organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(4-Bromo­phen­yl)ethyl­­idene]-2-hy­droxy­benzohydrazide

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 26 September 2009; accepted 13 October 2009; online 17 October 2009)

In the title compound, C15H13BrN2O2, the two aromatic rings form a dihedral angle of 7.9 (1)° and an intra­molecular N—H⋯O hydrogen bond influences the mol­ecular conformation. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains propagated in [001]. The crystal packing exhibits also ππ inter­actions, which pair mol­ecules into centrosymmetric dimers with short inter­molecular distances of 3.671 (4) Å between the centroids of aromatic rings.

Related literature

For the biological properties of Schiff base ligands, see: Jeewoth et al. (1999[Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Cui et al. (2009[Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O2

  • Mr = 333.18

  • Monoclinic, C 2/c

  • a = 27.805 (3) Å

  • b = 7.9061 (9) Å

  • c = 13.5002 (15) Å

  • β = 113.344 (2)°

  • V = 2724.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 298 K

  • 0.39 × 0.14 × 0.12 mm

Data collection
  • Siemens SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.386, Tmax = 0.713

  • 6480 measured reflections

  • 2397 independent reflections

  • 1602 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 0.95

  • 2397 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.95 2.637 (3) 136
O2—H2⋯O1i 0.82 1.86 2.677 (3) 178
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have received considerable attention during the last decades due to their structures and biological properties (Jeewoth et al., 1999). We report here the crystal structure of the title Schiff base compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to the values observed in similar compounds (Nie, 2008; Fun et al., 2008; Cui et al., 2009). The C9=N2 bond length in the molecule is 1.282 (4) °, showing the double-bond character. The dihedral angle between the benzene ring C2-C7 and the benzene ring C10-C15 is 7.9 (1)°, indicating that two these rings are approximately coplanar.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001]. The crystal packing exhibits also π···π interactions, which pair molecules into centrosymmetric dimers with short intermolecular distance of 3.671 (4) Å between the centroids of aromatic rings.

Related literature top

For the biological properties of Schiff base ligands, see: Jeewoth et al. (1999). For related crystal structures, see: Fun et al. (2008); Cui et al. (2009); Nie (2008).

Experimental top

Salicyloyl hydrazide (5.0 mmol), 20 ml e thanol and 4-bromoacetophenone (5.0 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystallized from ethanol. Elemental analysis: calculated for C15H13BrN2O2: C 54.07, H 3.93, N 8.41%; found: C 54.21, H 3.85, N 8.52%.

Refinement top

All H atoms were placed in geometrically idealized positions (O—H 0.82, N—H 0.86 and C—H = 0.93–0.96 Å) and treated as riding, with Uiso(H) = 1.2U-1.5Ueq of the parent atom.

Structure description top

Schiff base compounds have received considerable attention during the last decades due to their structures and biological properties (Jeewoth et al., 1999). We report here the crystal structure of the title Schiff base compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to the values observed in similar compounds (Nie, 2008; Fun et al., 2008; Cui et al., 2009). The C9=N2 bond length in the molecule is 1.282 (4) °, showing the double-bond character. The dihedral angle between the benzene ring C2-C7 and the benzene ring C10-C15 is 7.9 (1)°, indicating that two these rings are approximately coplanar.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001]. The crystal packing exhibits also π···π interactions, which pair molecules into centrosymmetric dimers with short intermolecular distance of 3.671 (4) Å between the centroids of aromatic rings.

For the biological properties of Schiff base ligands, see: Jeewoth et al. (1999). For related crystal structures, see: Fun et al. (2008); Cui et al. (2009); Nie (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008)'.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
(E)-N'-[1-(4-Bromophenyl)ethylidene]-2-hydroxybenzohydrazide top
Crystal data top
C15H13BrN2O2F(000) = 1344
Mr = 333.18Dx = 1.624 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.805 (3) ÅCell parameters from 1955 reflections
b = 7.9061 (9) Åθ = 2.7–26.0°
c = 13.5002 (15) ŵ = 3.02 mm1
β = 113.344 (2)°T = 298 K
V = 2724.8 (5) Å3Block, colourless
Z = 80.39 × 0.14 × 0.12 mm
Data collection top
Siemens SMART APEX CCD area-detector
diffractometer
2397 independent reflections
Radiation source: fine-focus sealed tube1602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3232
Tmin = 0.386, Tmax = 0.713k = 59
6480 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
2397 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C15H13BrN2O2V = 2724.8 (5) Å3
Mr = 333.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.805 (3) ŵ = 3.02 mm1
b = 7.9061 (9) ÅT = 298 K
c = 13.5002 (15) Å0.39 × 0.14 × 0.12 mm
β = 113.344 (2)°
Data collection top
Siemens SMART APEX CCD area-detector
diffractometer
2397 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1602 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.713Rint = 0.071
6480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.95Δρmax = 0.54 e Å3
2397 reflectionsΔρmin = 0.74 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.171700 (16)1.05278 (6)1.41157 (3)0.0585 (2)
N10.92749 (11)0.6137 (4)0.9225 (2)0.0342 (8)
H10.92910.61700.86020.041*
N20.96688 (11)0.6843 (4)1.0103 (2)0.0325 (7)
O10.88354 (11)0.5298 (4)1.02232 (19)0.0555 (9)
O20.88245 (10)0.5567 (4)0.71317 (18)0.0434 (7)
H20.88210.52860.65450.065*
C10.88626 (13)0.5393 (5)0.9337 (3)0.0329 (9)
C20.84455 (14)0.4681 (5)0.8353 (3)0.0317 (9)
C30.84277 (13)0.4765 (5)0.7298 (3)0.0325 (9)
C40.80124 (15)0.4043 (6)0.6450 (3)0.0450 (11)
H40.79980.41270.57520.054*
C50.76224 (15)0.3206 (6)0.6629 (3)0.0467 (11)
H50.73470.27220.60530.056*
C60.76374 (15)0.3079 (5)0.7662 (3)0.0461 (11)
H60.73760.24960.77870.055*
C70.80399 (14)0.3818 (5)0.8496 (3)0.0394 (10)
H70.80440.37440.91870.047*
C81.01117 (15)0.7562 (6)0.8889 (3)0.0453 (11)
H8A1.00560.64540.85730.068*
H8B1.04570.79430.90030.068*
H8C0.98580.83310.84130.068*
C91.00561 (13)0.7498 (5)0.9952 (2)0.0314 (9)
C101.04721 (13)0.8237 (5)1.0939 (3)0.0312 (9)
C111.04697 (14)0.7866 (5)1.1949 (3)0.0387 (10)
H111.02160.71371.19930.046*
C121.08322 (15)0.8551 (6)1.2876 (3)0.0441 (10)
H121.08220.82971.35400.053*
C131.12116 (14)0.9617 (5)1.2819 (3)0.0376 (9)
C141.12300 (16)0.9996 (6)1.1834 (3)0.0446 (10)
H141.14871.07131.17950.054*
C151.08594 (14)0.9290 (5)1.0911 (3)0.0393 (10)
H151.08730.95371.02480.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0516 (3)0.0628 (4)0.0480 (3)0.0060 (3)0.0059 (2)0.0110 (2)
N10.0355 (17)0.045 (2)0.0228 (15)0.0001 (16)0.0125 (13)0.0005 (14)
N20.0320 (17)0.039 (2)0.0259 (16)0.0008 (15)0.0105 (14)0.0028 (14)
O10.0562 (18)0.088 (3)0.0281 (14)0.0174 (17)0.0231 (13)0.0038 (15)
O20.0502 (16)0.060 (2)0.0236 (12)0.0083 (15)0.0181 (12)0.0062 (12)
C10.036 (2)0.038 (2)0.0268 (19)0.0080 (19)0.0146 (16)0.0022 (17)
C20.0311 (19)0.032 (2)0.0301 (19)0.0081 (18)0.0104 (16)0.0016 (17)
C30.034 (2)0.035 (2)0.0305 (19)0.0059 (18)0.0151 (17)0.0000 (17)
C40.050 (3)0.054 (3)0.027 (2)0.003 (2)0.0108 (19)0.0065 (19)
C50.034 (2)0.048 (3)0.048 (2)0.001 (2)0.0052 (19)0.009 (2)
C60.038 (2)0.049 (3)0.053 (3)0.002 (2)0.020 (2)0.002 (2)
C70.037 (2)0.044 (3)0.036 (2)0.001 (2)0.0145 (18)0.0041 (19)
C80.048 (2)0.054 (3)0.039 (2)0.003 (2)0.0221 (19)0.005 (2)
C90.037 (2)0.032 (2)0.0277 (19)0.0079 (18)0.0145 (17)0.0014 (16)
C100.031 (2)0.031 (2)0.0338 (19)0.0078 (18)0.0158 (16)0.0012 (17)
C110.040 (2)0.044 (3)0.035 (2)0.005 (2)0.0175 (18)0.0008 (19)
C120.051 (2)0.052 (3)0.030 (2)0.004 (2)0.0164 (19)0.0058 (19)
C130.032 (2)0.036 (2)0.041 (2)0.0022 (19)0.0106 (17)0.0046 (18)
C140.042 (2)0.043 (3)0.049 (2)0.005 (2)0.018 (2)0.001 (2)
C150.043 (2)0.044 (3)0.036 (2)0.000 (2)0.0210 (18)0.0068 (19)
Geometric parameters (Å, º) top
Br1—C131.899 (4)C6—H60.9300
N1—C11.349 (5)C7—H70.9300
N1—N21.374 (4)C8—C91.504 (4)
N1—H10.8600C8—H8A0.9600
N2—C91.282 (4)C8—H8B0.9600
O1—C11.231 (4)C8—H8C0.9600
O2—C31.366 (4)C9—C101.494 (5)
O2—H20.8200C10—C151.374 (5)
C1—C21.485 (5)C10—C111.398 (5)
C2—C71.395 (5)C11—C121.369 (5)
C2—C31.407 (5)C11—H110.9300
C3—C41.386 (5)C12—C131.376 (5)
C4—C51.371 (5)C12—H120.9300
C4—H40.9300C13—C141.384 (5)
C5—C61.383 (5)C14—C151.382 (5)
C5—H50.9300C14—H140.9300
C6—C71.365 (5)C15—H150.9300
C1—N1—N2120.2 (3)C9—C8—H8B109.5
C1—N1—H1119.9H8A—C8—H8B109.5
N2—N1—H1119.9C9—C8—H8C109.5
C9—N2—N1117.3 (3)H8A—C8—H8C109.5
C3—O2—H2109.5H8B—C8—H8C109.5
O1—C1—N1121.2 (3)N2—C9—C10114.8 (3)
O1—C1—C2121.3 (3)N2—C9—C8125.2 (3)
N1—C1—C2117.6 (3)C10—C9—C8120.1 (3)
C7—C2—C3117.2 (3)C15—C10—C11117.5 (3)
C7—C2—C1116.7 (3)C15—C10—C9123.4 (3)
C3—C2—C1126.1 (3)C11—C10—C9119.1 (3)
O2—C3—C4121.2 (3)C12—C11—C10121.5 (4)
O2—C3—C2118.8 (3)C12—C11—H11119.3
C4—C3—C2120.0 (3)C10—C11—H11119.3
C5—C4—C3120.8 (3)C11—C12—C13119.7 (3)
C5—C4—H4119.6C11—C12—H12120.2
C3—C4—H4119.6C13—C12—H12120.2
C4—C5—C6120.2 (4)C12—C13—C14120.5 (3)
C4—C5—H5119.9C12—C13—Br1119.0 (3)
C6—C5—H5119.9C14—C13—Br1120.5 (3)
C7—C6—C5119.2 (4)C15—C14—C13118.8 (4)
C7—C6—H6120.4C15—C14—H14120.6
C5—C6—H6120.4C13—C14—H14120.6
C6—C7—C2122.6 (3)C10—C15—C14122.2 (3)
C6—C7—H7118.7C10—C15—H15118.9
C2—C7—H7118.7C14—C15—H15118.9
C9—C8—H8A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.952.637 (3)136
O2—H2···O1i0.821.862.677 (3)178
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O2
Mr333.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.805 (3), 7.9061 (9), 13.5002 (15)
β (°) 113.344 (2)
V3)2724.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.39 × 0.14 × 0.12
Data collection
DiffractometerSiemens SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.386, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
6480, 2397, 1602
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 0.95
No. of reflections2397
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.74

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.952.637 (3)135.7
O2—H2···O1i0.821.862.677 (3)177.9
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Foundation of Binzhou University (grant No. BZXYLG200609).

References

First citationCui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds