10—C13—H13A109.00
C11—C10—C13110.15 (16)H13A—C13—H13C109.00
O4—C10—C11110.98 (14)H13B—C13—H13C109.00
O4—C10—C12109.43 (14)H13A—C13—H13B109.00
C10—O4—C9—N1172.81 (13)C2A—C1A—C7—N1135.7 (3)
C9—O4—C10—C1266.19 (19)C6A—C1A—C2A—F1A178.0 (3)
C9—O4—C10—C13176.28 (15)C2A—C1A—C7—C899.4 (4)
C9—O4—C10—C1159.04 (19)C6A—C1A—C7—C879.6 (4)
C10—O4—C9—O37.9 (2)C6A—C1A—C7—N145.3 (4)
C9—N1—C7—C8151.29 (14)F1A—C2A—C3A—C4A178.6 (4)
C7—N1—C9—O4174.06 (13)C1A—C2A—C3A—C4A1.6 (7)
C9—N1—C7—C1A84.4 (3)C2A—C3A—C4A—C5A0.2 (7)
C7—N1—C9—O35.2 (2)C3A—C4A—C5A—C6A1.4 (6)
C7—C1A—C2A—F1A1.1 (6)C4A—C5A—C6A—C1A0.8 (6)
C7—C1A—C2A—C3A178.7 (4)N1—C7—C8—O1177.52 (12)
C2A—C1A—C6A—C5A0.9 (6)N1—C7—C8—O22.7 (2)
C7—C1A—C6A—C5A180.0 (3)C1A—C7—C8—O151.8 (2)
C6A—C1A—C2A—C3A2.2 (7)C1A—C7—C8—O2128.4 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y+2, z; (v) x1, y+2, z; (vi) x, y+1, z; (vii) x, y+2, z+1; (viii) x1, y1, z; (ix) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3iii0.86002.39003.1883 (16)155.00
O1—H1O···O2v0.82001.82002.6399 (16)174.00
Symmetry codes: (iii) x1, y, z; (v) x1, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H16FNO4
Mr269.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.3065 (3), 10.6264 (6), 12.4930 (6)
α, β, γ (°)106.175 (3), 95.175 (2), 100.728 (3)
V3)657.18 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.19 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.974, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11718, 2440, 1826
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.01
No. of reflections2440
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.86002.39003.1883 (16)155.00
O1—H1O···O2ii0.82001.82002.6399 (16)174.00
Symmetry codes: (i) x1, y, z; (ii) x1, y+2, z.
 

Acknowledgements

MMA gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120550-PS2–153).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGonzález-Cameno, A. M., Badía, D., Domínguez, E., Arriortua, M. I., Urtiaga, M. K. & Solans, X. (1996). Acta Cryst. C52, 3169–3171.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds