metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[copper(II)-bis­[μ-bis­(3,5-di­methyl-1H-pyrazol-4-yl) selenide]] bis­(perchlorate)]

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: mcs@univ.kiev.ua

(Received 30 September 2009; accepted 13 October 2009; online 23 October 2009)

In the title compound, {[Cu(C10H14N4Se)2](ClO4)2}n, the CuII ion is located on a twofold rotation axis and has a tetra­gonally distorted square-planar geometry constituted by four N atoms. A pair of bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide (L) ligands bridges the copper centers into a polymeric chain extending along [001]. The perchlorate anions are involved in inter­molecular N—H⋯O hydrogen bonding, which links the chains into layers parallel to the bc plane.

Related literature

For the potential applications of coordination polymers, see: Farha et al. (2009[Farha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727-1731.]); Ohba et al. (2009[Ohba, M., Yoneda, K., Agusí, G., Munoz, M. C., Gaspar, A. B., Real, J. A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S. & Kitagawa, S. (2009). Angew. Chem., Int. Ed. Engl. 48, 4767-4771.]); Shibahara et al. (2007[Shibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860-862.]). For our studies of similar complexes with different dimensionality, see Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H14N4Se)2](ClO4)2

  • Mr = 800.86

  • Monoclinic, C 2/c

  • a = 28.398 (6) Å

  • b = 7.5865 (15) Å

  • c = 18.517 (4) Å

  • β = 130.69 (3)°

  • V = 3025.1 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 120 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.552, Tmax = 0.845

  • 13077 measured reflections

  • 3415 independent reflections

  • 2799 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.115

  • S = 1.04

  • 3415 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H4⋯O3i 0.88 2.06 2.912 (6) 161
N4—H3⋯O2ii 0.88 2.02 2.879 (6) 166
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: COLLECT (Bruker–Nonius, 2004[Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Molecular self-assembly through donor-acceptor interactions becomes one of the most elaborated research areas in coordination chemistry. The primary interest here is the development of functional materials with useful properties. Particularly, infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha et al., 2009), electrical conductivity (Shibahara et al., 2007) and molecular magnetism functionality (Ohba et al., 2009).

The title compound, [Cu(cis-µ-L)2](ClO4)2, was readily prepared by mixing aquoeous solution of Cu(ClO4)2.6H2O and methanolic solution of the ligand bis(3,5-dimethyl-1H-pyrazolyl)selenide (L) prepared according to Seredyuk et al. (2007). A tetragonally distorted square-planar environment of the CuII ion is formed by four non-coplanar nitrogen atoms of propeller-like arranged pyrazolyl cycles (distances Cu–N are 1.982 (5) and 1.967 (5) Å, two diagonal angles N–Cu–N are 163.6 (3) and 168.8 (3)°, respectively). Symmetrically equivalent ligand molecules in cis-bonding configuration are linked to CuII ion in a double-stranded bridge fashion (Fig. 1.). By repeats, they form linear chain running along the c axis within which each copper atom deviates from the average position by a value of ±0.068 (5) Å (Fig. 2). The NH group of each pyrazole cycle is involved in hydrogen bonding with perchlorate group resulting in the formation of a three-dimensional hybrid network.

Related literature top

For the potential applications of coordination polymers, see: Farha et al. (2009); Ohba et al. (2009); Shibahara et al. (2007). For our studies of similar complexes with different dimensionality, see Seredyuk et al. (2007).

Experimental top

A solution of Cu(ClO4)2.6H2O (0.065 g) in water (10 ml) was mixed with a solution of L.H2O (0.1 g) in methanol (10 ml) and was set aside for one week after which brown crystals of the title compound were isolated. Found C, 29.83, H, 3.65, N, 13.81. C20H28Cl2CuN8O8Se2 requires C, 29.99, H, 3.52, N, 13.99.

Refinement top

All H atoms were geometrically positioned (C—H 0.98 Å; N—H 0.88 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C, N). The crystal studied was a twin, so matrix (100) was used in the refinement of the crystal structure.

Structure description top

Molecular self-assembly through donor-acceptor interactions becomes one of the most elaborated research areas in coordination chemistry. The primary interest here is the development of functional materials with useful properties. Particularly, infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha et al., 2009), electrical conductivity (Shibahara et al., 2007) and molecular magnetism functionality (Ohba et al., 2009).

The title compound, [Cu(cis-µ-L)2](ClO4)2, was readily prepared by mixing aquoeous solution of Cu(ClO4)2.6H2O and methanolic solution of the ligand bis(3,5-dimethyl-1H-pyrazolyl)selenide (L) prepared according to Seredyuk et al. (2007). A tetragonally distorted square-planar environment of the CuII ion is formed by four non-coplanar nitrogen atoms of propeller-like arranged pyrazolyl cycles (distances Cu–N are 1.982 (5) and 1.967 (5) Å, two diagonal angles N–Cu–N are 163.6 (3) and 168.8 (3)°, respectively). Symmetrically equivalent ligand molecules in cis-bonding configuration are linked to CuII ion in a double-stranded bridge fashion (Fig. 1.). By repeats, they form linear chain running along the c axis within which each copper atom deviates from the average position by a value of ±0.068 (5) Å (Fig. 2). The NH group of each pyrazole cycle is involved in hydrogen bonding with perchlorate group resulting in the formation of a three-dimensional hybrid network.

For the potential applications of coordination polymers, see: Farha et al. (2009); Ohba et al. (2009); Shibahara et al. (2007). For our studies of similar complexes with different dimensionality, see Seredyuk et al. (2007).

Computing details top

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of the title compound showing the labeling scheme and 50% probabilty displacement ellipsoids [symmetry codes: (i) –x, 1–y, –z, (ii) –x, y, -0.5–z, (iii) x, 1–y, -1/2 + z]. H atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the b-axis. H atoms are omitted for clarity.
catena-Poly[[copper(II)-bis[µ-bis(3,5-dimethyl-1H- pyrazol-4-yl) selenide]] bis(perchlorate)] top
Crystal data top
[Cu(C10H14N4Se)2](ClO4)2F(000) = 1596
Mr = 800.86Dx = 1.758 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3400 reflections
a = 28.398 (6) Åθ = 2.9–27.5°
b = 7.5865 (15) ŵ = 3.36 mm1
c = 18.517 (4) ÅT = 120 K
β = 130.69 (3)°Plates, brown
V = 3025.1 (17) Å30.2 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3415 independent reflections
Radiation source: fine-focus sealed tube2799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω–scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3634
Tmin = 0.552, Tmax = 0.845k = 99
13077 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0574P)2 + 8.3063P]
where P = (Fo2 + 2Fc2)/3
3415 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Cu(C10H14N4Se)2](ClO4)2V = 3025.1 (17) Å3
Mr = 800.86Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.398 (6) ŵ = 3.36 mm1
b = 7.5865 (15) ÅT = 120 K
c = 18.517 (4) Å0.2 × 0.15 × 0.05 mm
β = 130.69 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3415 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2799 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.845Rint = 0.074
13077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 2.18 e Å3
3415 reflectionsΔρmin = 1.00 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.48037 (13)0.25000.0124 (2)
Se10.15222 (2)0.73993 (6)0.14892 (4)0.01476 (14)
Cl10.13436 (8)0.99852 (19)0.36166 (12)0.0307 (4)
O10.1340 (3)1.0280 (6)0.2844 (4)0.0369 (12)
O20.1537 (3)1.1562 (6)0.4173 (3)0.0430 (13)
O30.1753 (2)0.8577 (5)0.4177 (4)0.0410 (14)
O40.0732 (2)0.9468 (7)0.3248 (4)0.0510 (14)
N10.0655 (2)0.5177 (6)0.1109 (3)0.0144 (10)
N20.1167 (2)0.4166 (6)0.0546 (3)0.0146 (10)
H40.12570.33010.07550.017*
N30.0637 (2)0.5450 (6)0.2384 (3)0.0125 (10)
N40.1183 (2)0.4511 (6)0.2931 (3)0.0131 (10)
H30.12840.37390.33670.016*
C10.0190 (3)0.7707 (8)0.0923 (4)0.0237 (14)
H11A0.00360.80980.15480.036*
H11B0.03670.87130.04860.036*
H11C0.01550.72110.09870.036*
C20.0679 (3)0.6330 (7)0.0538 (4)0.0141 (12)
C30.1216 (3)0.6022 (7)0.0402 (4)0.0128 (12)
C40.1526 (3)0.4643 (7)0.0377 (4)0.0146 (11)
C50.2128 (3)0.3741 (9)0.1141 (5)0.0268 (15)
H19A0.20570.27920.14200.040*
H19B0.24220.45950.16370.040*
H19C0.23000.32450.08670.040*
C60.0155 (3)0.7705 (8)0.1110 (5)0.0217 (14)
H8A0.01600.70910.05080.033*
H8B0.03280.86800.10000.033*
H8C0.00350.81680.13620.033*
C70.0657 (3)0.6460 (7)0.1804 (4)0.0140 (12)
C80.1218 (3)0.6135 (7)0.1993 (4)0.0128 (11)
C90.1539 (3)0.4907 (7)0.2723 (4)0.0148 (12)
C100.2162 (3)0.4049 (8)0.3247 (5)0.0250 (14)
H17A0.21050.27920.30880.037*
H17B0.24070.41880.39350.037*
H17C0.23800.46080.30610.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0104 (4)0.0185 (5)0.0111 (5)0.0000.0082 (4)0.000
Se10.0156 (2)0.0179 (3)0.0128 (3)0.0062 (2)0.0101 (3)0.0039 (2)
Cl10.0342 (8)0.0231 (7)0.0390 (9)0.0019 (7)0.0258 (8)0.0063 (7)
O10.052 (3)0.032 (3)0.038 (3)0.003 (2)0.034 (3)0.001 (2)
O20.068 (4)0.030 (2)0.027 (3)0.000 (3)0.029 (3)0.003 (2)
O30.055 (4)0.022 (2)0.064 (4)0.013 (2)0.048 (3)0.016 (2)
O40.037 (3)0.070 (4)0.048 (3)0.017 (3)0.029 (3)0.011 (3)
N10.015 (3)0.016 (2)0.012 (2)0.002 (2)0.008 (2)0.0016 (18)
N20.013 (3)0.016 (2)0.012 (2)0.0048 (19)0.007 (2)0.0009 (18)
N30.012 (2)0.018 (2)0.010 (2)0.004 (2)0.008 (2)0.0002 (18)
N40.011 (2)0.015 (2)0.010 (2)0.0013 (19)0.005 (2)0.0022 (17)
C10.024 (4)0.021 (3)0.017 (3)0.009 (3)0.010 (3)0.001 (2)
C20.012 (3)0.017 (3)0.016 (3)0.001 (2)0.011 (3)0.001 (2)
C30.015 (3)0.014 (3)0.011 (3)0.003 (2)0.009 (2)0.001 (2)
C40.015 (3)0.017 (2)0.014 (3)0.001 (2)0.011 (3)0.001 (2)
C50.021 (4)0.033 (4)0.024 (3)0.007 (3)0.013 (3)0.003 (3)
C60.015 (3)0.026 (3)0.022 (3)0.004 (3)0.010 (3)0.011 (2)
C70.017 (3)0.014 (3)0.011 (3)0.001 (2)0.009 (3)0.001 (2)
C80.014 (3)0.015 (3)0.010 (3)0.001 (2)0.009 (2)0.003 (2)
C90.012 (3)0.017 (3)0.016 (3)0.001 (2)0.009 (2)0.001 (2)
C100.020 (3)0.031 (3)0.029 (3)0.006 (3)0.018 (3)0.008 (3)
Geometric parameters (Å, º) top
Cu1—N3i1.967 (5)C1—H11A0.9800
Cu1—N3ii1.967 (5)C1—H11B0.9800
Cu1—N11.982 (5)C1—H11C0.9800
Cu1—N1iii1.982 (5)C2—C31.396 (8)
Se1—C81.893 (5)C3—C41.387 (8)
Se1—C31.902 (5)C4—C51.497 (8)
Cl1—O31.413 (5)C5—H19A0.9800
Cl1—O21.434 (5)C5—H19B0.9800
Cl1—O11.442 (5)C5—H19C0.9800
Cl1—O41.447 (5)C6—C71.478 (8)
N1—C21.339 (7)C6—H8A0.9800
N1—N21.347 (6)C6—H8B0.9800
N2—C41.349 (7)C6—H8C0.9800
N2—H40.8800C7—C81.413 (8)
N3—C71.349 (7)C8—C91.386 (8)
N3—N41.373 (6)C9—C101.502 (8)
N3—Cu1i1.967 (5)C10—H17A0.9800
N4—C91.330 (7)C10—H17B0.9800
N4—H30.8800C10—H17C0.9800
C1—C21.497 (8)
N3i—Cu1—N3ii168.8 (3)C4—C3—C2106.5 (5)
N3i—Cu1—N191.28 (16)C4—C3—Se1126.0 (4)
N3ii—Cu1—N190.32 (16)C2—C3—Se1127.0 (4)
N3i—Cu1—N1iii90.32 (16)N2—C4—C3105.9 (5)
N3ii—Cu1—N1iii91.28 (16)N2—C4—C5121.9 (5)
N1—Cu1—N1iii163.6 (3)C3—C4—C5132.2 (5)
C8—Se1—C3101.66 (19)C4—C5—H19A109.5
O3—Cl1—O2110.9 (3)C4—C5—H19B109.5
O3—Cl1—O1108.4 (3)H19A—C5—H19B109.5
O2—Cl1—O1109.5 (3)C4—C5—H19C109.5
O3—Cl1—O4107.6 (3)H19A—C5—H19C109.5
O2—Cl1—O4110.2 (4)H19B—C5—H19C109.5
O1—Cl1—O4110.2 (4)C7—C6—H8A109.5
C2—N1—N2106.7 (5)C7—C6—H8B109.5
C2—N1—Cu1129.9 (4)H8A—C6—H8B109.5
N2—N1—Cu1123.3 (3)C7—C6—H8C109.5
N1—N2—C4111.7 (4)H8A—C6—H8C109.5
N1—N2—H4124.1H8B—C6—H8C109.5
C4—N2—H4124.1N3—C7—C8109.2 (5)
C7—N3—N4105.7 (4)N3—C7—C6122.5 (5)
C7—N3—Cu1i131.4 (4)C8—C7—C6128.3 (5)
N4—N3—Cu1i122.9 (3)C9—C8—C7106.1 (5)
C9—N4—N3112.0 (4)C9—C8—Se1126.9 (4)
C9—N4—H3124.0C7—C8—Se1126.3 (4)
N3—N4—H3124.0N4—C9—C8107.1 (5)
C2—C1—H11A109.5N4—C9—C10120.8 (5)
C2—C1—H11B109.5C8—C9—C10132.0 (5)
H11A—C1—H11B109.5C9—C10—H17A109.5
C2—C1—H11C109.5C9—C10—H17B109.5
H11A—C1—H11C109.5H17A—C10—H17B109.5
H11B—C1—H11C109.5C9—C10—H17C109.5
N1—C2—C3109.1 (5)H17A—C10—H17C109.5
N1—C2—C1121.8 (5)H17B—C10—H17C109.5
C3—C2—C1129.1 (5)
N3i—Cu1—N1—C253.2 (5)N1—N2—C4—C5178.8 (5)
N3ii—Cu1—N1—C2138.0 (5)C2—C3—C4—N21.3 (6)
N1iii—Cu1—N1—C242.3 (5)Se1—C3—C4—N2174.1 (4)
N3i—Cu1—N1—N2122.9 (4)C2—C3—C4—C5178.5 (6)
N3ii—Cu1—N1—N245.9 (4)Se1—C3—C4—C55.7 (9)
N1iii—Cu1—N1—N2141.6 (4)N4—N3—C7—C80.3 (6)
C2—N1—N2—C40.4 (6)Cu1i—N3—C7—C8179.0 (4)
Cu1—N1—N2—C4177.3 (4)N4—N3—C7—C6178.8 (5)
C7—N3—N4—C90.7 (6)Cu1i—N3—C7—C62.0 (9)
Cu1i—N3—N4—C9180.0 (4)N3—C7—C8—C91.0 (6)
N2—N1—C2—C30.4 (6)C6—C7—C8—C9177.9 (6)
Cu1—N1—C2—C3176.2 (4)N3—C7—C8—Se1172.0 (4)
N2—N1—C2—C1178.4 (5)C6—C7—C8—Se17.0 (9)
Cu1—N1—C2—C15.0 (8)C3—Se1—C8—C997.2 (5)
N1—C2—C3—C41.1 (6)C3—Se1—C8—C793.7 (5)
C1—C2—C3—C4177.6 (6)N3—N4—C9—C81.3 (6)
N1—C2—C3—Se1173.8 (4)N3—N4—C9—C10179.1 (5)
C1—C2—C3—Se14.9 (9)C7—C8—C9—N41.4 (6)
C8—Se1—C3—C491.4 (5)Se1—C8—C9—N4172.3 (4)
C8—Se1—C3—C297.3 (5)C7—C8—C9—C10179.1 (6)
N1—N2—C4—C31.1 (6)Se1—C8—C9—C108.3 (9)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2; (iii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O3ii0.882.062.912 (6)161
N4—H3···O2iv0.882.022.879 (6)166
Symmetry codes: (ii) x, y+1, z1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H14N4Se)2](ClO4)2
Mr800.86
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)28.398 (6), 7.5865 (15), 18.517 (4)
β (°) 130.69 (3)
V3)3025.1 (17)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.2 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.552, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
13077, 3415, 2799
Rint0.074
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.115, 1.04
No. of reflections3415
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 1.00

Computer programs: COLLECT (Bruker-Nonius, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O3i0.882.062.912 (6)161.2
N4—H3···O2ii0.882.022.879 (6)165.6
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y1, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker-Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727–1731.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOhba, M., Yoneda, K., Agusí, G., Munoz, M. C., Gaspar, A. B., Real, J. A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S. & Kitagawa, S. (2009). Angew. Chem., Int. Ed. Engl. 48, 4767–4771.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860–862.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds