metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[2-meth­­oxy-6-(2-pyridyl­methyl­imino­meth­yl)phenolato]zinc(II)

aDepartment of Chemistry & Chemical Engineering, Jining University, Qufu 273155, People's Republic of China
*Correspondence e-mail: jn_sning@126.com

(Received 13 August 2009; accepted 13 September 2009; online 3 October 2009)

In the title mol­ecule, [Zn(C14H13N2O2)Cl], the Zn(II) ion is coordinated by one O and two N atoms from the Schiff base ligand, and a chloride anion in a distorted square-planar geometry. In the crystal structure, ππ inter­actions link the approximately planar (mean deviation 0.0569 Å) mol­ecules into stacks parallel to the a axis.

Related literature

For properties of transition metal complexes with Schiff base ligands, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Singh et al. (2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]). For details of the synthesis of the ligand, see Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikaninen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]). For related structures, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); Chen (2005[Chen, Y. (2005). Acta Cryst. E61, m2716-m2717.]); You (2005[You, Z.-L. (2005). Acta Cryst. C61, m456-m458.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H13N2O2)Cl]

  • Mr = 342.08

  • Monoclinic, P 21 /c

  • a = 7.1013 (5) Å

  • b = 18.2673 (14) Å

  • c = 10.3241 (8) Å

  • β = 104.789 (1)°

  • V = 1294.89 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 293 K

  • 0.31 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.562, Tmax = 0.643

  • 6845 measured reflections

  • 2538 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.082

  • S = 1.06

  • 2538 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected interatomic distances (Å)

Zn1—O1 1.9059 (16)
Zn1—N2 1.9288 (18)
Zn1—N1 2.0112 (19)
Zn1—Cl1 2.2373 (6)
Cg1⋯Cg2i 3.566 (4)
Cg1⋯Cg2ii 3.767 (7)
Symmetry codes: (i) [-x+1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are centroids of atoms C1–C6 and N1/C9–C13, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

Transition metal-Schiff based complexes have been intensively focused on owing to their excellent physical and chemical properties including magnetic, optics and catalysis (Ghosh et al., 2006; Singh et al., 2007; Ward et al., 2007). Additionally, their intriguing biological activites also attract a lot of attentions. Herein, we report the structure of a new zinc complex with asymmetric tridentate Schiff base ligand.

In the title compound, (I) (Fig. 1), the Zn(II) ion is four coordinated with a slightly distorted square planar coordination sphere formed by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the fourth position is occupied by one Cl anion. The mean deviation of the plane formed by ZnN2OCl unit is 0.0569 Å. The Zn—O, Zn—N and Zn—Cl bond lengths are all comparable to those found in other Zn Schiff base complexes (You, 2005; Chen, 2005; Li, et al., 2004). It is worthing noting that the asymmetric unit can be linked into one-dimensional supermolecular structure via the π···π interactions (Table 1).

Related literature top

For properties of transition metal complexes with Shiff base ligands, see: Ghosh et al. (2006); Singh et al. (2007); Ward (2007). For details of the synthesis of the ligand, see Kannappan et al. (2005). For related structures, see: Li & Zhang (2004); Chen (2005); You (2005). Cg1 and Cg2 are centroids of atoms C1–C6

and N1/C9–C13, respectively.

Experimental top

The Schiff base was synthesized according to the literature method (Kannappan et al., 2005). The synthesis of the title complex was carried out by reacting ZnCl2 and the schiff-base ligand (1:1, molar ratio) in methanol under the refelux condition. The cooled solution was filtrated and left for slow evaperation in air to obtain single-crystal suitable for X-ray diffraction.

Refinement top

All H atoms were geometrically positioned (C—H = 0.93 - 0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Transition metal-Schiff based complexes have been intensively focused on owing to their excellent physical and chemical properties including magnetic, optics and catalysis (Ghosh et al., 2006; Singh et al., 2007; Ward et al., 2007). Additionally, their intriguing biological activites also attract a lot of attentions. Herein, we report the structure of a new zinc complex with asymmetric tridentate Schiff base ligand.

In the title compound, (I) (Fig. 1), the Zn(II) ion is four coordinated with a slightly distorted square planar coordination sphere formed by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the fourth position is occupied by one Cl anion. The mean deviation of the plane formed by ZnN2OCl unit is 0.0569 Å. The Zn—O, Zn—N and Zn—Cl bond lengths are all comparable to those found in other Zn Schiff base complexes (You, 2005; Chen, 2005; Li, et al., 2004). It is worthing noting that the asymmetric unit can be linked into one-dimensional supermolecular structure via the π···π interactions (Table 1).

For properties of transition metal complexes with Shiff base ligands, see: Ghosh et al. (2006); Singh et al. (2007); Ward (2007). For details of the synthesis of the ligand, see Kannappan et al. (2005). For related structures, see: Li & Zhang (2004); Chen (2005); You (2005). Cg1 and Cg2 are centroids of atoms C1–C6

and N1/C9–C13, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms were omitted for clarity.
Chlorido[2-methoxy-6-(2-pyridylmethyliminomethyl)phenolato]zinc(II) top
Crystal data top
[Zn(C14H13N2O2)Cl]F(000) = 696
Mr = 342.08Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1013 (5) ÅCell parameters from 3850 reflections
b = 18.2673 (14) Åθ = 3.0–26.0°
c = 10.3241 (8) ŵ = 2.10 mm1
β = 104.789 (1)°T = 293 K
V = 1294.89 (17) Å3Block, colourless
Z = 40.31 × 0.25 × 0.23 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2538 independent reflections
Radiation source: fine-focus sealed tube2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.562, Tmax = 0.643k = 1822
6845 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.6563P]
where P = (Fo2 + 2Fc2)/3
2538 reflections(Δ/σ)max = 0.006
182 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C14H13N2O2)Cl]V = 1294.89 (17) Å3
Mr = 342.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1013 (5) ŵ = 2.10 mm1
b = 18.2673 (14) ÅT = 293 K
c = 10.3241 (8) Å0.31 × 0.25 × 0.23 mm
β = 104.789 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2263 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.643Rint = 0.017
6845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
2538 reflectionsΔρmin = 0.31 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.33329 (4)0.484815 (14)0.11005 (3)0.02880 (12)
Cl10.45273 (10)0.40303 (3)0.27143 (6)0.04062 (17)
O10.2046 (2)0.40698 (8)0.00080 (16)0.0324 (4)
O20.0568 (3)0.28355 (9)0.10946 (17)0.0389 (4)
N10.4516 (3)0.57415 (10)0.21313 (18)0.0272 (4)
N20.2579 (3)0.55672 (10)0.03049 (19)0.0276 (4)
C10.0718 (3)0.47592 (12)0.2000 (2)0.0282 (5)
C20.1050 (3)0.41075 (12)0.1239 (2)0.0265 (5)
C30.0236 (3)0.34459 (12)0.1884 (2)0.0295 (5)
C40.0793 (3)0.34472 (14)0.3194 (2)0.0334 (5)
H40.12960.30110.36050.040*
C50.1094 (3)0.40998 (15)0.3922 (2)0.0356 (5)
H50.18030.40940.48140.043*
C60.0367 (3)0.47439 (13)0.3345 (2)0.0325 (5)
H60.05880.51750.38400.039*
C70.1495 (3)0.54479 (13)0.1478 (2)0.0303 (5)
H70.11830.58500.20460.036*
C80.0093 (4)0.21497 (13)0.1699 (3)0.0433 (6)
H8A0.14600.21800.21280.065*
H8B0.01280.17760.10240.065*
H8C0.06080.20320.23530.065*
C90.4324 (3)0.63695 (12)0.1444 (2)0.0281 (5)
C100.5065 (3)0.70331 (13)0.2015 (3)0.0340 (5)
H100.49360.74560.14990.041*
C110.5983 (4)0.70499 (14)0.3345 (3)0.0388 (6)
H110.64960.74840.37600.047*
C120.6133 (4)0.64061 (15)0.4060 (3)0.0393 (6)
H120.67220.64060.49740.047*
C130.5419 (3)0.57673 (14)0.3432 (2)0.0338 (5)
H130.55690.53370.39290.041*
C140.3226 (4)0.63242 (12)0.0026 (2)0.0325 (5)
H14A0.21040.66460.01330.039*
H14B0.40450.64810.05430.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03695 (18)0.02365 (17)0.02486 (17)0.00029 (10)0.00615 (12)0.00196 (10)
Cl10.0635 (4)0.0280 (3)0.0268 (3)0.0019 (3)0.0049 (3)0.0074 (2)
O10.0444 (9)0.0229 (8)0.0246 (8)0.0019 (7)0.0010 (7)0.0024 (6)
O20.0494 (10)0.0228 (8)0.0374 (9)0.0037 (7)0.0017 (8)0.0012 (7)
N10.0300 (9)0.0251 (9)0.0270 (9)0.0010 (7)0.0082 (8)0.0000 (8)
N20.0343 (10)0.0211 (9)0.0271 (9)0.0011 (8)0.0073 (8)0.0032 (7)
C10.0271 (11)0.0309 (12)0.0257 (11)0.0035 (9)0.0051 (9)0.0031 (9)
C20.0238 (10)0.0285 (11)0.0263 (11)0.0013 (9)0.0051 (8)0.0008 (9)
C30.0291 (11)0.0269 (11)0.0322 (12)0.0013 (9)0.0076 (9)0.0007 (9)
C40.0316 (12)0.0368 (13)0.0306 (12)0.0017 (10)0.0057 (10)0.0078 (10)
C50.0311 (12)0.0480 (15)0.0250 (12)0.0023 (11)0.0022 (9)0.0006 (10)
C60.0336 (12)0.0365 (13)0.0256 (11)0.0040 (10)0.0043 (10)0.0052 (10)
C70.0356 (12)0.0272 (12)0.0273 (11)0.0044 (9)0.0069 (9)0.0067 (10)
C80.0450 (15)0.0260 (12)0.0523 (16)0.0036 (10)0.0002 (12)0.0053 (11)
C90.0294 (11)0.0247 (11)0.0322 (12)0.0003 (9)0.0119 (9)0.0015 (9)
C100.0365 (12)0.0254 (11)0.0415 (13)0.0019 (10)0.0128 (10)0.0028 (10)
C110.0344 (12)0.0363 (13)0.0463 (14)0.0088 (11)0.0116 (11)0.0129 (12)
C120.0348 (12)0.0480 (15)0.0338 (13)0.0062 (11)0.0062 (10)0.0084 (11)
C130.0354 (12)0.0358 (12)0.0286 (12)0.0022 (10)0.0052 (10)0.0017 (10)
C140.0490 (14)0.0183 (10)0.0304 (12)0.0009 (9)0.0106 (10)0.0022 (9)
Geometric parameters (Å, º) top
Zn1—O11.9059 (16)C5—C61.360 (4)
Zn1—N21.9288 (18)C5—H50.9300
Zn1—N12.0112 (19)C6—H60.9300
Zn1—Cl12.2373 (6)C7—H70.9300
O1—C21.289 (3)C8—H8A0.9600
O2—C31.366 (3)C8—H8B0.9600
O2—C81.425 (3)C8—H8C0.9600
N1—C131.333 (3)C9—C101.391 (3)
N1—C91.337 (3)C9—C141.475 (3)
N2—C71.277 (3)C10—C111.362 (4)
N2—C141.470 (3)C10—H100.9300
C1—C61.406 (3)C11—C121.378 (4)
C1—C21.412 (3)C11—H110.9300
C1—C71.423 (3)C12—C131.368 (4)
C2—C31.429 (3)C12—H120.9300
C3—C41.363 (3)C13—H130.9300
C4—C51.396 (4)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
Cg1···Cg2i3.566 (4)Cg1···Cg2ii3.767 (7)
O1—Zn1—N293.32 (7)C1—C6—H6120.0
O1—Zn1—N1174.02 (7)N2—C7—C1126.3 (2)
N2—Zn1—N181.01 (8)N2—C7—H7116.9
O1—Zn1—Cl188.94 (5)C1—C7—H7116.9
N2—Zn1—Cl1173.99 (6)O2—C8—H8A109.5
N1—Zn1—Cl196.89 (6)O2—C8—H8B109.5
C2—O1—Zn1127.63 (14)H8A—C8—H8B109.5
C3—O2—C8117.96 (19)O2—C8—H8C109.5
C13—N1—C9117.5 (2)H8A—C8—H8C109.5
C13—N1—Zn1126.18 (16)H8B—C8—H8C109.5
C9—N1—Zn1116.30 (15)N1—C9—C10123.1 (2)
C7—N2—C14117.25 (19)N1—C9—C14115.78 (19)
C7—N2—Zn1125.56 (16)C10—C9—C14121.1 (2)
C14—N2—Zn1117.11 (14)C11—C10—C9118.6 (2)
C6—C1—C2120.3 (2)C11—C10—H10120.7
C6—C1—C7117.0 (2)C9—C10—H10120.7
C2—C1—C7122.7 (2)C10—C11—C12118.2 (2)
O1—C2—C1124.4 (2)C10—C11—H11120.9
O1—C2—C3118.0 (2)C12—C11—H11120.9
C1—C2—C3117.6 (2)C13—C12—C11120.4 (2)
C4—C3—O2124.1 (2)C13—C12—H12119.8
C4—C3—C2120.8 (2)C11—C12—H12119.8
O2—C3—C2115.12 (19)N1—C13—C12122.2 (2)
C3—C4—C5120.4 (2)N1—C13—H13118.9
C3—C4—H4119.8C12—C13—H13118.9
C5—C4—H4119.8N2—C14—C9109.77 (18)
C6—C5—C4120.9 (2)N2—C14—H14A109.7
C6—C5—H5119.5C9—C14—H14A109.7
C4—C5—H5119.5N2—C14—H14B109.7
C5—C6—C1120.1 (2)C9—C14—H14B109.7
C5—C6—H6120.0H14A—C14—H14B108.2
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C14H13N2O2)Cl]
Mr342.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.1013 (5), 18.2673 (14), 10.3241 (8)
β (°) 104.789 (1)
V3)1294.89 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.31 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.562, 0.643
No. of measured, independent and
observed [I > 2σ(I)] reflections
6845, 2538, 2263
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.082, 1.06
No. of reflections2538
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Selected interatomic distances (Å) top
Zn1—O11.9059 (16)Zn1—N12.0112 (19)
Zn1—N21.9288 (18)Zn1—Cl12.2373 (6)
Cg1···Cg2i3.566 (4)Cg1···Cg2ii3.767 (7)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by Jining University, China.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. (2005). Acta Cryst. E61, m2716–m2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationKannappan, R., Tanase, S., Mutikaninen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar
First citationYou, Z.-L. (2005). Acta Cryst. C61, m456–m458.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds