organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4,5-Di­iodo-1,3-di­thiol-2-yl­­idene)-4′,5′-bis­­(methyl­sulfan­yl)-2,2′-bi-1,3-di­thiole-4(5H)-thione

aDivision of Applied Science and Fundamental Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan, and bBruker AXS Co. Ltd., Moriya-cho 3-9, Kanagawa-ku, Kanagawa, Kanagawa 221-0022, Japan
*Correspondence e-mail: tkueda@ipc.shizuoka.ac.jp

(Received 6 October 2009; accepted 16 October 2009; online 23 October 2009)

The mol­ecular skeleton of the title mol­ecule, C11H6I2S9, is nearly planar [maximum deviation 0.052 (3) Å] except for the two methyl groups. In the crystal, mol­ecules related by translation along b axis are associated into columns through ππ inter­actions between the five-membered rings, with a centroid–centroid distance of 3.593 (5) Å. Inter­action between adjacent columns is accomplished by short S⋯I contacts of 3.2099 (4) Å.

Related literature

For background to tetra­thia­fulvalenothio­quinone-1,3-dithiol­emethide derivatives, see: Iwamatsu et al. (2000[Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Adachi, T., Fujita, H., Yoshino, H., Mizuno, Y., Murata, K. & Shiro, M. (2000). Inorg. Chem. 39, 3810-3815.]); Wang et al. (2005[Wang, M., Fujiwara, H., Sugimoto, T., Noguchi, S. & Ishida, T. (2005). Inorg. Chem. 44, 1184-1186.], 2007[Wang, M., Xiao, X., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Mori, T. & Katori, H. A. (2007). Inorg. Chem. 46, 3049-3056.]); Hiraoka et al. (2005[Hiraoka, T., Kamada, Y., Matsumoto, T., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Nakzumi, H. & Katori, H. A. (2005). J. Mater. Chem. 15, 3479-3487.]); Fujiwara et al. (2006[Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T. & Nakazumi, H. (2006). J. Low Temp. Phys. 142, 405-408.], 2007[Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T., Nakazumi, H., Teramura, M., Yokogawa, K., Yasuzuka, S. & Murata, K. (2007). Multifunctional Conducting Molecular Materials, edited by G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz & M. Maesato, pp. 161-164. Cambridge: RSC Publishing.]). For details of the synthesis, see Iwamatsu et al. (1999[Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. pp. 329-330.]). For inter­molecular S⋯I contacts, see: Ahlsen & Strømme (1974[Ahlsen, E. L. & Strømme, K. O. (1974). Acta Chem. Scand. Ser. A, 28, 175-184.]); Herbstein & Schwortzer (1984[Herbstein, F. H. & Schwortzer, W. (1984). J. Am. Chem. Soc. 106, 2367-2373.]); Freemanm et al. (1988[Freemanm, F., Ziller, J. W., Po, H. N. & Keindl, M. C. (1988). J. Am. Chem. Soc. 110, 2586-2591.]); Bigoli et al. (1996[Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. & Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583-3589.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6I2S9

  • Mr = 680.50

  • Monoclinic, C 2/c

  • a = 29.540 (7) Å

  • b = 5.3543 (13) Å

  • c = 25.163 (6) Å

  • β = 103.544 (3)°

  • V = 3869.2 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.21 mm−1

  • T = 93 K

  • 0.55 × 0.18 × 0.01 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Götingen, Germany.]) Tmin = 0.205, Tmax = 0.979

  • 10568 measured reflections

  • 4387 independent reflections

  • 3536 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.07

  • 4387 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 3.45 e Å−3

  • Δρmin = −2.31 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: XCIF (Bruker, 2001[Bruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Charge transfer (CT) complexes of new donor molecules featuring a skeleton of tetrathiafulvalenothioquinone-1,3-dithiolemethide with magnetic metal ions are used for the preparation of magnetic molecular conductors, especially ferromagnetic semiconductors and metals (Wang et al., 2005, 2007; Hiraoka et al., 2005; Fujiwara et al., 2006, 2007). In the CT salts of an ethylendithiotetrathiafulvalenothioquinone-1,3-dithiolemethide donor with CuBr2, the Cu atom (a Lewis acid) of CuBr2 is bound to the S atom (a Lewis base) of a C=S group in the donor to form a new type of π/d molecular system (Iwamatsu et al., 2000). The introduction of Lewis acids, such as iodine atoms, as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of S···I contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solid-state. In this context, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylthio groups, is almost planar [maximum deviation 0.052 (3) Å]. The displacements of atoms S8, S9, I1 and I2 relative to the plane of the skeleton are -0.164 (3), -0.151 (3), 0.164 (3) and 0.277 (3) Å, respectively. The torsion angles of the two methylthio groups are -136.95° for C10—S8—C8—C9 and 80.97° for C11—S9—C9—C8. In the crystal structure, two different arrangements of the molecules are present. One arrangement has a dihedral angle of 48.41° to the ac plane, while the other has a dihedral angle of 131.51° to the ac plane. As a result, the molecules are stacked in the same orientations to form one-dimensional columns along the [110] and [1–10] directions (Fig. 2). Although the weak interaction between stacked molecules in the columns is accomplished through contacts between different sulfur atoms [S3···S5i = 3.5916 (6) Å; symmetry code: (i) +x, 1 + y, +z] is shorter than the sum of van der Waals radii of two sulfur atoms (3.60 Å), stacked molecules are separated by interplanar distances greater than 3.54 Å and have fairly poor overlap (Bondi, 1964). However, some effective side-by-side contacts are observed between molecules of adjacent columns. The interaction between columns is accomplished by contacts between sulfur and iodine atoms [S3···I1ii = 3.2099 (4) Å; symmetry code: (ii) 2 - x, -1 + y, 1/2 - z] along the a axis (Fig. 3). This distance is shorter than the sum of van der Waals radii of sulfur and iodine atoms (3.78 Å). In the two molecules bound by sulfur-iodine interaction, the C5—S3—I1ii—C1ii moieties are not planar and almost linear S3—I1ii—C1ii fragments lie roughly perpendicular to the molecular skeleton [torsion angle of -81.47° for I1i—S3—C5—S5 and torsion angle of 97.60° for I1i—S3—C5—C4], and the dihedral angle of the molecules is 83.11°. Such sulfur-iodine interactions have been observed previously (Ahlsen et al.,1974; Herbstein et al., 1984; Freemanm et al., 1988; Bigoli et al., 1996).

Related literature top

For background to tetrathiafulvalenothioquinone-1,3-dithiolemethide derivatives, see: Iwamatsu et al. (2000); Wang et al. (2005, 2007); Hiraoka et al. (2005); Fujiwara et al. (2006, 2007). For details of the synthesis, see Iwamatsu et al. (1999). For intermolecular S···I contacts, see: Ahlsen et al. (1974); Herbstein et al. (1984); Freemanm et al. (1988); Bigoli et al. (1996). For van der Waals radii, see: Bondi (1964).

Experimental top

Compound (I) was synthesized by a modification of the method used for the preparation of bis(methylthio)tetrathiafulvalenothioquinone-1,3-dithiolemethide (Iwamatsu et al.,1999). Bis(tetraethylammonium)bis(2,3-bis(methylthio)tetrathiafulvalenyl-6,7-dithiolato)zinc (269 mg, 0.258 mmol) was reacted with 4,5-diiodo-2-methylthio-1,3-dithiole-2,3-dithiolium tetrafluoroborate (535 mg, 1.10 mmol) in THF-DMF (5:1 = v/v) at room temperature under nitrogen, and stirring was carried out for 12 h. After separation of the reaction mixture by column chromatography on silica gel (eluent: CS2) followed by recrystallization from CS2/n-hexane, (I) was obtained as black needles in 72% yield.

Refinement top

The H atoms were geometrically positioned with C—H: 0.98 Å, and refined as riding, with Uiso(H)= 1.5Ueq(C). The highest residual peak [3.45 e Å-3] and deepest hole [-2.31 e Å-3] are situated 0.98 Å and 0.69 Å at atom I2, respectively.

Structure description top

Charge transfer (CT) complexes of new donor molecules featuring a skeleton of tetrathiafulvalenothioquinone-1,3-dithiolemethide with magnetic metal ions are used for the preparation of magnetic molecular conductors, especially ferromagnetic semiconductors and metals (Wang et al., 2005, 2007; Hiraoka et al., 2005; Fujiwara et al., 2006, 2007). In the CT salts of an ethylendithiotetrathiafulvalenothioquinone-1,3-dithiolemethide donor with CuBr2, the Cu atom (a Lewis acid) of CuBr2 is bound to the S atom (a Lewis base) of a C=S group in the donor to form a new type of π/d molecular system (Iwamatsu et al., 2000). The introduction of Lewis acids, such as iodine atoms, as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of S···I contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solid-state. In this context, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylthio groups, is almost planar [maximum deviation 0.052 (3) Å]. The displacements of atoms S8, S9, I1 and I2 relative to the plane of the skeleton are -0.164 (3), -0.151 (3), 0.164 (3) and 0.277 (3) Å, respectively. The torsion angles of the two methylthio groups are -136.95° for C10—S8—C8—C9 and 80.97° for C11—S9—C9—C8. In the crystal structure, two different arrangements of the molecules are present. One arrangement has a dihedral angle of 48.41° to the ac plane, while the other has a dihedral angle of 131.51° to the ac plane. As a result, the molecules are stacked in the same orientations to form one-dimensional columns along the [110] and [1–10] directions (Fig. 2). Although the weak interaction between stacked molecules in the columns is accomplished through contacts between different sulfur atoms [S3···S5i = 3.5916 (6) Å; symmetry code: (i) +x, 1 + y, +z] is shorter than the sum of van der Waals radii of two sulfur atoms (3.60 Å), stacked molecules are separated by interplanar distances greater than 3.54 Å and have fairly poor overlap (Bondi, 1964). However, some effective side-by-side contacts are observed between molecules of adjacent columns. The interaction between columns is accomplished by contacts between sulfur and iodine atoms [S3···I1ii = 3.2099 (4) Å; symmetry code: (ii) 2 - x, -1 + y, 1/2 - z] along the a axis (Fig. 3). This distance is shorter than the sum of van der Waals radii of sulfur and iodine atoms (3.78 Å). In the two molecules bound by sulfur-iodine interaction, the C5—S3—I1ii—C1ii moieties are not planar and almost linear S3—I1ii—C1ii fragments lie roughly perpendicular to the molecular skeleton [torsion angle of -81.47° for I1i—S3—C5—S5 and torsion angle of 97.60° for I1i—S3—C5—C4], and the dihedral angle of the molecules is 83.11°. Such sulfur-iodine interactions have been observed previously (Ahlsen et al.,1974; Herbstein et al., 1984; Freemanm et al., 1988; Bigoli et al., 1996).

For background to tetrathiafulvalenothioquinone-1,3-dithiolemethide derivatives, see: Iwamatsu et al. (2000); Wang et al. (2005, 2007); Hiraoka et al. (2005); Fujiwara et al. (2006, 2007). For details of the synthesis, see Iwamatsu et al. (1999). For intermolecular S···I contacts, see: Ahlsen et al. (1974); Herbstein et al. (1984); Freemanm et al. (1988); Bigoli et al. (1996). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: XCIF (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling and 50% probability displacement ellipsoids for non H-atoms.
[Figure 2] Fig. 2. Projection of the crystal packing in (I) down the ab plane. The S···S (black) and S···I (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.
[Figure 3] Fig. 3. Projection of the crystal packing in (I) down the ac plane. The S···I (blue) contacts are shown with dashed lines. H atoms are omitted for clarity.
5-(4,5-Diiodo-1,3-dithiol-2-ylidene)-4',5'-bis(methylsulfanyl)-2,2'-bi-1,3- dithiole-4(5H)-thione top
Crystal data top
C11H6I2S9F(000) = 2576
Mr = 680.50Dx = 2.336 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2871 reflections
a = 29.540 (7) Åθ = 2.4–27.5°
b = 5.3543 (13) ŵ = 4.21 mm1
c = 25.163 (6) ÅT = 93 K
β = 103.544 (3)°Needle, black
V = 3869.2 (16) Å30.55 × 0.18 × 0.01 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4387 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3536 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.040
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 1.4°
φ and ω scansh = 3836
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 66
Tmin = 0.205, Tmax = 0.979l = 2432
10568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.028P)2 + 20.8292P]
where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max = 0.002
201 parametersΔρmax = 3.45 e Å3
0 restraintsΔρmin = 2.31 e Å3
Crystal data top
C11H6I2S9V = 3869.2 (16) Å3
Mr = 680.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.540 (7) ŵ = 4.21 mm1
b = 5.3543 (13) ÅT = 93 K
c = 25.163 (6) Å0.55 × 0.18 × 0.01 mm
β = 103.544 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4387 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3536 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.979Rint = 0.040
10568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.028P)2 + 20.8292P]
where P = (Fo2 + 2Fc2)/3
4387 reflectionsΔρmax = 3.45 e Å3
201 parametersΔρmin = 2.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.01287 (15)1.3727 (9)0.35298 (19)0.0158 (10)
C21.02057 (16)1.2692 (10)0.4024 (2)0.0198 (11)
C30.94845 (15)1.0393 (9)0.34447 (18)0.0150 (10)
C40.91248 (16)0.8707 (9)0.32900 (19)0.0157 (10)
C50.88305 (16)0.8507 (9)0.27608 (19)0.0152 (10)
C60.85596 (16)0.5009 (9)0.3338 (2)0.0177 (10)
C70.83308 (16)0.3149 (10)0.35177 (19)0.0180 (11)
C80.80459 (17)0.0037 (10)0.4151 (2)0.0213 (11)
C90.77585 (16)0.0346 (10)0.3660 (2)0.0197 (11)
C100.8099 (2)0.0697 (12)0.5245 (2)0.0345 (14)
H10A0.84310.10960.53590.052*
H10B0.79880.01280.55620.052*
H10C0.79250.21900.50900.052*
C110.68641 (17)0.0497 (11)0.3739 (2)0.0244 (12)
H11A0.69750.02110.41320.037*
H11B0.65630.13580.36670.037*
H11C0.68280.11100.35470.037*
I11.052758 (10)1.64937 (6)0.326836 (12)0.01695 (10)
I21.075939 (14)1.33621 (9)0.468614 (15)0.04003 (14)
S10.96539 (4)1.2618 (2)0.30265 (5)0.0163 (2)
S20.98132 (4)1.0369 (3)0.41150 (5)0.0202 (3)
S30.88601 (4)1.0394 (2)0.22343 (5)0.0186 (3)
S40.90284 (4)0.6524 (2)0.37793 (5)0.0196 (3)
S50.84272 (4)0.6130 (2)0.26660 (5)0.0194 (3)
S60.84983 (4)0.2173 (3)0.42068 (5)0.0217 (3)
S70.78627 (4)0.1484 (3)0.31171 (5)0.0200 (3)
S80.80104 (5)0.1743 (3)0.47356 (5)0.0231 (3)
S90.72837 (4)0.2411 (3)0.34965 (5)0.0200 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.013 (2)0.020 (3)0.015 (2)0.0029 (19)0.0032 (18)0.002 (2)
C20.018 (2)0.023 (3)0.017 (2)0.004 (2)0.0002 (19)0.002 (2)
C30.015 (2)0.017 (3)0.012 (2)0.0032 (19)0.0015 (18)0.0001 (19)
C40.015 (2)0.015 (3)0.017 (2)0.0032 (19)0.0038 (18)0.004 (2)
C50.017 (2)0.016 (3)0.015 (2)0.0061 (19)0.0073 (18)0.0025 (19)
C60.017 (2)0.015 (3)0.020 (3)0.0027 (19)0.0026 (19)0.004 (2)
C70.017 (2)0.020 (3)0.016 (2)0.000 (2)0.0033 (19)0.003 (2)
C80.018 (2)0.020 (3)0.026 (3)0.004 (2)0.007 (2)0.001 (2)
C90.013 (2)0.020 (3)0.027 (3)0.002 (2)0.0050 (19)0.004 (2)
C100.047 (4)0.035 (4)0.024 (3)0.007 (3)0.015 (3)0.002 (3)
C110.018 (2)0.029 (3)0.026 (3)0.001 (2)0.005 (2)0.004 (2)
I10.01587 (16)0.01857 (18)0.01695 (17)0.00209 (12)0.00491 (12)0.00065 (13)
I20.0346 (2)0.0579 (3)0.0204 (2)0.0239 (2)0.00805 (16)0.01043 (18)
S10.0161 (6)0.0184 (6)0.0143 (6)0.0014 (5)0.0033 (4)0.0016 (5)
S20.0195 (6)0.0269 (7)0.0133 (6)0.0053 (5)0.0019 (5)0.0029 (5)
S30.0198 (6)0.0193 (7)0.0160 (6)0.0023 (5)0.0027 (5)0.0014 (5)
S40.0223 (6)0.0212 (7)0.0153 (6)0.0046 (5)0.0046 (5)0.0002 (5)
S50.0188 (6)0.0194 (7)0.0185 (6)0.0034 (5)0.0014 (5)0.0020 (5)
S60.0208 (6)0.0254 (8)0.0182 (6)0.0065 (5)0.0031 (5)0.0005 (5)
S70.0200 (6)0.0215 (7)0.0179 (6)0.0040 (5)0.0033 (5)0.0012 (5)
S80.0254 (7)0.0233 (7)0.0202 (7)0.0050 (5)0.0044 (5)0.0014 (5)
S90.0182 (6)0.0207 (7)0.0214 (6)0.0037 (5)0.0052 (5)0.0039 (5)
Geometric parameters (Å, º) top
C1—C21.331 (7)C7—S71.752 (5)
C1—S11.758 (5)C7—S61.767 (5)
C1—I12.093 (5)C8—C91.336 (7)
C2—S21.751 (5)C8—S81.755 (5)
C2—I22.074 (5)C8—S61.766 (5)
C3—C41.379 (7)C9—S91.758 (5)
C3—S21.738 (4)C9—S71.766 (5)
C3—S11.739 (5)C10—S81.806 (6)
C4—C51.414 (6)C10—H10A0.9800
C4—S41.769 (5)C10—H10B0.9800
C5—S31.685 (5)C10—H10C0.9800
C5—S51.721 (5)C11—S91.820 (5)
C6—C71.340 (7)C11—H11A0.9800
C6—S51.750 (5)C11—H11B0.9800
C6—S41.758 (5)C11—H11C0.9800
C2—C1—S1117.7 (4)C8—C9—S9126.4 (4)
C2—C1—I1127.1 (4)C8—C9—S7117.3 (4)
S1—C1—I1115.2 (2)S9—C9—S7116.2 (3)
C1—C2—S2116.4 (4)S8—C10—H10A109.5
C1—C2—I2127.5 (4)S8—C10—H10B109.5
S2—C2—I2116.1 (3)H10A—C10—H10B109.5
C4—C3—S2119.2 (4)S8—C10—H10C109.5
C4—C3—S1126.1 (4)H10A—C10—H10C109.5
S2—C3—S1114.7 (3)H10B—C10—H10C109.5
C3—C4—C5125.4 (5)S9—C11—H11A109.5
C3—C4—S4118.4 (4)S9—C11—H11B109.5
C5—C4—S4116.2 (4)H11A—C11—H11B109.5
C4—C5—S3124.2 (4)S9—C11—H11C109.5
C4—C5—S5116.1 (4)H11A—C11—H11C109.5
S3—C5—S5119.8 (3)H11B—C11—H11C109.5
C7—C6—S5124.4 (4)C3—S1—C195.1 (2)
C7—C6—S4121.0 (4)C3—S2—C296.0 (2)
S5—C6—S4114.6 (3)C6—S4—C495.5 (2)
C6—C7—S7125.2 (4)C5—S5—C697.4 (2)
C6—C7—S6120.2 (4)C8—S6—C795.0 (2)
S7—C7—S6114.6 (3)C7—S7—C995.4 (2)
C9—C8—S8124.1 (4)C8—S8—C10101.0 (3)
C9—C8—S6117.5 (4)C9—S9—C1197.8 (2)
S8—C8—S6118.4 (3)

Experimental details

Crystal data
Chemical formulaC11H6I2S9
Mr680.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)29.540 (7), 5.3543 (13), 25.163 (6)
β (°) 103.544 (3)
V3)3869.2 (16)
Z8
Radiation typeMo Kα
µ (mm1)4.21
Crystal size (mm)0.55 × 0.18 × 0.01
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.205, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10568, 4387, 3536
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.07
No. of reflections4387
No. of parameters201
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.028P)2 + 20.8292P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.45, 2.31

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), XCIF (Bruker, 2001).

 

Acknowledgements

This work was supported by the Hamashin Regional Development Foundation and the Japan Chemical Innovation Institute.

References

First citationAhlsen, E. L. & Strømme, K. O. (1974). Acta Chem. Scand. Ser. A, 28, 175–184.  CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. & Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583–3589.  CSD CrossRef Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441-451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreemanm, F., Ziller, J. W., Po, H. N. & Keindl, M. C. (1988). J. Am. Chem. Soc. 110, 2586–2591.  Google Scholar
First citationFujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T. & Nakazumi, H. (2006). J. Low Temp. Phys. 142, 405–408.  Web of Science CSD CrossRef Google Scholar
First citationFujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T., Nakazumi, H., Teramura, M., Yokogawa, K., Yasuzuka, S. & Murata, K. (2007). Multifunctional Conducting Molecular Materials, edited by G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz & M. Maesato, pp. 161–164. Cambridge: RSC Publishing.  Google Scholar
First citationHerbstein, F. H. & Schwortzer, W. (1984). J. Am. Chem. Soc. 106, 2367–2373.  CSD CrossRef CAS Web of Science Google Scholar
First citationHiraoka, T., Kamada, Y., Matsumoto, T., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Nakzumi, H. & Katori, H. A. (2005). J. Mater. Chem. 15, 3479–3487.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Adachi, T., Fujita, H., Yoshino, H., Mizuno, Y., Murata, K. & Shiro, M. (2000). Inorg. Chem. 39, 3810–3815.  CrossRef PubMed CAS Google Scholar
First citationIwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. pp. 329–330.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Götingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Fujiwara, H., Sugimoto, T., Noguchi, S. & Ishida, T. (2005). Inorg. Chem. 44, 1184–1186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, M., Xiao, X., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Mori, T. & Katori, H. A. (2007). Inorg. Chem. 46, 3049–3056.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds